On the finite element approximation of 4th order singularly perturbed eigenvalue problems

Christos Xenophontos
Department of Mathematics and Statistics
University of Cyprus

joint work with D. Savvidou (UCY) and H.-G. Roos (TU-Dresden)
The Model Problem

Singularly perturbed 4th order eigenvalue problem:

Find \(0 \neq u(x) \in C^4(I), \lambda \in \mathbb{C}\) such that

\[
\varepsilon^2 u^{(4)}(x) - \left(\alpha(x)u'(x)\right)' + \beta(x)u(x) = \lambda u(x) \quad \text{in} \quad I = (0, 1)
\]

\[
u(0) = u(1) = u'(0) = u'(1) = 0
\]
The Model Problem

Singularly perturbed 4th order eigenvalue problem:

Find $0 \neq u(x) \in C^4(I), \lambda \in \mathbb{C}$ such that

$$\varepsilon^2 u^{(4)}(x) - (\alpha(x)u'(x))' + \beta(x)u(x) = \lambda u(x) \text{ in } I = (0, 1)$$

$$u(0) = u(1) = u'(0) = u'(1) = 0$$

where $\varepsilon \in (0, 1]$ is a given small parameter and $\alpha(x), \beta(x) \geq 0$, are given sufficiently smooth functions.
Remarks: [MOSER, 1955]
Remarks: [Moser, 1955]

• The problem is self-adjoint.
Remarks: [MOSER, 1955]

- The problem is self-adjoint.
- For all positive eigenvalues $\lambda_k(\varepsilon)$, we have
 \[\lim_{\varepsilon \to 0} \lambda_k(\varepsilon) = \lambda_k(0) \]
Remarks: [Moser, 1955]

- The problem is self-adjoint.
- For all positive eigenvalues $\lambda_k(\varepsilon)$, we have

\[
\lim_{\varepsilon \to 0} \lambda_k(\varepsilon) = \lambda_k(0)
\]

where $\lambda_k(0)$ are the eigenvalues of the reduced/limiting problem. If $\lambda_k(0)$ is real, then so is $\lambda_k(\varepsilon)$.
Remarks: [Moser, 1955]

- The problem is self-adjoint.
- For all positive eigenvalues $\lambda_k(\varepsilon)$, we have

$$\lim_{\varepsilon \to 0} \lambda_k(\varepsilon) = \lambda_k(0)$$

where $\lambda_k(0)$ are the eigenvalues of the reduced/limiting problem. If $\lambda_k(0)$ is real, then so is $\lambda_k(\varepsilon)$

- $\lambda_k(\varepsilon)$ can be expanded as a power series in ε.
Theorem: [Moser, 1955]

Each eigenfunction u_k can be decomposed as

$$u_k = u_k^S + u_k^{BL,+} + u_k^{BL,-}$$

where u_k^S denotes the smooth part, $u_k^{BL,+}$ denotes the left boundary layer and $u_k^{BL,-}$ denotes the right boundary layer. Moreover, for $n = 0, 1, 2, \ldots$
Theorem: [Moser, 1955]

Each eigenfunction \(u_k \) can be decomposed as

\[
 u_k = u_k^S + u_k^{BL,+} + u_k^{BL,-}
\]

where \(u_k^S \) denotes the smooth part, \(u_k^{BL,+} \) denotes the left boundary layer and \(u_k^{BL,-} \) denotes the right boundary layer. Moreover, for \(n = 0, 1, 2, \ldots \)

\[
\left| \left(u_k^S \right)^{(n)} (x) \right| \leq C_k,
\]

\[
\left| \left(u_k^{BL,+} \right)^{(n)} (x) \right| \leq C_k \varepsilon^{1-n} e^{-\alpha x / \varepsilon}, \quad \left| \left(u_k^{BL,-} \right)^{(n)} (x) \right| \leq C_k \varepsilon^{1-n} e^{-\alpha (1-x) / \varepsilon}
\]
Variational Formulation

