
Lectures on Numerical Conformal Mapping

N. Papamichael

Department of Mathematics and Statistics, University of Cyprus

March 28, 2008





Contents

Preface iii

1 Standard conformal mappings 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The mapping of simply-connected domains . . . . . . . . . . . . . . . . . . . 2
1.3 The mapping of doubly-connected domains . . . . . . . . . . . . . . . . . . . 9
1.4 Singularities of the mapping function . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Corner singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Pole-type singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Numerical conformal mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.1 The integral equation method of Symm . . . . . . . . . . . . . . . . . 18
1.5.2 Schwarz-Christoffel mappings . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.7 Additional bibliographical remarks . . . . . . . . . . . . . . . . . . . . . . . . 30
1.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Orthonormalization methods 39
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 The space L2(Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 The Bergman kernel function . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 Numerical methods for simply-connected domains . . . . . . . . . . . . . . . . 48

2.4.1 The Bergman kernel method (BKM) . . . . . . . . . . . . . . . . . . . 48
2.4.2 The Ritz method (RM) . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.3 Exterior domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Numerical methods for doubly-connected domains . . . . . . . . . . . . . . . 54
2.5.1 The orthonormalization method (ONM) . . . . . . . . . . . . . . . . . 57
2.5.2 The variational method (VM) . . . . . . . . . . . . . . . . . . . . . . . 59

2.6 Computational considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.6.1 Choice of the basis set . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.6.2 Rotational symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

i



ii CONTENTS

2.6.3 The computation of inner products . . . . . . . . . . . . . . . . . . . . 68
2.6.4 Estimate of maximum error in modulus . . . . . . . . . . . . . . . . . 71

2.7 Numerical examples I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.8 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.8.1 BKM and RM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.8.2 ONM and VM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.9 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.10 Numerical examples II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.11 Multiply-connected domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.12 Additional bibliographical remarks . . . . . . . . . . . . . . . . . . . . . . . . 103
2.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3 Conformal modules of quadrilaterals 111
3.1 Basic definitions and properties . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.2 Physical interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.3 Further properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.4 The conventional method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.5 The crowding phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.7 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.7.1 A finite-element method . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.7.2 A modified Schwarz-Christoffel method . . . . . . . . . . . . . . . . . 143
3.7.3 Cross-ratios and Delaunay triangulation (CRDT) . . . . . . . . . . . . 143
3.7.4 Methods for “special” quadrilaterals . . . . . . . . . . . . . . . . . . . 145
3.7.5 The use of Laplacian solvers . . . . . . . . . . . . . . . . . . . . . . . . 145

3.8 A domain decomposition method . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.9 Domain decomposition for special quadrilaterals . . . . . . . . . . . . . . . . 150
3.10 Domain decomposition for general quadrilaterals . . . . . . . . . . . . . . . . 160
3.11 Additional bibliographical remarks . . . . . . . . . . . . . . . . . . . . . . . . 169
3.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4 Solutions 173
4.1 Exercises of Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.2 Exercises of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.3 Exercises of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Bibliography 209

Index 223



Preface

These lecture notes have been written, primarily, for the purpose of supporting a one semester
course in numerical conformal mapping. The notes are divided into three main parts as
follows:

(i) A preparatory chapter containing basic results about the standard conformal mapping
problems for simply and doubly-connected domains Ω, and about the singularities that the
corresponding mapping functions might have on the boundary of the domain under considera-
tion and, off the boundary, in the complement of the domain. The chapter also contains a brief
survey of available numerical methods and associated software, and includes a more detailed
discussion of two specific numerical methods: (a) the so-called integral equation method of
Symm, for the mapping of simply-connected Jordan domains, and (b) a method based on the
well-known Schwarz-Cristoffel transformation for the mapping of simply-connected polygonal
domains.

(ii) A chapter that contains a detailed study of a class of orthonormalization methods for
the conformal mapping of simply and doubly-connected domains. The chapter includes the
following:

• A study of the underlying theory on which these methods are based. This is the theory
of series developments of analytic functions in the space L2(Ω), i.e. in the space of
functions that are square integrable (with respect to the area measure) and analytic in
a domain Ω.

• A detailed study of the computational aspects of the methods, and several examples
illustrating their application.

• A discussion of the available convergence and stability results.

• A discussion concerning the extension of the methods to the mapping of n-connected
domains, with n > 2.

(iii) A chapter that contains a study of the the theoretical, computational and application
aspects of the problem of determining the conformal modules of quadrilaterals. (Here, the
meanings of a “quadrilateral” Q and its “conformal module” m(Q) are as follows: (a) Q
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is a system consisting of a Jordan domain Ω and four specified points z1, z2, z3, z4, in
counterclockwise order on its boundary, and (b) if R denotes a rectangle of base length a,
height b and aspect ratio h := b/a, then m(Q) is the unique value of h for which Q is
conformally equivalent to the rectangular quadrilateral consisting of R and its four vertices.
By this it is meant that for h = m(Q), and for this value only, there exists a conformal
mapping F : Ω → R, of Ω onto R, that takes the four specified points z1, z2, z3, z4 of Q,
respectively, onto the four vertices of R.) The chapter includes the following:

• A study of the main properties, the physical interpretation and the practical significance
of conformal modules.

• A detailed description of the “conventional method”, i.e. of the standard approach
of seeking to determine m(Q) and F : Ω → R after first determining the conformal
mapping of Ω onto the unit disc, or the upper half-plane.

• A detailed study of a serious numerical drawback that affects adversely the numerical
implementation of the conventional method. This drawback is due to the so-called
“crowding phenomenon”, i.e. to the crowding of points on the unit circle, or the real
axis, which is caused (when the quadrilateral under consideration is “long”) by the
intermediate conformal mapping that takes Ω onto the unit disc, or the upper-half
plane.

• Brief discussions of various numerical methods for computing approximations to m(Q)
and, in particular, of two methods that have been devised specifically for the purpose
of overcoming the crowding difficulties associated with the conventional method.

