Since Approximation Theory is already there... Bring Potential Theory to Operator Theory!

Nikos Stylianopoulos
University of Cyprus

International Conference on Orthogonal Polynomials and Holomorphic Dynamics
Copenhagen, Denmark
August 14–17 2018
Let μ be a finite positive Borel measure having compact and infinite support $S_\mu := \text{supp}(\mu)$ in the complex plane \mathbb{C}. Then, the measure yields the Lebesgue spaces $L^2(\mu)$ with inner product

$$\langle f, g \rangle_\mu := \int f(z) \overline{g(z)} d\mu(z)$$

and norm

$$\|f\|_{L^2(\mu)} := \langle f, f \rangle_\mu^{1/2}.$$

Let $\{p_n(\mu, z)\}_{n=0}^{\infty}$ denote the sequence of orthonormal polynomials associated with μ. That is, the unique sequence of the form

$$p_n(\mu, z) = \gamma_n(\mu) z^n + \cdots, \quad \gamma_n(\mu) > 0, \quad n = 0, 1, 2, \ldots,$$

satisfying $\langle p_m(\mu, \cdot), p_n(\mu, \cdot) \rangle_\mu = \delta_{m,n}$.
Distribution of zeros: The tools

For any polynomial $q_n(z)$, of degree n, we denote by ν_{q_n} the normalized counting measure for the zeros of $q_n(z)$; that is,

$$\nu_{q_n} := \frac{1}{n} \sum_{q_n(z)=0} \delta_z,$$

where δ_z is the unit point mass (Dirac delta) at the point z. For any measure μ with compact support in \mathbb{C},

$$U^\mu(z) := \int \log \frac{1}{|z-t|} d\mu(t), \quad z \in \mathbb{C},$$

denotes the logarithmic potential on μ. In particular, if q_n is monic, then

$$U^{\nu_{q_n}}(z) = \frac{1}{n} \log \frac{1}{|q_n(z)|}, \quad z \in \mathbb{C}.$$

With μ_K we denote the equilibrium measure of a compact set K of positive logarithmic capacity.
Theorem (Generalized Minimum Principle)

Let $G \Subset \mathbb{C}$ be a domain and h a superharmonic function on G that is bounded from below and for which

$$\limsup_{z \to \zeta, z \in G} h(z) \geq m,$$

is satisfied for quasi-every $\zeta \in \partial G$. Then,

$$h(z) > m, \quad z \in G,$$

unless h is constant.

Potential Theory: Five theorems

Theorem (Principle of Descent)

Let \(\mu_n, n = 1, 2, \ldots \), be probability measures, supported on the same compact subset of \(\mathbb{C} \), such that

\[\mu_n \rightharpoonup \mu. \]

Suppose that for each \(n \), a point \(z_n \) is given so that \(z_n \to z \), for some \(z \in \mathbb{C} \). Then,

\[U^\mu(z) \leq \liminf_{n \to \infty} U^{\mu_n}(z_n). \]

We say that \(\mu_n \rightharpoonup \mu \), if

\[\int f \, d\mu_n \to \int f \, d\mu, \quad n \to \infty, \]

for every function \(f \) continuous on \(\mathbb{C} \).
Potential Theory: Five theorems

Theorem (Lower Envelope Theorem)

Let μ_n, $n = 1, 2, \ldots$, be a sequence of positive unit Borel measures, supported on the same compact subset of \mathbb{C}, such that

$$
\mu_n \rightharpoonup^* \mu.
$$

Then,

$$
\liminf_{n \to \infty} U^{\mu_n}(z) = U^\mu(z),
$$

for quasi-every $z \in \mathbb{C}$.
Theorem (Unicity Theorem)

Suppose that the positive measures μ and ν have compact support and in a region $D \subset \mathbb{C}$ the potentials U^ν and U^μ satisfy

$$U^\mu(z) = U^\nu(z) + u(z),$$

almost everywhere with respect to two-dimensional Lebesgue measure, where the function u is harmonic in D. Then, in D the measures μ and ν coincide.
Theorem (Carleson’s Unicity Theorem)

Let K be a compact set of positive capacity, and let Ω denote the unbounded component of $\mathbb{C} \setminus K$. If μ and ν are two unit measures supported on $\partial \Omega$, and if the potentials U^μ and U^ν coincide in Ω, then $\mu = \nu$.
Bergman polynomials \(\{p_n\} \) on an Jordan domain \(G \)

\[\Gamma := \partial G \quad \text{and} \quad \Omega := \mathbb{C} \setminus \overline{G} \]

\[\langle f, g \rangle := \int_G f(z) \overline{g(z)} \, dA(z), \quad \|f\|_{L^2(G)} := \langle f, f \rangle^{1/2}. \]

