Quantization on Compact Spaces

G.Chadzitaskos, J. Patera, J.Tolar

The 4th International Workshop in
Group Analysis of Differential Equations and Integrable Systems
Protaras, Cyprus
October 28, 2008

• Quantization methods

• Examples

1. Periodic Chain – \mathbb{Z}_M
2. Circle – S^1
3. Positive Real Numbers – \mathbb{R}_+
4. Sphere – S^2
5. Fundamental area and lattice grid on it – F
1 Quantization

is a study of the relationship between classical mechanics and quantum mechanics and clarify mathematical connections between them. The traditional methods contained in the works of Dirac, Heisenberg and Schrödinger are usually called canonical quantization. The subsequent development of this branch brought a general concept of quantization (Berezin 75) which contains alternative quantization methods, among them the quantization as a deformation of an algebra of classical observables.

In classical mechanics and quantum mechanics, there are two basic concepts: states and observables. While in classical mechanics pure states are points in a phase space and observables are functions on the phase space, in quantum mechanics pure states are one-dimensional subspaces of a separable Hilbert space \mathcal{H}, generally of infinite dimension, and observables are selfadjoint opera-
tors on the Hilbert space.

In both theories the observables form an associative algebra — commutative in classical mechanics and non–commutative in quantum mechanics. So the quantization can also be understood as a procedure replacing a commutative algebra by a non–commutative one (Moyal 1949, Van Hove 1951, Flato et all. 1978) called a deformation quantization.

In order to perform the deformation, it is useful to describe the observables in quantum and classical mechanics by the objects of the same mathematical nature — real functions on phase space. For this purpose the Wigner correspondence can be used, which associates real functions on phase space (Wigner symbols) with selfadjoint operators on \mathcal{H}. Then the multiplication of operators on \mathcal{H} corresponds to a non–commutative multiplication (so called \star–product) of the associated Wigner symbols.

If the symbols $W_F(q,p)$ and $W_G(q,p)$ are associated
with the operators \hat{F} and \hat{G}, then the multiplication $(W_F \star W_G)(q,p)$ corresponds to $\hat{F}\hat{G}$ according to the diagram

\[
\begin{array}{ccc}
\hat{F}, \hat{G} & \rightarrow & \hat{F} \circ \hat{G} \\
\downarrow & & \downarrow \\
W_F(q,p), W_G(q,p) & \rightarrow & (W_F \star W_G)(q,p)
\end{array}
\]

and the quantization uses an inverse order.

2 The Wigner symbol

For the construction of the Wigner symbols we are going to apply following method for the case of compact groups.

- Let the configuration space \mathcal{M} be a compact unimodular group, quantum Hilbert space $L^2(\mathcal{M}, dx)$, where dx is an invariant measure.

- Let \hat{H} be a selfadjoint integral operator acting on $L^2(\mathcal{M}, dx)$ with the Hilbert–Schmidt kernel $H(x, y)$, i.e.

\[
(\hat{H}\psi)(x) = \int_{\mathcal{M}} H(x, y)\psi(y)dy,
\]
where
\[H(x, y) = \overline{H(y, x)}. \]

- Let \(\{ \pi_i(\mathcal{M}), i \in I \} \) be the set of all irreducible representations of \(\mathcal{M} \). According to the Peter–Weyl theorem, any \(L^2 \) function on a compact group \(\mathcal{M} \) admits a Fourier expansion into the complete orthogonal basis of all matrix elements \(\{ \phi_k(x) = C_{mn}^i(x), k = (i, m, n) \in U \} \) of all representations \(\pi(\mathcal{M}) \). We assume that the basis \(\{ \phi_k(x) \} \) of Hilbert space \(\mathcal{H} \) is normalized.

- Let the operator \(\hat{T} \) act on \(L^2(\mathcal{M} \times \mathcal{M}) \)
\[\hat{T} : f(x, y) \rightarrow f(xy, xy^{-1}), \]
and let the inverse operator \(\hat{T}^{-1} \) exist (this is the case, e.g. for Lie groups for which the exponential map is onto).

Then the Wigner symbol of the operator \(\hat{H} \) is a function on \(\mathcal{M} \times U \) with the first variable in the group \(x \in \mathcal{M} \) and the second in the set of indices \(k = (i, m, n) \in U \).
\[W_H(x, k) = \int_M (\hat{T}(H(x,y))) \phi_k(y) dy. \]

It can be written

\[W_H(x, k) = \hat{\mathcal{F}}(\hat{T}(H(x,y))) \]

where \(\hat{\mathcal{F}} \) is the Fourier transform in the second variable.