• A study of a domain decomposition method for computing approximations to the con-
formal modules of elongated quadrilaterals. This method was also devised for the pur-
pose of overcoming the crowding difficulties associated with the use of the conventional
method, and can be used to compute (often by hand calculation) accurate approxima-
tions to the modules of complicated quadrilaterals (for example, meander-like polygonal
quadrilaterals) of the type that occur frequently in applications.

Regarding prerequisites, we sought to keep these to a minimum, so as to make the lecture
notes accessible to all those who have completed a one year course in complex analysis. For
this reason, although we have tried to give a complete and rigorous treatment of the relevant
theory, there were instances (especially in Sections 1.4, 2.8, 2.9 and 3.8 ) where we have been
forced to make use of certain deeper mathematical results without presenting their detailed
proofs. In all such instances, however, we have given specific guidelines of where the proofs
can be found.

Nicosia, Cyprus, N. Papaimichael
March 2008



Chapter 1

Standard conformal mappings

1.1 Introduction

Let Ω be a domain in the complex z-plane, and let f be a function which is analytic and
one-to-one∗ in Ω. Then, f defines a mapping of Ω onto a domain Ω̂ in the w-plane. The
following are direct consequences of the one-to-one assumption:

(i) f ′(z) 6= 0, ∀ z ∈ Ω.

(ii) The mapping f has an inverse f [−1], so that each point w ∈ Ω̂ can be related to a unique
point z ∈ Ω by means of

z = f [−1](w).

(iii) The mapping is characterized by the geometric property that if γ1, γ2 are two differen-
tiable arcs which intersect at a point z0 ∈ Ω and form there an angle α, then the angle
formed by the images of γ1 and γ2 at the point w0 = f(z0) is again α. That is, the
mapping is “angle preserving”; see Exercise 1.1.

With reference to the angle preserving property (iii), a mapping that satisfies this property
at a point z0 is said to be “conformal” at z0. For this reason, the mapping f described above
is said to be “a conformal mapping of Ω onto Ω̂ ”.

From the practical viewpoint, the most valuable aspects of conformal mapping are due
to the properties listed in Exercises 1.3–1.5 and, in particular, to the conformal invariance
property of the Laplace equation. Because of this property, conformal mappings are often
used in heat transfer, electrostatics, steady state fluid flows and other applications involving
the solution of the Laplace equation. Also, because of the angle preserving property, a
conformal mapping transforms a rectangular grid in Ω into a curvilinear orthogonal grid in

∗Such a function is often called “univalent” or “schlicht”

1



2 CHAPTER 1. STANDARD CONFORMAL MAPPINGS

the transformed domain Ω̂, and this is often used to advantage in grid generation techniques
for the finite-difference solution of partial differential equations.

This preparatory chapter has been written primarily for the following reasons:

(i) To recall and collect together various elementary results on conformal mapping that are
needed for the development of the theory in subsequent chapters. (These results are
treated, mainly, in the exercises of the chapter.)

(ii) To present (without proofs) the basic existence and uniqueness results for the following
three standard conformal mappings: (a) the mapping of the interior of a closed Jordan
curve onto the interior of the unit circle, (b) he mapping of the exterior of a closed
Jordan curve onto the exterior of the unit circle, and (c) the mapping of a finite doubly-
connected domain (a ring domain), bounded by two Jordan curves, onto a circular
annulus.

(iii) To give the definitions and basic properties of certain important domain functionals
associated with the above three conformal mappings.

(iv) To consider the problem of determining the location and nature of the singularities
that each of the the three conformal mappings might have on the boundary and in
the complement of the closure of the domain under consideration. (As will become
apparent later, this information is of considerable interest, both from the practical
and the theoretical points of view, in connection with the application and convergence
analysis of the numerical methods that will be studied in Chapter 2.)

(v) To give brief outlines of two numerical methods (the so-called integral equation method
of Symm and a Schwarz-Christoffel method) for the conformal mapping of simply-
connected domains.

1.2 The mapping of simply-connected domains

Our starting point is the celebrated Riemann mapping theorem:

Theorem 1.2.1 (Riemann Mapping Theorem) Any simply-connected domain Ω, whose bound-
ary consists of more than one point, can be mapped conformally onto the unit disc D1 := {z :
|z| < 1}. It is, moreover, possible to make an arbitrary point zo ∈ Ω and a direction through
this point correspond, respectively, to the origin 0 and the direction of the positive real axis.
If this is done, then the mapping is unique.

The following are simple consequences of Theorem 1.2.1:

(i) Three real conditions (the real and imaginary co-ordinates of the point z0 and the
direction through z0) must be imposed in order to make the conformal mapping Ω → D1
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unique. In other words, the problem of determining the mapping Ω → D1 has three
degrees of freedom.

(ii) The Riemann mapping theorem is often stated as follows: Let Ω be a simply-connected
domain, whose boundary consists of more than one point, and let z0 be a point in Ω.
Then, there exists a unique conformal mapping

f : Ω → D1 := {w : |w| < 1}, (1.2.1)

normalized by the conditions

f(z0) = 0 and f ′(z0) > 0. (1.2.2)

(The second of the conditions (1.2.2) means that the positive direction of the straight
line that goes through the point z0 and is parallel to the real axis is transformed into
the positive direction of the real axis.)

(iii) Any two simply-connected domains Ω1 and Ω2 (other than C) are conformally equivalent
(i.e. they can be mapped conformally onto each other), and the mapping Ω1 → Ω2 is
unique up to the choice of three real parameters.

The following theorem establishes the correspondence between the boundaries ∂Ω of Ω
and ∂D1 = {w : |w| = 1} of D1, in the case where ∂Ω is a Jordan curve.

Theorem 1.2.2 (Carathéodory–Osgood) Let Ω be a Jordan domain, i.e. a domain bounded
by a Jordan curve, and let f be a conformal mapping f : Ω → D1. Then, f can be extended
one-one continuously to the closure Ω := Ω∪∂Ω of the domain Ω. Moreover, any three points
on ∂Ω can be mapped on any three preassigned points (of the same orientation) on the unit
circle ∂D1.