The Bergman polynomials \(\{p_n\}_{n=0}^\infty \) of \(G \) are the orthonormal polynomials w.r.t. the area measure on \(G \):

\[\langle p_m, p_n \rangle = \int_G p_m(z) \overline{p_n(z)} \, dA(z) = \delta_{m,n}, \]

with

\[p_n(z) = \lambda_n z^n + \cdots, \quad \lambda_n > 0, \quad n = 0, 1, 2, \ldots. \]
Example: G is the canonical pentagon

Theorem (Levin, Saff & St., Constr. Approx. 2003)

Let φ be a conformal map of G onto the unit disk \mathbb{D}. Then, there is a subsequence \mathcal{N} of \mathbb{N} such that

$$\nu_{p_n} \xrightarrow{*} \mu_{\Gamma}, \quad n \to \infty, \quad n \in \mathcal{N},$$

if and only if φ cannot be analytically continued to some open set containing \overline{G}.
Key results

The above theorem is based on the following facts:

- The area measure on G belongs to the class Reg, that is,
 $$\lim_{n \to \infty} \|p_n\|_{G}^{1/n} = 1.$$

- The kernel $K(z, \zeta)$, of the Bergman space $L_{a}^{2}(G)$ satisfies,
 $$K(z, \zeta) = \sum_{n=0}^{\infty} p_{n}(\zeta)p_{n}(z), \quad z, \zeta \in G,$$
 and is is related to a normalized conformal map $\varphi_{\zeta} : G \to \mathbb{D}$, $\varphi_{\zeta}(\zeta) = 0, \zeta \in G$, by
 $$K(z, \zeta) = \frac{1}{\pi} \frac{\varphi'_{\zeta}(\zeta)}{\varphi'_{\zeta}(z)}.$$

An application of Walsh’s maximal convergence then yields
 $$\limsup_{n \to \infty} |p_{n}(\zeta)|^{1/n} = 1, \quad n \in \mathcal{N},$$
and the result then follows from Theorem III.4.1 in Saff and Totik.
The two intersecting circles

Zeros of $p_n(z)$, with $n = 80, 100, 120$.

Theorem (Saff & St, JAT 2015)

If the boundary Γ of G contains an inward corner point, then

$$\nu_{p_n} \overset{*}{\rightharpoonup} \mu_\Gamma, \quad n \to \infty, \quad n \in \mathbb{N},$$

where μ_Γ denotes the equilibrium measure on Γ.

Based on Gardiner and Pommerenke, Constr, Approx, 2002.

The reluctance of the zeros to approach the points $\pm i$, is due to the fact that $d\mu_\Gamma(z) = |\Phi'(z)|ds$, where s denotes the arclength on Γ.
The circular sector

Figure: Zeros of p_n, $n = 50, 100, 150$, for the circular sector with opening angle $\pi/2$.
Theorem (Mina-Diaz, Saff & St., CMFT 2005)

Let \(E \neq \emptyset \) be a compact subset of \(\mathbb{C} \) such that both \(\mathbb{C} \setminus E \) and \(\mathring{E} := \text{int}(E) \) are connected. Let \(g : \mathbb{C} \setminus \mathring{E} \to \mathbb{C} \) be such that \(g \) is analytic in \(\mathbb{C} \setminus E \), \(|g| \) is continuous and never zero in \(\mathbb{C} \setminus \mathring{E} \), \(g(\infty) = \infty \) and \(g'(\infty) = 1 \). Let \(\{q_n\}_{n=1}^{\infty} \) be a sequence of monic polynomials of respective degrees \(n = 1, 2, \ldots \), such that \(\infty \) is not an accumulation point of the set of zeros of the \(q_n \)'s. Further, assume that

\[
\limsup_{n \to \infty} |q_n(z)|^{1/n} \leq |g(z)| \quad \text{q.e.} \quad z \in \partial E.
\]
Theorem (Mina-Diaz, Saff & St., CMFT 2005, cont.)