Find

\[u_k \in H_0^2(I) = \left\{ u \in H^2(I) : u(0) = u'(0) = u(1) = u'(1) = 0 \right\} \]

and \(\lambda_k \in \mathbb{C} \) such that

\[B(u_k, v) = \lambda_k \langle u_k, v \rangle \quad \forall \ v \in H_0^2(I) \]

where \(\langle \cdot, \cdot \rangle \) is the usual \(L^2(I) \) inner product and

\[B(u, v) = \varepsilon^2 \langle u'', v'' \rangle + \langle \alpha u', v' \rangle + \langle \beta u, v \rangle \]
Discretization

We seek \(u_h^k \in V_h \subset H^2_0(I), \lambda_h^k \in \mathbb{C} \) s. t.

\[
B(u_h^k, v) = \lambda_h^k \langle u, v \rangle \quad \forall \ v \in V_h
\]
Discretization

We seek $u_h^k \in V_h \subset H^2_0(I), \lambda_h^k \in \mathbb{C}$ s. t.

$$B(u_h^k, v) = \lambda_h^k \langle u, v \rangle \quad \forall \, v \in V_h$$

We define the energy norm as

$$\| u \|_E^2 = \varepsilon^2 \| u'' \|_{L^2(I)}^2 + \| u' \|_{L^2(I)}^2 + \| u \|_{L^2(I)}^2 \quad \forall \, u \in H^2_0(I)$$
Discretization

We seek \(u_k^h \in V_h \subset H_0^2(I), \lambda_k^h \in \mathbb{C} \) s. t.

\[
B(u_k^h, v) = \lambda_k^h \langle u, v \rangle \quad \forall \, v \in V_h
\]

We define the energy norm as

\[
\|u\|_E^2 = \varepsilon^2 \|u''\|_{L^2(I)}^2 + \|u'\|_{L^2(I)}^2 + \|u\|_{L^2(I)}^2 \quad \forall \, u \in H_0^2(I)
\]

and we have

\[
B(u, u) \geq \gamma \|u\|_E^2 \quad \forall \, u \in H_0^2(I)
\]
In order to define the finite element space V_h let

$$
\Delta = \{0 = x_0 < x_1 < \ldots < x_N = 1\}
$$

be an arbitrary mesh on $I = (0, 1)$ and set

$$
I_j = \left(x_{j-1}, x_j \right), h_j = x_j - x_{j-1}, j = 1, \ldots, N
$$
In order to define the finite element space V_h let

$$
\Delta = \{ 0 = x_0 < x_1 < \ldots < x_N = 1 \}
$$

be an arbitrary mesh on $I = (0, 1)$ and set

$$
I_j = (x_{j-1}, x_j), h_j = x_j - x_{j-1}, j = 1, \ldots, N
$$

With $P_p(\alpha, \beta)$ the space of polynomials on (α, β) of degree less than or equal to $p \geq 2N + 1$, we define
In order to define the finite element space V_h let

$$\Delta = \{0 = x_0 < x_1 < \ldots < x_N = 1\}$$

be an arbitrary mesh on $I = (0, 1)$ and set

$$I_j = (x_{j-1}, x_j), h_j = x_j - x_{j-1}, j = 1, \ldots, N$$

With $P_p(\alpha, \beta)$ the space of polynomials on (α, β) of degree less than or equal to $p \geq 2N + 1$, we define

$$V_h = \left\{ u \in H^2_0(I) : u|_{I_j} \in P_p(I_j), j = 1, \ldots, N \right\}$$
Definition:

Let $\{x_i\}_{i=0}^N$ be an arbitrary partition of the interval (a, b) and suppose that for a sufficiently smooth function $f(x)$, $x \in (a, b)$, the values $f(x_i) = y_i \in \mathbb{R}$, $f'(x_i) = y'_i \in \mathbb{R}$ are given. Then, there exists a unique polynomial $f^I \in P_{2N+1}(a, b)$, called the Hermite interpolant of f, given by

$$f^I(x) = \sum_{i=0}^{N} (y_i H_{0,i}(x) + y'_i H_{1,i}(x))$$

where, with $L_i(x)$ the Lagrange polynomial of degree N associated with node x_i,

$$H_{0,i}(x) = \left[1 - 2(x - x_i) \frac{dL_i}{dx}(x_i)\right] L_i^2(x), \quad H_{1,i}(x) = (x - x_i) L_i^2(x)$$
Theorem:

Let $u \in C^{2n+2}([a, b])$ and let $\Delta = \{x_i\}_{i=0}^N$ be a mesh on $[a, b]$, with maximum mesh size h and with N a multiple of n. If u^I is the piecewise Hermite interpolant of u, having degree at most $2n+1$ on each subinterval $[x_{i-1}, x_i], \ i = 1, \ldots, N$ then
Theorem:

Let $u \in C^{2n+2}([a, b])$ and let $\Delta = \{x_i\}_{i=0}^{N}$ be a mesh on $[a, b]$, with **maximum mesh size** h and with N a multiple of n. If u^I is the **piecewise Hermite interpolant** of u, having degree at most $2n+1$ on each subinterval $[x_{i-1}, x_i], i = 1, \ldots, N$ then

$$
\left\| \left(u^I - u \right)^{(k)} \right\|_{L^\infty(I)} \leq C h^{2n+2-k} \left\| u^{(2n+2)} \right\|_{L^\infty(I)}, \quad k = 0, 1, \ldots, 2n+1
$$
Theorem:

Let $u \in C^{2n+2}([a, b])$ and let $\Delta = \{x_i\}_{i=0}^N$ be a mesh on $[a, b]$, with \textbf{maximum mesh size} h and with N a multiple of n. If u^I is the \textbf{piecewise Hermite interpolant} of u, having degree at most $2n+1$ on each subinterval $[x_{i-1}, x_i]$, $i = 1, \ldots, N$ then

$$\left\| (u^I - u)^{(k)} \right\|_{L^\infty(I)} \leq Ch^{2n+2-k} \left\| u^{(2n+2)} \right\|_{L^\infty(I)}, \ k = 0, 1, \ldots, 2n+1$$

In our setting

$$\left\| (u^I - u)^{(k)} \right\|_{L^\infty(I)} \leq Ch^{p+1-k} \left\| u^{(p+1)} \right\|_{L^\infty(I)}, \ k = 0, 1, \ldots, p$$
Definition: Exponentially graded mesh

With $N > 4$ a multiple of 4 we define

$$\phi(t) = -\ln(1 - 4C_{p, \epsilon} t), \quad t \in [0, 1/4 - 1/N]$$

$$C_{p, \epsilon} = 1 - \exp\left(-\frac{\alpha}{(p+1)\epsilon}\right)$$
Definition: *Exponentially graded mesh*

With $N > 4$ a multiple of 4 we define

$$
\phi(t) = -\ln(1 - 4C_{p,\varepsilon}t), \ t \in [0, 1/4 - 1/N]
$$

$$
C_{p,\varepsilon} = 1 - \exp\left(-\frac{\alpha}{(p+1)\varepsilon}\right)
$$

$$
x_j = \begin{cases}
\frac{\varepsilon}{\alpha} (p+1)\phi(j/N) & , \ j = 0, 1, \ldots, N/4 - 1 \\
\frac{x_{N/4} - x_{N/4-1}}{2 + N/2} (j - N/4 + 1) & , \ j = N/4, \ldots, 3N/4 \\
1 - \frac{\varepsilon}{\alpha} (p+1)\phi\left(\frac{N - j}{N}\right) & , \ j = 3N/4 + 1, \ldots, N
\end{cases}
$$
Definition: *Exponentially graded mesh*

With $N > 4$ a multiple of 4 we define

$$\phi(t) = -\ln(1 - 4C_{p, \varepsilon}t), \ t \in [0, 1/4 - 1/N]$$

$$C_{p, \varepsilon} = 1 - \exp\left(-\frac{\alpha}{(p+1)\varepsilon}\right)$$

$$x_j = \begin{cases}
\frac{\varepsilon}{\alpha} (p+1)\phi(j/N), & j = 0, 1, \ldots, N/4 - 1 \\
\frac{x_{3N/4} - x_{N/4-1}}{2 + N/2} (j - N/4 + 1), & j = N/4, \ldots, 3N/4 \\
1 - \frac{\varepsilon}{\alpha} (p+1)\phi\left(\frac{N-j}{N}\right), & j = 3N/4 + 1, \ldots, N
\end{cases}$$
Lemma: [X., CMAM 2017]