There is an important domain functional associated with the conformal mapping (1.2.1)–
(1.2.2). This is defined as follows:

Definition 1.2.1 (Conformal Radius) Let f be the conformal mapping (1.2.1)–(1.2.2). Then
the real constant

Rz0(Ω) :=
1

f ′(z0)
, (1.2.3)

is called the conformal radius of Ω with respect to the point z0.

If, instead of f , we consider the inverse mapping

ϕ := f [−1] : D1 → Ω, with ϕ(0) = z0 and ϕ′(0) > 0, (1.2.4)

then, clearly,
Rz0(Ω) = ϕ′(0). (1.2.5)
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As for the name “conformal radius”, this comes about by considering the conformal mapping

g : Ω → Dr := {w : |w| < r}, (1.2.6)

of a simply-connected domain Ω onto a disc with center at the origin and radius r, normalized
by the conditions

g(z0) = 0 and g′(z0) = 1. (1.2.7)

In this case, the normalization (1.2.7) involves four real conditions. Thus, the radius r of
the disc Dr cannot be predetermined, i.e. r is itself an unknown of the conformal mapping
problem (1.2.6)–(1.2.7). Furthermore, since g = rf , where f is the conformal mapping
(1.2.1)–(1.2.2), it follows that g exists uniquely only for the value

r =
1

f ′(z0)
= Rz0(Ω).

In other words, the conformal radius of Ω with respect to a point z0 ∈ Ω is the unique value
of the radius of the disc Dr for which the conformal mapping (1.2.6)–(1.2.7) exists uniquely.

The following two properties of Rz0(Ω) should be noted:

(i) The elementary property that Rz0(Ω) remains invariant under translation and rotation
of Ω.

(ii) The increasing property that if Ω1 and Ω2 are two simply-connected domains such that
Ω1 ⊂ Ω2 and z0 ∈ Ω1, then

Rz0(Ω1) ≤ Rz0(Ω2), (1.2.8)

with strict inequality unless Ω1 = Ω2; see [73, pp. 682–684].

Let Γ be a Jordan curve, assume without loss of generality that the origin 0 lies in the
interior of Γ, and denote by ΩE the region exterior to Γ, i.e.

ΩE := Ext(Γ) = C \ Ω,

where Ω := Int(Γ). We consider next the problem of determining a conformal mapping

fE : ΩE → {w : |w| > 1} (1.2.9)

(of ΩE onto the exterior of the unit circle), normalized by the conditions

fE(∞) = ∞ and f
′
E(∞) = lim

z→∞
fE(z)

z
> 0. (1.2.10)

The unique existence of the mapping function fE , as well as the correspondence between
the boundary Γ of ΩE and the unit circle, follow immediately from the two Theorems 1.2.1
and 1.2.2, by observing that the “exterior mapping problem” (1.2.9)–(1.2.10) is related to
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the “interior mapping problem” (1.2.1)–(1.2.2) by means of the transformation z → 1/z.
This simple inversion transforms Γ into a Jordan curve Γ̂ and maps the domain ΩE onto the
interior of Γ̂, i.e. onto the domain Ω̂ := Int(Γ̂). Therefore, if f̂ is the conformal mapping

f̂ : Ω̂ → D1, (1.2.11)

normalized by the conditions

f̂(0) = 0 and f̂
′
(0) > 0, (1.2.12)

then (see Figure 1.1)

fE(z) = 1/f̂(1/z). (1.2.13)

Corresponding to the Definition 1.2.1 of the conformal radius, we have the following def-
inition of an important geometric functional associated with the conformal mapping (1.2.9)–
(1.2.10):

Definition 1.2.2 (Capacity of a Jordan curve) Let Γ be a closed Jordan curve and assume
that 0 ∈ Int(Γ). Also let ΩE := Ext(Γ) and let fE be the conformal mapping (1.2.9)–(1.2.10).
Then the real constant

cap(Γ) :=
1

f
′
E(∞)

, (1.2.14)

is called the capacity of the curve Γ.

From (1.2.13) we have that

cap(Γ) = f̂
′
(0) =

1

R0(Ω̂)
. (1.2.15)

Thus, cap(Γ) is the reciprocal of the conformal radius of the domain Ω̂ := Int(Γ̂) with respect
to the origin.

Remark 1.2.1 Definition 1.2.2 is restricted to bounded Jordan curves. This is sufficient
for our purposes. For the definition in the more general case where Γ is a compact set the
interested reader should consult, for example, [142, §5.1–5.3] and [147, pp. 24–25] where also
the properties of cap(Γ) are discussed in detail. Here, we only note the elementary property
that cap(Γ) remains invariant under translation and rotation of Γ.
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Figure 1.1

We end this section by giving the definition of yet another geometric functional, the
so-called “exponential radius” of a Jordan arc joining two parallel straight lines. This was
introduced by Gaier and Hayman [58, §2], in connection with the theory of the domain
decomposition method that we shall study in Section 3.9.

Let γ be a Jordan arc that joins the lines Im z = 0 and Im z = 1 and lies entirely within
the strip {z : 0 < Im z < 1}, except for its end points. Also, let γ∗ be the arc obtained by
translating γ along the real axis until it lies in Re z ≥ 0, with at least one point on Re z = 0.
Next, let Γ∗ be the image of γ∗ under the transformation z → eπz, and let Γ∗ denote the
reflection of Γ∗ in the real axis. Finally, let Γ denote the symmetric Jordan curve Γ := Γ∗∪Γ∗,
and observe that Γ surrounds the unit circle and meets the circle in at least one point; see
Figure 1.2.
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Definition 1.2.3 (Exponential radius of an arc) With reference to Figure 1.2 and the no-
tations introduced above, let Ω denote the Jordan domain Ω := Int(Γ∗ ∪ Γ∗). Then, the
exponential radius re(γ) of the arc γ is defined to be the conformal radius R0(Ω) of the do-
main Ω with respect to the origin 0.