Then, any measure σ that is a weak*-limit point of the sequence $\{\nu_{q_n}\}_{n=1}^{\infty}$ is supported on E and

$$U^\sigma(z) = \log |g(z)|^{-1} \quad \forall z \in \mathbb{C} \setminus \overset{.}{E}. \quad (1)$$

Moreover, there is a unique measure μ_g supported on ∂E such that (1) holds with $\sigma = \mu_g$. For such a measure, we have

(a) if $\overset{.}{E} = \emptyset$, then $\nu_{q_n} \overset{*}{\rightharpoonup} \mu_g$ as $n \to \infty$;

(b) if $\overset{.}{E} \neq \emptyset$ and for some $z_0 \in \overset{.}{E}$ and a subsequence $\mathcal{N} \subset \mathbb{N}$

$$\lim_{n \to \infty} |q_n(z_0)|^{1/n} = e^{-U^{\mu_g}(z_0)},$$

then

$$\nu_{q_n} \overset{*}{\rightharpoonup} \mu_g \quad \text{as} \quad n \to \infty, \quad n \in \mathcal{N}.$$
Observe that the assumption of the theorem is equivalent to

\[\liminf_{n \to \infty} U^{\nu_{q_n}}(z) \geq \log |g(z)|^{-1} \quad \text{q.e.} \quad z \in \partial E. \quad (2) \]

Let \(\sigma \) be a weak*-limit point of the sequence \(\{\nu_{q_n}\}_{n=1}^{\infty} \), so that for some subsequence \(\mathcal{N} \subset \mathbb{N} \)

\[\nu_{q_n} \xrightarrow{*} \sigma \quad \text{as} \quad n \to \infty, \quad n \in \mathcal{N}. \]

Then \(\sigma \) is a probability measure and by (2) and the Lower Envelope Theorem, we have for q.e. \(z \in \partial E \),

\[U^{\sigma}(z) = \liminf_{n \to \infty} U^{\nu_{q_n}}(z) \geq \liminf_{n \to \infty} U^{\nu_{q_n}}(z) \geq \log |g(z)|^{-1}. \quad (3) \]
By the assumptions on g, the function

$$F^\sigma(z) := U^\sigma(z) - \log |g(z)|^{-1}, \quad z \in \mathbb{C} \setminus E,$$

is superharmonic and lower bounded in $\mathbb{C} \setminus E$, harmonic and equal to zero at ∞, and in view of (3) and the lower semicontinuity of U^σ, it also satisfies for *quasi-every* $z' \in \partial E$

$$\liminf_{z \to z'} F^\sigma(z) \geq \liminf_{z \to z'} U^\sigma(z) - \lim_{z \to z'} \log |g(z)|^{-1} \geq U^\sigma(z') - \log |g(z')|^{-1} \geq 0.$$

Then, by the generalized minimum principle for superharmonic functions we conclude that $F^\sigma \equiv 0$, which implies that (1) holds in $\mathbb{C} \setminus E$. It also implies that U^σ is harmonic in $\mathbb{C} \setminus E$ and therefore, in view of the Unicity Theorem $\text{supp}(\sigma)$ must be contained in E. It is a direct consequence of Carleson’s Unicity Theorem that there can be at most one measure μ_g supported on ∂E that satisfies (1) with $\sigma = \mu_g$.
Bergman polynomials on an archipelago

\[G_j, \ j = 1, \ldots, N, \ \text{a system of disjoint and mutually exterior Jordan curves in} \ \mathbb{C}, \ \begin{align*} \Gamma_j & := \text{int}(\Gamma_j), \quad \Gamma := \bigcup_{j=1}^{N} \Gamma_j, \quad G := \bigcup_{j=1}^{N} G_j. \end{align*} \]

\[\langle f, g \rangle_G := \int_{G} f(z) \overline{g(z)} \, dA(z), \quad \|f\|_{L^2(G)} := \langle f, f \rangle_G^{1/2} \]

The Bergman polynomials \(\{p_n\}_{n=0}^{\infty} \) of \(G \) are the unique orthonormal polynomials w.r.t. the area measure on \(G \):

\[\langle p_m, p_n \rangle_G = \int_{G} p_m(z) \overline{p_n(z)} \, dA(z) = \delta_{m,n}, \]

with

\[p_n(z) = \lambda_n z^n + \cdots, \quad \lambda_n > 0, \quad n = 0, 1, 2, \ldots. \]
Three-disks

Zeros of the Bergman polynomials p_{140}, p_{150} and p_{160}.