3 Wigner Quantization

We consider the Wigner quantization as quantization defined by the multiplication law between the Wigner symbols – the \(\star \)–product. Assuming the existence of the inverse operators \(\hat{\mathcal{F}}^{-1} \) and \(\hat{T}^{-1} \), the general scheme is:

let us have Wigner symbols \(W_F, W_G \), we define \(W_{FG} \) via \(\star \)–product between them

\[W_{FG}(x, k) = (W_F \star W_G)(x, k) \]

\[W_{FG}(x, k) = \hat{\mathcal{F}}_k(\hat{T}\langle x|\hat{F}\hat{G}|y \rangle) = \hat{\mathcal{F}}_k(\hat{T}(\int_M dz \langle x|\hat{F}|z \rangle \langle z|\hat{G}|y \rangle)) = \]
\[\hat{F}_k(\hat{T}(\int_M \text{d}z(\hat{T}^{-1}\hat{F}^{-1}W_F)(x, z)(\hat{T}^{-1}\hat{F}^{-1}W_G)(z, y))). \]

Thus the \(\star \)-product is expressed by an integral over the manifold \(M \). The function \(H(x, y) \) can be expanded in a double Fourier series

\[H(x, y) = \sum_{m,n \in U} h_{m,n}\phi_m(x)\phi_n(y), \]

where \(h_{m,n} = h_{n,m} \), and in some cases one can use the orthogonality relation of the Fourier basis to simplify the relations.
3.1 Quantization on a periodic chain

The construction is based on the operator formulation of quantum mechanics on finite discrete space. We assume that the number of points of the chain is prime. It guarantee the existence of inverse operator \hat{T}^{-1}.

Let $q(i)$ takes one of M discrete values $\{q_i\}$, $i = 0, 1, \ldots, M - 1$. With each value of q_i we can connect a vector $|i\rangle$ of an orthonormal basis of M-dimensional Hilbert space \mathcal{H}. Let have a map: $q_i \mapsto |i\rangle$. Then we define a position operator:

$$\hat{Q} = \sum_{j=0}^{M-1} j |j\rangle \langle j|.$$

The eigenvectors of \hat{Q} form a basis of the Hilbert space \mathcal{H}, $\{|i\rangle\}$, and i are the corresponding eigenvalues. Denoting eigenvectors of \hat{P} by $|k\rangle$, where $k = 0, \ldots, M - 1$, we get

$$|k\rangle = \frac{1}{\sqrt{M}} \sum_{j} e^{\frac{2\pi i kj}{M}} |j\rangle.$$ \hspace{1cm} (1)

It describes a discrete Fourier transformation of the
eigenvectors $|j\rangle$, and $\phi_m(k) = e^{\frac{2\pi i}{M} km}$ is the Fourier basis.

The Wigner symbol of the operator \hat{H} is a real matrix

$$W_H(m, k) = \sum_{l=0}^{M-1} h_{l, k-l} e^{\frac{2\pi i}{M} m(2l-k)} ,$$

where the operations + and - are modulo M and

$$\langle m|\hat{H}|n\rangle = \sum_{k,l} h_{k,l} e^{\frac{2\pi i}{M} kn} e^{-\frac{2\pi i}{M} ml} .$$

Thus

$$W_{GH}(n, l) = \sum_{k,m} g_{m,k} h_{k,l-m} e^{\frac{2\pi i}{M} n(2m-l)} .$$

Substituting

$$g_{m,k} = \frac{1}{M} \sum_{n=0}^{M-1} W_G(n, m-k) e^{\frac{2\pi i}{M} n(m+k)}$$

and

$$h_{k,l-m} = \frac{1}{M} \sum_{n=0}^{M-1} W_H(n, k-l+m) e^{\frac{2\pi i}{M} n(m+l-k)}$$

we get the \star–product.
3.2 Quantization on a circle

An arbitrary L^2 function on the circle can be expanded in the Fourier series

$$f(x) = \sum_k f_k \phi_k(x) = \sum_k f_k e^{ikx},$$

where $k = 0, 1, 2, \ldots$ and $x \in (-\pi, \pi)$. The kernel corresponding to a selfadjoint operator \hat{H} is