In other words,

re(γ) =
1

f ′(0)
, (1.2.16)

where f is the conformal mapping

f : Ω := Int(Γ∗ ∪ Γ∗) → D1, (1.2.17)

normalized by the conditions

f(0) = 0 and f
′
(0) > 0. (1.2.18)
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Remark 1.2.2 If, instead of the lines Im z = 0 and Im z = 1, the arc γ joins the lines
Re z = 0 and Re z = 1, then the exponential radius re(γ) is again given by Definition 1.2.3,
but now: (i) γ∗ is the arc obtained by translating γ along the imaginary axis until it lies
in Im z ≤ 0, with at least one point on Im z = 0, (ii) Γ∗ is the image of γ∗ under the
transformation z → eiπz, and (as before) (iii) Γ∗ is the reflection of Γ∗ in the real axis.

Remark 1.2.3 (See also Exercise 1.14.) It is important to note that

1 ≤ re(γ) ≤ 4, (1.2.19)

where the number 4 in the right-hand side of the inequality cannot be replaced by a smaller
number. As for the proof of (1.2.19), the left inequality follows immediately from the increas-
ing property (1.2.8), while the right is a consequence of the so-called Koebe 1

4 -theorem. This
theorem states that if ϕ is any function which is analytic and univalent in D1 and such that
ϕ(0) = 0 and ϕ′(0) = 1, then the range ϕ(D1) of ϕ contains the disc with center the origin
and radius 1

4 . Furthermore, the radius of this disc cannot be replaced by a number larger
than 1

4 ; see e.g. [37, Theorem 2.3] and [62, p. 49, Theorem 2].

Remark 1.2.4 The exponential radius of an arc γ admits an alternative interpretation as
follows; see [134, p. 112]: With reference to Figure 1.2, let G− denote the strip that lies to the
left of the arc γ and let a and b denote, respectively, the points where γ intersects the lines
Im z = 0 and Im z = 1. Also, let S− denote the strip S− := {w : Re w < 0, 0 < Im w < 1},
and let g be the conformal mapping g : S− → G− normalized by the conditions

g(0) = a, g(i) = b and lim
w→∞
w∈S−

g(w) = ∞.

Finally, let σ := min{Re z : z ∈ γ}. Then, the exponential radius r := re(γ) can also be
defined by means of the relation

lim
Re{w}→−∞

w∈S−

{g(w)− w} =
1
π

log r + σ. (1.2.20)

This can be deduced from the following observations:

• The transformation w → eπw takes S− onto the upper half of the unit disc D1.

• The function F := f [−1] (which maps conformally D1 onto Ω := Int(Γ∗ ∪Γ∗)) is related
to the mapping function g by means of

F (W ) = exp
{

πg

(
1
π

log W

)
− πσ

}
;

see Figure 1.2.
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•
log r = log F ′(0) = lim

W→0
log

(
F (W )

W

)
= π lim

Re{w}→−∞
w∈S−

{g(w)− w} − πσ.

1.3 The mapping of doubly-connected domains

We start this section by observing that a conformal mapping is continuous and, as a result,
preserves the order of connectivity. Thus, in particular, any conformal mapping of a doubly-
connected domain is again a doubly-connected domain. It is, therefore, necessary for our
work here to introduce a standard doubly-connected canonical domain to take the place of
the unit disc, the canonical domain that we used in the simply-connected case. An obvious
candidate for this is, of course, a circular annulus. In the doubly-connected case, however,
we encounter a difficulty which was not present in the simply-connected case. This can be
explained as follows:

By the Riemann mapping theorem (Theorem 1.2.1), any simply-connected domain (whose
boundary consists of more than one point) can be mapped onto the unit disc. From this it
follows that all simply-connected domains are conformally equivalent, i.e. they can be mapped
conformally onto each other. However, the same is not true in the case of doubly-connected
domains. As the following theorem shows, not all doubly-connected domains are conformally
equivalent.

Theorem 1.3.1 Any doubly-connected domain, such that each of its boundary components
consists of more than one point, can be mapped conformally onto a circular annulus of the
form

A(a, b) := {w : a < |w| < b}, (1.3.1)

but only for a certain unique value of the ratio b/a of the two radii of the annulus.

Definition 1.3.1 (Conformal modulus) Let A(a, b) be a circular annulus of the form (1.3.1).
Then, the unique value of the ratio b/a for which a doubly-connected domain Ω is conformally
equivalent to A(a, b) is called the conformal modulus of Ω and is denoted by M(Ω).

In other words the conformal modulus M(Ω) of a doubly-connected domain Ω determines
completely its conformal equivalence class, in the sense that two doubly-connected domains
can be mapped onto each other if and only if they have the same modulus. The following
theorem extends the result of Theorem 1.2.2 to the doubly-connected case:

Theorem 1.3.2 Let Γ1 and Γ2 be two closed Jordan curves, such that Γ2 is in the interior
of Γ1, denote by Ω the doubly-connected domain

Ω := Int(Γ1) ∩ Ext(Γ2), (1.3.2)
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and let ζ and b (0 < b < ∞) be respectively a fixed point on Γ1 and a prescribed number.
Then, for a certain unique value a (0 < a < b) there exists a unique conformal mapping

f : Ω → A(a, b) (1.3.3)

(of Ω onto the circular annulus (1.3.1)), normalized by the condition

f(ζ) = b. (1.3.4)

Moreover, f can be extended one-one continuously to the closure Ω := Ω ∪ ∂Ω of Ω.

In particular, the theorem says that if M := M(Ω) is the conformal modulus of the domain
Ω, then the condition (1.3.4) determines uniquely the radius a = b/M , of the inner boundary
of A(a, b), and ensures that the boundary curves Γ1 and Γ2 are mapped respectively onto the
two boundary circles |w| = b and |w| = a.

We consider next a relation that exists between the conformal mappings: (i) of a simply-
connected domain of a special type onto a rectangle, and (ii) of an associated symmetric
doubly-connected domain onto a circular annulus. This relation is needed for the development
of the theory of the domain decomposition method that we shall study in Chapter 3.