The basic tool for the distribution of zeros

- $\Omega := \overline{\mathbb{C}} \setminus \overline{G}$.
- $K(z, \zeta)$: the Bergman (reproducing) kernel function of $L^2_a(G)$.
- $L_R := \{z : g_\Omega(z, \infty) = \log R\}$ the level lines of the Green function.
- $\varrho(z) := \sup\{R : K(z, \zeta) \text{ has an analytic continuation inside } L_R\}$.
- $h(z) := \begin{cases} g_\Omega(z, \infty), & z \in \Omega, \\ -\log \varrho(z), & z \in G, \end{cases}$
- $\beta := \frac{1}{2\pi} \Delta h$, in the sense of distributions.
- ν_{p_n}: the normalized counting measure of zeros of p_n.
- \mathcal{C}: the set of weak-star cluster points of the counting measures $\{\nu_{p_n}\}_{n=1}^\infty$, i.e., the set of measures σ for which there exists a subsequence $\mathcal{N}_\sigma \subset \mathbb{N}$ such that $\nu_{p_n} \rightharpoonup^* \sigma$, as $n \to \infty$, $n \in \mathcal{N}_\sigma$.
- μ_Γ: the equilibrium measure on the boundary Γ.
The basic result for the distribution of zeros

Theorem (Gustafsson, Putinar, Saff & St, Advances in Math, 2009)

(i) \(\beta \) is a positive unit measure with support contained in \(\overline{G} \).

(ii) The balayage of \(\beta \) onto \(\Gamma \) gives the equilibrium measure \(\mu_\Gamma \):

\[
\begin{align*}
U^\beta &\geq U^{\mu_\Gamma} \text{ in } \mathbb{C}, \\
U^\beta &= U^{\mu_\Gamma} \text{ in } \Omega.
\end{align*}
\]

(iii) \(\mathcal{C} \) is nonempty, and for any \(\sigma \in \mathcal{C} \),

\[
\begin{align*}
U^\sigma &\geq U^\beta \text{ in } \mathbb{C}, \\
U^\sigma &= U^\beta \text{ in the unbounded component of } \overline{\mathbb{C}} \setminus \text{supp}\beta.
\end{align*}
\]

(iv) The measure \(\beta \) is the lower envelope of \(\mathcal{C} \): \(U^\beta = \text{lsc}(\inf_{\sigma \in \mathcal{C}} U^\sigma) \).

(v) If \(\mathcal{C} \) has only one element, then this is \(\beta \) and

\[
\nu_{p_n} \overset{*}{\longrightarrow} \beta, \quad n \to \infty, \quad n \in \mathbb{N}.
\]
Bergman polynomials on archipelago with lakes

With K is a compact subset of G, set $G^* := G \setminus K$ and consider

$$\langle f, g \rangle_{G^*} := \int_{G^*} f(z)\overline{g(z)}dA(z), \quad \|f\|_{L^2(G^*)} := \langle f, f \rangle_{G^*}^{1/2}.$$

The Bergman polynomials $\{p^*_n\}_{n=0}^\infty$ of G^* are the unique orthonormal polynomials w.r.t. the area measure on G^*:

$$\langle p^*_m, p^*_n \rangle_{G^*} = \int_{G^*} p^*_m(z)\overline{p^*_n(z)}dA(z) = \delta_{m,n},$$

with

$$p^*_n(z) = \gamma^*_nz^n + \cdots, \quad \gamma^*_n > 0, \quad n = 0, 1, 2, \ldots.$$
The annular case

Plots of the zeros of $p_n^*(z)$, for $n = 120, 140$ and 160.

Let $G = \mathbb{D}$, $\mathcal{K} := \{z : |z - a| \leq \varrho\}$, $|a| + \varrho < 1$, $\varrho > 0$, $G^* = \mathbb{D} \setminus \mathcal{K}$, $\mathbb{T} := \partial \mathbb{D}$ and $\{z : |z - a| = \varrho\}$, that is

$$z_1 \overline{z_2} = 1 \quad \text{and} \quad (z_1 - a)(\overline{z_2} - a) = \varrho^2.$$

Let z_1 denote the point that lies in \mathcal{K} (z_2 will then lie outside \mathbb{D}).
Proposition (Saff & St, Mat. Sbornik, 2018)

With the above notation, there exists a subsequence $N \subset \mathbb{N}$ such that the normalized zero counting measures for $p_n^*(z)$ satisfy

$$\nu_{p_n^*} \xrightarrow{\ast} \mu_{|z_1|}, \quad n \to \infty, \quad n \in N,$$

where $\mu_{|z_1|}$ denotes the normalized arclength measure on the circle $|z| = |z_1|$.

Thus, no matter what the relative position of K, a weak limit of ν_n will invariably be the arclength measure on a specific circle in \mathbb{D}, always centered at the origin.
Shift Operator on $L^2(\mu)$

Let N_z denote the shift operator on $L^2(\mu)$. That is,

$$N_z : L^2(\mu) \rightarrow L^2(\mu) \quad \text{with} \quad N_z f = zf.$$

N_z defines a normal operator on $L^2(\mu)$. Furthermore,

$$p_n(\mu, z) = \lambda_n(\mu) \det(z - \pi_n N_z \pi_n),$$

where π_n is the projection onto the n-dimensional subspace onto \mathbb{P}_{n-1}.