Let \(u_{BL} \) denote either boundary layer and let \(u_{BL}^I \) be its Hermite interpolant based on the exponential mesh. Then

\[
\left\| \left(u_{BL} - u_{BL}^I \right)^{(k)} \right\|_{L^\infty(I)} \leq C \mathcal{E}^{1-k} N^{-(p+1-k)}, \quad k = 0, 1, ..., p
\]

and

\[
\left| u_{BL} - u_{BL}^I \right|_{H^2(I)} \leq C \mathcal{E}^{-1/2} N^{-p+1}
\]
Lemma: [X., CMAM 2017]

Let u_{BL} denote either boundary layer and let u_{BL}^I be its Hermite interpolant based on the exponential mesh. Then

$$\left\| (u_{BL} - u_{BL}^I)^{(k)} \right\|_{L^\infty(I)} \leq C \varepsilon^{1-k} N^{-(p+1-k)}, \ k = 0, 1, \ldots, p$$

and

$$\left| u_{BL} - u_{BL}^I \right|_{H^2(I)} \leq C \varepsilon^{-1/2} N^{-p+1}$$

Using the above lemma and assuming $N < \varepsilon^{-1}$, we establish
\[
\left\| \left(u - u^I \right)^{(k)} \right\|_{L^\infty(I)} \leq C \varepsilon^{1-k} N^{-(p+1-k)}, \quad k = 0, 1, \ldots, p
\]
\[\left\| (u-u^I)^{(k)} \right\|_{L^\infty(I)} \leq C \varepsilon^{1-k} N^{-(p+1-k)}, \quad k = 0, 1, \ldots, p \]

\[\left| u-u^I \right|_{H^2(I)} \leq C \varepsilon^{-1/2} N^{-p+1} \]
\[\left\| (u - u^I)^{(k)} \right\|_{L^\infty(I)} \leq C \varepsilon^{1-k} N^{-(p+1-k)}, \quad k = 0, 1, \ldots, p \]

\[\left| u - u^I \right|_{H^2(I)} \leq C \varepsilon^{-1/2} N^{-p+1} \]

\[\left\| u - u^I \right\|_E \leq CN^{-p+1} \]
\[\left\| (u - u^I)^{(k)} \right\|_{L^\infty(I)} \leq C \varepsilon^{1-k} N^{-(p+1-k)}, \quad k = 0, 1, ..., p \]

\[\left| u - u^I \right|_{H^2(I)} \leq C \varepsilon^{-1/2} N^{-p+1} \]

\[\left\| u - u^I \right\|_E \leq C N^{-p+1} \]

Sketch of proof: We use the decomposition of \(u \) into a smooth part and two boundary layers. The layers are handled by the previous lemma and the smooth part by the assumption \(N < \varepsilon^{-1} \).
Proposition:

For all $h \leq h_0$, with h_0 independent of ε, there holds

$$\lambda_k \leq \lambda_k^h \leq C_k \lambda_k \left(1 + h^{2p-2}\right)$$
Proposition:

For all $h \leq h_0$, with h_0 independent of ε, there holds

$$\lambda_k \leq \lambda_k^h \leq C_k \lambda_k \left(1 + h^{2p-2}\right)$$

Sketch of proof: We use the classical techniques found in [Strang & Fix, 1973], utilizing the Ritz projection Rw of $w \in H_0^2(I)$ onto V_h:
Proposition:

For all $h \leq h_0$, with h_0 independent of ε, there holds

$$\lambda_k \leq \lambda_k^h \leq C_k \lambda_k \left(1 + h^{2p-2}\right)$$

Sketch of proof: We use the classical techniques found in [Strang & Fix, 1973], utilizing the Ritz projection Rw of $w \in H_0^2(I)$ onto V_h:

$$B(w - Rw, v) = 0 \quad \forall \ v \in V_h$$
Proposition:

For all $h \leq h_0$, with h_0 independent of ε, there holds

$$\lambda_k \leq \lambda_k^h \leq C_k \lambda_k \left(1 + h^{2p-2}\right)$$

Sketch of proof: We use the classical techniques found in [Strang & Fix, 1973], utilizing the Ritz projection Rw of $w \in H_0^2(I)$ onto V_h:

$$B(w - Rw, \nu) = 0 \quad \forall \nu \in V_h$$

There holds $\|w - Rw\|_E \leq Ch^{p-1}$.
Other tools used include the *minimax principle* and the fact that the Green’s function associated with our problem is uniformly bounded. Continuity of the bilinear form and Galerkin orthogonality are also utilized.
Other tools used include the *minimax principle* and the fact that the Green’s function associated with our problem is uniformly bounded. Continuity of the bilinear form and Galerkin orthogonality are also utilized.

For the approximation of the eigenfunctions, we have the following, under the assumption that all eigenvalues are distinct.
Proposition:

Assume that the eigenfunctions and their approximations are normalized and that all eigenvalues are distinct. Then

\[\left\| u_k - u^h_k \right\|_E \leq C_k h^{p-1} \]
Proposition:

Assume that the eigenfunctions and their approximations are normalized and that all eigenvalues are distinct. Then

\[\| u_k - u_k^h \|_E \leq C_k h^{p-1} \]

Sketch of proof: The main observation is the identity

\[B(u_k - u_k^h, u_k - u_k^h) = \lambda_k \left\| u_k - u_k^h \right\|^2_{L^2(I)} + \lambda_k^h - \lambda_k \]
Then, for h sufficiently small, there holds

$$\frac{\lambda_k}{|\lambda^h_k - \lambda_j|} \leq \rho \in \mathbb{R} \quad \forall \quad j \neq k$$
Then, for h sufficiently small, there holds

$$\frac{\lambda_k}{|\lambda_k^h - \lambda_j|} \leq \rho \in \mathbb{R} \; \forall \; j \neq k$$

hence

$$\left\| u_k - u_k^h \right\|_E^2 \leq \lambda_k \left\| u_k - u_k^h \right\|_{L^2(I)}^2 + \lambda_k^h - \lambda_k$$

$$\leq 2(1 + \rho) \left\| u_k - Ru_k \right\|_{L^2(I)}^2 \leq C_k h^{2(p-1)}$$
Numerical Results

We consider the problem

$$\varepsilon^2 u^{(4)}(x) - \left(e^x u'(x)\right)' + xu(x) = \lambda u(x) \text{ in } I = (0,1)$$

$$u(0) = u(1) = u'(0) = u'(1) = 0$$

No exact solution is available, so for the computations we use a reference solution obtained with twice as many degrees of freedom (DOF).
Approximation of the 1^{st} eigenvalue
Approximation of the 2nd eigenvalue

\[\epsilon = 10^{-j}, \ p = 3 \]

\[\text{slope } \approx -4 \]
Approximation of the 1^{st} eigenfunction.
Approximation of the 2nd eigenfunction

$\epsilon = 10^{-j}$, $p = 3$
Closing Remarks

We considered a 4th order\textit{ singularly perturbed eigenvalue problem} and studied the performance of an h FEM on the \textit{Exponentially Graded Mesh}.
Closing Remarks

We considered a 4th order *singularly perturbed eigenvalue problem* and studied the performance of an h FEM on the *Exponentially Graded Mesh*.

The derivative of the eigenfunctions features boundary layers. Once the layers are resolved, classical results give us the required convergence (including the ‘doubling effect’ for the eigenvalues).
Closing Remarks

We considered a 4th order \textit{singularly perturbed eigenvalue problem} and studied the performance of an \textit{h FEM} on the \textit{Exponentially Graded Mesh}.

The derivative of the eigenfunctions features boundary layers. Once the layers are resolved, classical results give us the required convergence (including the ‘doubling effect’ for the eigenvalues).

Numerical results corroborate our theoretical findings.