Let Ω be a simply-connected domain of the form illustrated in Figure 1.3 (a). That is, Ω
is bounded by a segment of the positive real axis, a straight line inclined at an angle π/n,
(n ∈ N, n ≥ 1) to the real axis, and two Jordan arcs γ1 and γ2 that meet the two straight
lines at the points z1, z2, z3 and z4. Also, let the arcs γ1 := (z1, z2) and γ2 := (z3, z4) be given
in polar co-ordinates by

γj := {z : z = ρj(θ)eiθ, 0 ≤ θ ≤ π/n}, j = 1, 2, (1.3.5)

where 0 < ρ2(θ) < ρ1(θ), θ ∈ [0, π/n], and let Ω̂ be the 2n-fold symmetric doubly-connected
domain which is obtained by first reflecting Ω about the line θ = π/n and, if n > 1, continuing
to reflect each new reflected part about the lines θ = jπ/n, j = 2, . . . , 2n − 1, respectively.
That is,

Ω̂ := Int(Γ1) ∩ Ext(Γ2), (1.3.6)

where
Γj := {z : z = ρ̂j(θ)eiθ, 0 ≤ θ ≤ 2π}, j = 1, 2, (1.3.7)

with

ρ̂j(θ) = ρj(θ), θ ∈ [0, π/n],
ρ̂j(kπ/n + θ) = ρ̂j(kπ/n− θ), θ ∈ [0, π/n], k = 1(1)2n− 1.

}
(1.3.8)

Then, for q = 1/M , where M := M(Ω̂) is the conformal modulus of the domain Ω̂, there
exists a conformal mapping f : Ω̂ → A(q, 1) of Ω̂ onto the circular annulus

A(q, 1) := {ζ : q < |ζ| < 1}, (1.3.9)

which takes Γ1 and Γ2 onto the circles |ζ| = 1 and |ζ| = q and the points z1, z2, z3 and z4

onto the points ζ1 = 1, ζ2 = eiπ/n, ζ3 = qeiπ/n and ζ4 = q; see Theorem 1.3.2.
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Let Sq denote the sector

Sq := {ζ : ζ = reiφ, q < r < 1, 0 < φ < π/n}, (1.3.10)

and let
ϕ(ζ) :=

n log ζ

iπ
. (1.3.11)

Then, it is easy to see that ϕ maps conformally Sq onto a rectangle

RH := {(ξ, η) : 0 < ξ < 1, 0 < η < H}, (1.3.12)

of height

H = −n log q

π
=

n log M

π
, (1.3.13)

so that the four points ζ1, ζ2, ζ3 and ζ4 go respectively to the four corners 0, 1, 1+ iH and iH

of RH . It follows that the conformal mapping F : Ω → RH , of the simply connected domain
Ω of Figure 1.3(a) onto the rectangle RH , can be expressed as

F = ϕ ◦ f, (1.3.14)

where f is the conformal mapping of the doubly-connected domain Ω̂ onto the annulus A(q, 1).
In other words, the problem of determining F : Ω → RH is equivalent to that of determining
the conformal mapping f : Ω̂ → A(q, 1).
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Consider now the case where the simply-connected domain Ω is of the form illustrated
in Figure 1.3(b). That is Ω is bounded by two parallel straight lines (which, without loss of
generality, can be taken to be the lines Re z = 0 and Re z = 1) and two Jordan arcs γ1 and γ2

that meet the two lines at the points z1, z2, z3 and z4. Let F be the conformal mapping which,
for a certain value of H, takes Ω onto a rectangle of the form (1.3.12) so that the four corners
z1, z2, z3 and z4 are mapped respectively onto the four corners 0, 1, 1 + iH and iH of RH .
Then, it is easy to see that there exists again a very close relation between F : Ω → RH and
the conformal mapping of an associated symmetric doubly-connected domain onto a circular
annulus Aq of the form (1.3.9); see Exercise 1.15.

1.4 Singularities of the mapping function

In this section we consider the problem of determining the location and nature of the sin-
gularities that each of the three conformal mappings (1.2.1)–(1.2.2), (1.2.9)–(1.2.10) and
(1.3.3)–(1.3.4) might have on the boundary and in the complement of the closure of the do-
main under consideration. As will become apparent later, this information is of considerable
interest in connection with the application and the convergence analysis of the numerical
methods that will be studied in Chapter 2.

1.4.1 Corner singularities

In order to simplify the presentation of the material of this subsection, we shall use a unified
notation and shall denote with the same symbols Ω and f the domain and associated confor-
mal mapping involved in each of the three conformal mappings cited above, i.e. the “interior”,
“exterior” and “doubly-connected” conformal mappings (1.2.1)–(1.2.2), (1.2.9)–(1.2.10) and
(1.3.3)–(1.3.4) respectively.

We begin by noting that any boundary singularities of the mapping function f are corner
singularities of the type that arise in the study of boundary value problems for elliptic partial
differential equations. We also note that the asymptotic form of these singularities can be
determined from certain important results of Lehman [102], which generalize earlier results
by Lichtenstein [108] and Warschawski [169].

With the unified notation introduced above, assume that part of the boundary ∂Ω consists
of two analytic arcs γ1 and γ2 that meet at a point zc and form there a corner of interior
angle απ, where 0 < α < 2. (By “interior” angle we mean interior to the domain Ω under
consideration.) Then, depending on whether α is rational or irrational, the results of [102]
lead to the following two asymptotic expansions†:

†The results of Lehman were derived in connection with the conformal mapping of simply-connected do-

mains. However, his results extend to the doubly-connected case, because (as it is intuitively obvious) the
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(i) If α = p/q, with p and q relative prime, then as z → zc

f(z)− f(zc) ∼
∑

k,l,m

Bk,l,m(z − zc)k+l/α(log(z − zc))m, (1.4.1)

where k, l and m run over all integers k ≥ 0, 1 ≤ l ≤ p, 0 ≤ m ≤ k/q and where
B0,1,0 6= 0. Also, the terms in (2.14) are ordered so that the term corresponding to
Bk,l,m precedes the term corresponding to Bk′,l′,m′ if either k + l/α < k′ + l′/α or
k + l/α = k′ + l′/α and m > m′.