Let

$$N(\mu) := \sup\{|z| : z \in S_{\mu}\}.$$

Then, for any $k \in \mathbb{N}$,

$$\pi_n N_z^k \pi_n - (\pi_n N_z \pi_n)^k,$$

is an operator of rank at most k and norm at most $2N(\mu)^k$.

Approximation Theory Operator Theory Shift
Shift Operator on $L^2(\mu)$

Let μ_n denote the unit measures $d\mu_n = \frac{1}{n} \sum_{j=0}^{n-1} |p_n(\mu, z)|^2 d\mu(z)$.

$$\frac{1}{n} \text{Tr}(\pi_n N_z \pi_n)^k = \int z^k d\nu_{p_n}.$$

$$\frac{1}{n} \text{Tr}(\pi_n N_z^k \pi_n) = \int z^k d\mu_n.$$

Thus, from the previous theorem, for any $k = 0, 1, 2, \ldots$,

$$\left| \int z^k d\nu_{p_n} - \int z^k d\mu_n \right| \leq \frac{2kN^k(\mu)}{n}.$$

Furthermore, if K is a compact set containing the supports of all ν_n and μ, such that $\{z_k\}_{k=0}^{\infty} \cup \{\bar{Z}_k\}_{k=0}^{\infty}$ are $\|\cdot\|_\infty$-total in $\mathcal{C}(K)$, then for any subsequence $\{n_j\}$, $\mu_{n_j} \overset{*}{\rightharpoonup} \nu$ if and only if $\mu_{n_j} \rightharpoonup \nu$.
Krylov subspaces

Let $A \in \mathcal{L}(H)$ be a linear bounded operator acting on the complex Hilbert space H and let $\xi \in H$ be a non-zero vector. We denote $H_n(A, \xi)$ the linear span of the vectors $\xi, A\xi, ..., A^{n-1}\xi$ and let π_n be the orthogonal projection of H onto $H_n(A, \xi)$. Let a_n denote the counting measures of the spectra of the finite central truncations $A_n = \pi_n A \pi_n$. Note that for any complex polynomial $p(z)$ it holds that

$$\int p(z) \, da_n(z) = \frac{\text{tr} \, p(A_n)}{n}.$$

The orthogonal monic polynomials P_n in this case are defined as minimizers of the functional (semi-norm):

$$\|q\|_{A, \xi}^2 = \|q(A)\xi\|^2, \quad q \in \mathbb{C}[z],$$

and the zeros of P_n (whenever P_n exists) coincide with the spectrum of A_n.
Theorem (Gustafsson & Putinar, Springer 2017)

Let $A, B \in \mathcal{L}(H)$ with $A - B$ of finite trace: $A - B \in \mathcal{C}_1(H)$. Then for every polynomial $p \in \mathbb{C}[z]$ we have

$$\lim_{n \to \infty} \frac{\text{Tr}(p(A_n)) - \text{Tr}(p(B_n))}{n} = 0.$$

Corollary

Let a_n, b_n denote the counting measures of the spectra of A_n and B_n, respectively. Then,

$$\lim_{n \to \infty} \left[\int \frac{da_n(\zeta)}{\zeta - z} - \int \frac{db_n(\zeta)}{\zeta - z} \right] = 0,$$

uniformly on compact subsets which are disjoint of the convex hull of $\sigma(A) \cup \sigma(B)$.

Approximation Theory Operator Theory Shift
Conclusion

All the results in this section yield information for the analytic moments:

$$\lim_{n \to \infty} \int z^k d\nu_n = \int z^k d\nu, \quad k = 0, 1, 2, \ldots,$$

where ν is a known positive measure and $\{\nu_n\}$ are a sequence of positive measures (all supported on the same compact set K in the complex plane) we want to describe its weak limit points. Note that the measures being positive implies the same information for the anti-analytic moments:

$$\lim_{n \to \infty} \int \overline{z}^k d\nu_n = \int \overline{z}^k d\nu, \quad k = 1, 2, \ldots.$$
Conclusion

However, according to the complex Stone-Weierstrass theorem, in order to establish

$$\nu_n \xrightarrow{\ast} \nu,$$

we need the limits of all the complex moments

$$\lim_{n \to \infty} \int z^k \overline{z}^j d\nu_n = \int z^k \overline{z}^j d\nu, \quad k, j = 0, 1, 2, \ldots,$$

unless K is of a special form (Mergelyan, Walsh), where the analytic moments constitute sufficient information.