$$H(x, y) = \sum_{k,l} h_{k,l} e^{ikx} e^{-ily},$$

where $x, y \in (-\pi, \pi)$, $k, l = 0, \pm 1, \pm 2, \ldots$, and $h_{k,l} = \overline{h_{l,k}}$. The Wigner symbols of the selfadjoint operators \hat{H} and \hat{G} are

$$W_H(x, k) = \sum_l h_{l,k-l} e^{ix(2l-k)},$$

$$W_G(z, m) = \sum_n g_{n,m-n} e^{iz(2n-m)},$$

and the symbol corresponding to the product of the operators \hat{H} and \hat{G} is
\[W_{GH}(x, l) = \sum_{k,m} g_{m,k} h_{k,l-m} e^{ix(2m-l)}. \]

Let us now start with the symbols \(W_H \) and \(W_G \). To determine the \(\star \)-product, we have to determine the coefficients

\[h_{m,n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} W_H(x, m-n) e^{ix(m+n)} dx. \]

The result is

\[W_{HG}(x, l) = (W_H \star W_G)(x, l) = \sum_{k,m} e^{ix(2m-l)} \frac{1}{2\pi} \int_{-\pi}^{\pi} dz \times \]

\[\frac{1}{2\pi} \int_{-\pi}^{\pi} dy W_H(z, k-m)W_G(y, l-m-k) e^{iz(k+m)} e^{iy(l+k+m)}. \]

Hence for any two real functions on phase space their \(\star \)-product is given by

\[(h \star g)(x, l) = \sum_{k,m} e^{ix(2m-l)} \frac{1}{2\pi} \int_{-\pi}^{\pi} dz \times \]

\[\frac{1}{2\pi} \int_{-\pi}^{\pi} dy h(z, k-m)g(y, l-m-k) e^{iz(k+m)} e^{iy(l+k+m)}. \]
3.3 Quantization on \mathbb{R}_+

Our approach is based on the idea that \mathbb{R}_+ is an Abelian multiplicative group with the Haar measure $d\eta = \frac{dy}{y}$ and it is isomorphic with the additive group \mathbb{R} via $y = e^{\eta}$. Hence the characters are related by $e^{ip\ln y} = e^{ip\eta}$ and labelled by $p \in \mathbb{R}$.

Let us consider a selfadjoint operator \hat{H} on $L^2(\mathbb{R}_+, dx)$. The corresponding kernel of an integral operator $H(x,y) = \langle x|\hat{H}|y \rangle = \overline{H(y,x)}$ is also selfadjoint. In order to get a real symbol of \hat{H} on phase space $\mathbb{R}_+ \times \mathbb{R}$, we introduce the following transformations:

- The operator \hat{T} acts on $L^2(\mathbb{R}_+ \times \mathbb{R}_+, dx \, dy)$ by

$$\hat{T} : H(x,y) \mapsto h(x,y) = H(xy, xy^{-1}),$$

and \hat{T}^{-1} is its inverse

$$\hat{T}^{-1} : h(x,y) \mapsto H(x,y) = h(\sqrt{xy}, \sqrt{xy^{-1}}),$$

- The operator \hat{F} acts from $L^2(\mathbb{R}_+ \times \mathbb{R}_+, dx \, dy)$ to
\[L^2(\mathbb{R}_+ \times \mathbb{R}, dx \, dp) \]

\[\hat{\mathcal{F}} : h(x, y) \mapsto W_H(x, p) = \int_0^\infty h(x, y)e^{ip \ln y} \frac{dy}{y} \]

and the operator \(\hat{\mathcal{F}}^{-1} \) is its inverse

\[\hat{\mathcal{F}}^{-1} : W_H(x, p) \mapsto h(x, y) = \int_0^\infty W_H(x, p)e^{-ip \ln y} \, dp. \]

The Wigner symbol of \(\hat{H} \) is defined as

\[W_H(x, p) = \hat{\mathcal{F}}(\hat{T}(H(x, y))) \]

and it is a real function on \(\mathbb{R}_+ \times \mathbb{R} \).