(ii) If α is irrational, then as z → zc

f(z)− f(zc) ∼
∑

k,l

Bk,l(z − zc)k+l/α, (1.4.2)

where now k and l run over all integers k ≥ 0 and l ≥ 1 and where B0,1 6= 0.

Considerable simplifications occur when both arms γ1 and γ2 of the corner zc are either
straight lines or circular arcs. More specifically, we have the following:

(iii) For the interior and exterior conformal mappings, if both γ1 and γ2 are straight
lines, then (for both rational and irrational α) as z → ζc

f(z)− f(zc) ∼
∞∑

l=1

Bl(z − zc)l/α, (1.4.3)

where B1 6= 0; see [24, p. 170]‡. Also, in the doubly-connected case, if both γ1

and γ2 are straight lines, then the expansion (1.4.2) holds for both rational and
irrational α, and the same applies to each of the three conformal mappings if both
γ1 and γ2 are circular arcs.

It follows from the above that the dominant term in the asymptotic expansion of f is always
(z − zc)1/α. (This reflects the geometric property that, under the conformal mapping f , the
angle απ at the point zc ∈ ∂Ω is transformed onto an angle π at the point f(zc) .) Therefore,
when 1/α is not an integer a branch point singularity always occurs at the corner zc. In
particular, if the corner is re-entrant (i.e. if α > 1), then the first derivative of the mapping
function f becomes unbounded at z = zc. Furthermore, because of the logarithmic terms in
(1.4.1), a branch point singularity might occur even when 1/α is an integer.

With reference to the last observation, when α = 1/N , with N ∈ N, then the “lowest”
logarithmic term that might be present in (1.4.1) is

(z − zc)2N log(z − zc).

differentiability properties of a conformal mapping at some boundary point depend only on the local structure

of the boundary and not on the connectivity of the domain.
‡This can be deduced from the Schwarz-Christoffel formula, which will be studied in § 1.5.2.
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Thus, the question of when the corresponding coefficient BN,1,1 is nonzero is of some consid-
erable interest. It is worth noting that Gaier addressed this question in [56], and derived a
sufficient condition (involving the curvatures of the two arcs that form the arms of zc) for
BN,1,1 6= 0 (cf. [56, Theorem 3]).

1.4.2 Pole-type singularities

These are singularities that the mapping function (or, more precisely, its analytic extension)
may have in the complement of the closure of the domain under consideration.

We consider first the case of the conformal mapping (1.2.1)–(1.2.2). That is, we let Ω
be a Jordan domain, denote by f the conformal mapping f : Ω → D1 normalized by the
conditions f(z0) = 0 and f ′(z0) > 0 (where z0 is some point in Ω), and consider the problem
of determining the dominant singularities of the analytic extension of f in C \ Ω. (Here, by
“dominant” singularities we mean the singularities that are closest to the boundary ∂Ω.) It
turns out that if ∂Ω consists of straight lines and circular arcs, then these singularities of f

can be determined easily by making use of the celebrated Schwarz reflection (or symmetry)
principle which is stated below.

Theorem 1.4.1 (The Schwarz reflection principle; see e.g. [116, p. 184]) Let Ω and Ω̂
be two simply-connected domains and let their boundaries ∂Ω and ∂Ω̂ contain respectively
circular arcs γ and γ̂ (which may degenerate into straight line segments). If the function F

maps conformally Ω onto Ω̂ in such a way that γ̂ corresponds to γ, then F can be continued
analytically into the domain Ω∗ obtained from Ω by inversion with respect to the circle (straight
line) C of which γ forms a part. If z ∈ Ω and z∗ ∈ Ω∗ are symmetric (inverse) points with
respect to C, then F (z) and F (z∗) are symmetric points with respect to the circle (straight
line) Ĉ of which γ̂ forms a part.

Consider now the conformal mapping f : Ω → D1, assume that part of ∂Ω consists of a
circular arc or straight line segment γ, and observe that f maps γ onto an arc γ̂ of the unit
circle |w| = 1. Also, recall the normalization condition f(z0) = 0, and let z∗0 ∈ C \ Ω be the
symmetric point of z0 with respect to the circle (straight line) of which γ forms part. Then,
since the symmetric point of 0 with respect to the unit circle is the point at∞, it follows from
Theorem 1.4.1 that the analytic extension of f has a simple pole at z∗0 . In other words, if ∂Ω
consists of straight line segments and circular arcs, then the mapping function (1.2.1)–(1.2.2)
has simple pole singularities at the mirror images (in C \Ω) of the “normalization” point z0

with respect to the straight lines, and at the symmetric points (in C \ Ω) of z0 with respect
to the circles of which the circular arcs form part.

If ∂Ω is more general than a curve consisting of straight lines and circular arcs, then the
problem of determining the location and nature of singularities of the mapping function f in
C \ Ω is much more complicated, and involves using the generalized symmetry principle for
analytic arcs; see e.g. [148, p. 102]. The basic details are as follows:
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Let γ be an analytic arc of ∂Ω with analytic parametric equation

z = τ(s), s1 ≤ s ≤ s2, (1.4.4)

and (for simplicity) assume that z0 = 0 in the normalizing condition (1.2.2). Then, the
general procedure for determining the singularities of the analytic extension of f across γ

involves examining the zeros of the function τ(ζ) (of the complex variable ζ = s + it) and of
its derivative τ ′(ζ). This comes about from the generalized symmetry principle, which states
that the analytic extension of f across γ is given by

{f(I(z))}−1, (1.4.5)

where
I(z) := τ{τ [−1](z)}. (1.4.6)

Here, I(z) defines the symmetric point of z with respect to γ, and is independent of the
choice of the parametrization of γ. From this it follows, for example, that if ζ∗ is a simple
zero of τ(ζ) and certain other conditions (concerning the proximity of ζ∗ to γ) hold, then the
mapping function f has a simple pole at the symmetric point of the origin with respect to γ,
i.e. at the point

z∗ = I(0) = τ(ζ∗). (1.4.7)

Although simple poles are the most frequently occurring singularities, other types of singu-
larities may also occur. For example, depending on the multiplicity of the root ζ∗ and its
position relative to γ, f may have a double pole of the form

1
(z − z∗)2

, (1.4.8)

or a branch-point singularity of the form

f(z) ∼ (z − z∗)−m/n m,n ∈ N, as z → z∗, (1.4.9)

at the symmetric point (1.4.7).

We consider next the exterior mapping problem (1.2.9)–(1.2.10) and note the following
in connection with our computational work in Chapter 2:

(i) For reasons that will become apparent in § 2.4.3 and § 2.6.1, we are now interested
in the singular behavior of the intermediate “interior” mapping function f̂ defined by
(1.2.11)–(1.2.12).

(ii) The inversion ẑ = 1/z (that carries the boundary Jordan curve Γ onto the Jordan curve
Γ̂ and maps the exterior domain ΩE := Ext(Γ) onto the interior domain Ω̂ := Int(̂Γ))
makes it less likely for the mapping function f̂ to have simple pole singularities or
singularities of the forms (1.4.8)–(1.4.9) in C \ Ω̂.
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Intuitively, the observation in (ii) above can be explained as follows:
As before, let γ be an analytic arc of Γ := ∂ΩE with analytic parametric equation (1.4.4).

Then, under the inversion ẑ → 1/z, γ is transformed into an analytic arc γ̂ with parametric
equation

ẑ = τ̂(s), s1 ≤ s ≤ s2, where τ̂(s) = 1/τ(s). (1.4.10)

Next, recall that simple pole singularities and singularities of the forms (1.4.8)–(1.4.9) occur
at points

z∗ = τ̂(ζ∗)

where ζ∗ is a root of the equation

τ̂(ζ) = 0. (1.4.11)

But, (1.4.11) can only have a root at a point where τ becomes unbounded. Thus, if (as is
frequently the case) τ is an entire function, then f̂ cannot have simple pole or singularities
of the forms (1.4.8)–(1.4.9). In particular, the following can be deduced directly from the
Schwarz reflection principle (i.e. Theorem 1.4.1), by recalling that such singularities occur at
symmetric points of the origin of the ẑ-plane:

(i) If the boundary curve Γ is a polygon, then f̂ has no pole-type singularities. To see
this, recall that the inversion ẑ = 1/z transforms any straight line in the z-plane onto
a generalized circle (i.e. a straight line or a circle) passing through the origin of the
ẑ-plane; see Exercise 1.6.

(ii) If Γ consists of straight line segments and circular arcs, then the only possible pole-type
singularities of f̂ are due to the circular arcs. More precisely, a singularity occurs if
the center of a circular arc γ is in Int(Γ) and does not coincide with the origin of the
z-plane. If zc is such a center, then f̂ has a simple pole at the point ẑc = 1/zc ∈ Ext(Γ̂).
To see this observe that the points zc and z∗c = ∞ are symmetric with respect to γ.
Therefore, ẑc = 1/zc and the origin of the ẑ-plane are symmetric with respect to the
image of γ under the inversion ẑ = 1/z.

All the above, about the singularities in C \Ω of the interior and exterior mapping functions
for simply-connected domains, are studied in detail in [137] and [138, §5].

In the doubly-connected case, the situation regarding the singular behavior (in C \ Ω) of
the mapping function (1.3.3)–(1.3.4) is more complicated and less satisfactory than in the
case of simply-connected domains. As far as we are aware, the only relevant information is
given in [135], where it is shown that in many cases both the mapping function f and the
auxiliary function

H(z) :=
f ′(z)
f(z)

− 1
z
, (1.4.12)



1.5. NUMERICAL CONFORMAL MAPPING 17

(which, as will be seen, plays a very central role in the numerical methods of Section 2.5) have
singularities in the so-called “common symmetric points” with respect to the two boundary
components of the doubly-connected domain.

As in Section 1.3, let Ω := Int(Γ1) ∩ Ext(Γ2) and let γ1 and γ2 be analytic arcs of the
outer and inner boundary components Γ1 and Γ2 of Ω. Also, let (z, Ij(z)), j = 1, 2, denote
pairs of symmetric points with respect to the arcs γj , j = 1, 2, respectively. Then, two points

z1 ∈ Ext(Γ1) and z2 ∈ Int(Γ2), (1.4.13)

are said to be common symmetric points with respect to γ1 and γ2 if

z1 = Ij(z2) and z2 = Ij(z1), j = 1, 2, (1.4.14)

i.e. if z1, z2 are symmetric with respect to both γ1 and γ2 or, equivalently, if they are both
fixed points of the two composite functions

S1 := I1 ◦ I2 and S2 := I2 ◦ I1. (1.4.15)

Although there are geometries for which no common symmetric points exist, there are cases
for which the points z1 and z2 can be determined easily from the functions (1.4.16); see
e.g. Exercises 1.20 and 1.21. In such cases, an analysis based essentially on the repeated
application of the Schwarz reflection principle shows that, under certain conditions, the points
z1 and z2 are singular points of both the mapping function f and the function H defined by
(1.4.12). In particular, it is shown in [135] that the singular behavior of the function H, at
z1, z2, can be reflected approximately by that of simple poles at z1, z2, i.e. by that of the
functions

1
z − zj

, j = 1, 2. (1.4.16)

1.5 Numerical conformal mapping

From the computational point of view, the problems of approximating the conformal mapping
Ω → D1 (of a simply-connected domain Ω onto the unit disc D1) and the inverse mapping
D1 → Ω are by far the most extensively studied numerical conformal mapping problems. As a
result, there are several efficient numerical methods, and also a number of software packages
in the public domain, for computing approximations to both Ω → D1 and D1 → Ω. There
are also several numerical methods for approximating the conformal mapping Ω → A(a, b),
of a doubly connected domain Ω onto a conformally equivalent annulus of the form (1.3.1),
and the inverse mapping A(a, b) → Ω. As far as we are aware, however, there are no as yet
well-tested computer packages for the mapping of doubly-connected domains. (See, however,
Remark 1.5.14 in Section 1.5.2 below.)