A non–commutative multiplication law — the \(\star \)–product between the Wigner symbols \(W_F \) and \(W_G \) on phase space \(\mathbb{R}_+ \times \mathbb{R} \), is

\[(W_F \star W_G)(x, p) = W_{FG}(x, p), \]

where

\[(W_F \star W_G)(x, p) = \hat{\mathcal{F}}(\hat{T}(\int_0^\infty (\hat{T}^{-1} \hat{\mathcal{F}}^{-1} W_F)(x, z) \times \hat{T}^{-1} \hat{\mathcal{F}}^{-1} W_G)(z, y)) dz. \]
It is straightforward to convert the quantization into integration over $\mathbb{R}_+ \times \mathbb{R}$: let $f(x, p)$ and $g(x, p)$, be real functions on phase space, then their \star–product is given by the integral

$$(f \star g)(x, l) = \frac{1}{4\pi^2} \int_{\mathbb{R}} dk \int_{\mathbb{R}} dp \int_{\mathbb{R}_+} dz \int_{\mathbb{R}_+} dy f(\sqrt{xyz}, p) \times$$

$$g\left(\sqrt{\frac{xy}{z}}, k\right) e^{-ip \ln \sqrt{\frac{xy}{y}}} e^{-ik \ln \sqrt{\frac{y}{xz}}} e^{il \ln z}.$$
3.4 Quantization on a sphere

On a sphere the role of Fourier base plays a set of normalized spherical functions $Y_{nm}(\theta, \phi)$. The orthogonal relations are

$$\int_0^{2\pi} d\phi \int_0^{\pi} \sin \theta d\theta Y_{nm}(\theta, \phi) \overline{Y_k^l}(\theta, \phi) = \delta_{m,k} \delta_{n,l}.$$

Throughout this section the operations $+$ and $-$ between thetas in the parameters of spherical functions (and, of course, functions and symbols) have to be modulo π. We can express an arbitrary operator \hat{H}

$$\langle \theta, \phi | \hat{H} | \theta', \phi' \rangle = H(\theta, \phi, \theta', \phi') = \sum_{m,n,k,l} Y_{nm}(\theta, \phi) \overline{Y_k^l}(\theta', \phi') h_{m,n,k,l},$$

with the condition $h_{m,n,k,l} = \overline{h_{k,l,m,n}}$

The Wigner symbol corresponding to operator \hat{H} is

$$W_H(k, l, \theta, \phi) = \int_{\theta', \phi'} H(\theta+\theta', \phi+\phi', \theta-\theta', \phi-\phi') Y_{k,l}^l(\theta', \phi'),$$

where plus and minus between thetas are modulo π. These objects are basic for the quantization, and we are looking for the noncommutative associative multiplication between them. This multiplication has to correspond to the
operator multiplication. The inverse map is

$$H(\theta, \phi, \theta', \phi') = \sum_{k,l} W_H(k, l, \frac{\theta + \theta'}{2}, \frac{\phi + \phi'}{2}) Y_l^k(\frac{\theta' - \theta}{2}, \frac{\phi' - \phi}{2}). \quad (2)$$

Having another Wigner symbol W_G associated with \hat{G} in the same way as for W_H, we find out the star–product

$$W_{HG}(k, l, \theta, \phi) = (W_H \star W_G)(k, l, \theta, \phi) = \int_{\theta', \phi'} (HG)(\theta + \theta', \phi + \phi', \theta - \theta', \phi - \phi') Y_l^k(\theta', \phi')$$

where

$$(HG)(\theta, \phi, \theta', \phi') = \int_{\alpha, \beta} H(\theta, \phi, \alpha, \beta) G(\alpha, \beta, \theta', \phi').$$

The measures for integration are the standard ones for spherical functions.
3.5 Quantization on of fundamental region F_M

Our approach is based on the orbit functions and corresponding Fourier like transformations.

Let us consider a selfadjoint operator \hat{H} on $F(G)$. The corresponding kernel of an integral operator

$$H(x(i), x(j)) = \langle x(i) | \hat{H} | x(j) \rangle = \overline{H(x(j), x(i))}$$

is also selfadjoint. In order to get a real symbol of \hat{H} on phase space, we use the following transformations:

- The operator \hat{T} acts on the kernel of the selfadjoint operator on $(F \times F)$ by

$$\hat{T} : H(x, y) \mapsto h(x, y) = H(xy, xy^{-1}) = H(x+y, x-y),$$

and \hat{T}^{-1} is its inverse

$$\hat{T}^{-1} : h(x, y) \mapsto H(x, y) = h\left(\frac{x+y}{2}, \frac{x-y}{2}\right)$$

- The operator \hat{F} maps kernels of integral operators on F to functions on $(F \times P^+)$

$$\hat{F} : h(x, y) \mapsto h'(x, \lambda) = \frac{1}{|W_\lambda||F|} \int_F h(x, y)C_{\lambda}(y)$$
and the operator \hat{F}^{-1} is its inverse

$$\hat{F}^{-1} : h'(x, \lambda) \mapsto h(x, y) = \sum_{\lambda \in \mathbb{P}^+} h'(x, \lambda)C_\lambda(y).$$

The Wigner symbol of \hat{H} is defined as

$$W_H(x(i), \lambda) = \hat{F}(\hat{T}(H(x(i), x(j))))$$

and it is a real function on $F \times \mathbb{P}^+$. A non–commutative multiplication law — the \star–product between the Wigner symbols W_F and W_G on the ”phase space” $F \times \mathbb{P}^+$, is

$$(W_H \star W_G)(x, \lambda) = W_{HG}(x, \lambda),$$

where

$$(W_H \star W_G)(x, \lambda) = \hat{F}(\int_F (\hat{T}^{-1}\hat{F}^{-1}W_H)(x, y) \times (\hat{T}^{-1}\hat{F}^{-1}W_G)(y, z)dy))$$

It is straightforward to convert the quantization into integration over $F_M \times \mathbb{W}_\lambda$: let $f(x(i), \lambda)$ and $g(x(i), \lambda)$, be real matrices on the ”phase space”, then their \star–product is given by the integral.
3.6 Quantization on lattice grid of fundamental region F_{M}

Let us consider a selfadjoint operator \hat{H} on $F_{M}(G)$. The corresponding kernel of an integral operator (matrix)

$$H(x(i), x(j)) = \langle x(i) | \hat{H} | x(j) \rangle = \overline{H(x(j), x(i))}$$

is also selfadjoint. In order to get a real symbol of \hat{H} on phase space, we use the following transformations:

- The operator \hat{T} acts on matrices with indexes from $(F_{M} \times F_{M})$ by

$$\hat{T} : H(x(i), x(j)) \mapsto h(x, y) = H(xy, xy^{-1}) = H(x+y, x-y),$$

where $x = x(i)$, $y = x(j)$ and \hat{T}^{-1} is its inverse

$$\hat{T}^{-1} : h(x, y) \mapsto H(x, y) = h(x + y, x - y)$$

- The operator \hat{F} maps matrices on $(F_{M} \times F_{M})$ to matrices on $(F_{M} \times W_{\lambda})$

$$\hat{F} : h(x, y) \mapsto h'(x, \lambda) = \frac{1}{|W_{\lambda}| |A_{M}|} \sum_{y} h(x, y) \overline{C_{\lambda}(y)}$$
and the operator \hat{F}^{-1} is its inverse

$$\hat{F}^{-1} : h'(x, \lambda) \mapsto h(x, y) = \sum_{\lambda \in \Lambda_M} h'(x, \lambda)C_\lambda.$$

The Wigner symbol of \hat{H} is defined as

$$W_H(x(i), \lambda) = \hat{F}(\hat{T}(H(x(i), x(j))))$$

and it is a real function on $F_M \times W_\lambda$.

A non–commutative multiplication law — the \star–product between the Wigner symbols W_F and W_G on the ”phase space” $F_M \times W_\lambda$, is

$$(W_F \star W_G)(x(i), \lambda) = W_{FG}(x(i), \lambda),$$

where

$$(W_F \star W_G)(x(i), p) = \hat{F}(\hat{T}(\sum_{x(k)} (\hat{T}^{-1} \hat{F}^{-1} W_F)(x(i), x(k))) \times$$

$$ (\hat{T}^{-1} \hat{F}^{-1} W_G)(x(k), x(j))))$$

It is straightforward to convert the quantization into integration over $F_M \times W_\lambda :$ let $f(x(i), \lambda)$ and $g(x(i), \lambda)$, be real matrices on the ”phase space”, then their \star–product is given by the sum.
4 Conclusion

We have shown how to convert the problem of the quantization into the integration over the configuration space using the Fourier transformation.

Thank you for the attention

References