18 CHAPTER 1. STANDARD CONFORMAL MAPPINGS

In Chapter 2 we shall study in detail both the theoretical and the computational aspects
of a class of orthonormalization methods for the conformal mapping of simply and doubly-
connected domains, and shall also consider the extension of these methods to the mapping of
n-connected domains with n > 2. First, however, we give brief outlines of two other important
numerical methods: (i) the so-called “integral equation method of Symm”, and (ii) a Schwarz-
Chritoffel transformation method for the mapping of simply-connected polygonal domains.
These two methods are of special interest, because they can both deal with regions involving
corners, and also because each of the methods can be implemented by means of available
(and highly effective) computer software.

1.5.1 The integral equation method of Symm

The method is for approximating the conformal mappings of interior and exterior simply-
connected domains as well as doubly-connected domains, and is based on three closely related
formulations that were originally proposed by G.T. Symm in [157], [158] and [159] respectively.
In each case, the method involves solving a weakly singular Fredholm integral equation of
the first kind for an unknown density function ν; see Remark 1.5.7. In what follows we give
an outline of the formulation that corresponds to the interior mapping problem.

Let Ω be a simply-connected domain bounded by a closed Jordan curve Γ, assume that
0 ∈ Ω, and let f denote the conformal mapping f : Ω → D1, normalized by the conditions
f(0) = 0 and f ′(0) > 0. Also, let the parametric equation of the boundary curve Γ = ∂Ω be

z = τ(s), 0 ≤ s ≤ L, (1.5.1)

where s is some appropriate parameter (not necessarily arc length), and assume that (1.5.1)
defines a positive orientation of Γ with respect to Ω. Finally, let θ be the boundary corre-
spondence function associated with the conformal mapping f . This is defined by

f(τ(s)) = exp(iθ(s)), i.e. θ(s) = arg(f(τ(s)), (1.5.2)

where arg(·) is a continuous argument as described, for example, in [74, §4.6] and [91, §11.7].
One way for deriving Symm’s integral equation formulation for the conformal mapping

Ω → D1 is by observing that the function log{f(z)/z} is analytic in Ω, writing the mapping
function f as

f(z) = z exp(u(z) + iv(z)), z ∈ Ω, (1.5.3)

where u and v are conjugate harmonic functions in Ω, and expressing the function u as a
single layer potential

u(z) =
∫ L

0
ν(s) log |z − τ(s)| ds, z ∈ Ω, (1.5.4)

for an unknown density function ν. Then, by imposing the boundary condition

u(z) = − log |z|, z ∈ Γ, (1.5.5)
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we are led to the integral equation
∫ L

0
ν(s) log |τ(σ)− τ(s)| ds = − log |τ(σ)|, 0 ≤ σ ≤ L, (1.5.6)

for the density function ν; see Remark 1.5.7.
Regarding the solvability of (1.5.6), it is shown in [46] that this integral equation has a

unique solution provided that
cap(Γ) 6= 1, (1.5.7)

where cap(Γ) is the capacity of the boundary curve Γ; see Definition 1.2.2. (This means that
(1.5.6) always has a unique solution, subject only to a possible re-scaling of Γ = ∂Ω.) It is
also shown in [46] that if the condition (1.5.7) holds, then the unique solution of (1.5.6) is
related to the boundary correspondence function θ (see (1.5.2)) by means of

ν(s) = − 1
2π

dθ

ds
. (1.5.8)

Once the solution ν of (1.5.6) is found, then (because of (1.5.3) and (1.5.4)) the mapping
function f is given by

f(z) = z · exp
(∫ L

0
ν(s) log(z − τ(s)) ds

)
, z ∈ Ω. (1.5.9)

We make the following remarks about the formulation (1.5.6), (1.5.9) and its extensions,
and about the numerical methods and software that are available for the solution of the
integral equation (1.5.6).

Remark 1.5.1 As was previously remarked, Symm also considered the exterior and doubly-
connected mappings and gave integral equation formulations for these two problems in [158]
and [159] respectively. There are, however, two alternative formulations due to Gaier ([46]
and [49]) that present certain important advantages over those of Symm, in cases where
the boundary of the domain under consideration involves corners; see e.g. [121, pp. 26-27].
In addition, in [46] and [49], Gaier gave a rigorous treatment of the theory of each of the
three formulations (i.e. for the interior, exterior and doubly-connected mappings) and, in
particular, resolved completely the questions of existence and uniqueness of the solutions of
the associated integral equations.

Remark 1.5.2 Assume that part of the boundary curve Γ consists of two analytic arcs that
meet at a point zc = τ(sc) and form there a corner of interior angle απ, where 0 < α < 2.
Then it can be shown (by using the Lehman expansions (1.4.1)–(1.4.3) and considering the
asymptotic behavior of dθ/ds near s = sc) that the leading term of the asymptotic expansion
of the density function ν in the neighborhood of s = sc is always of the form

a(s− sc)−1+1/α, (1.5.10)
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where a 6= 0; see [84, §2], [85, §3], [138, §4.2] and [121, §3] and also Exercise 1.24. This means,
in particular, that: (i) if 1 < α < 2, i.e. if the corner is re-entrant, then ν becomes unbounded
at s = sc, and (ii) if 1/(N + 1) < α < 1/N , with N ∈ N, then ν(N) becomes unbounded at
s = sc. In other words, in the case of a piecewise analytic boundary, the density function ν

might have serious boundary singularities at the corner points of Γ.

Remark 1.5.3 Regarding numerical methods, the original method proposed by Symm in
[157] is based essentially on: (i) approximating the unknown density function ν, in the integral
equation (1.5.6), by a step function ν̃, (ii) determining the approximation ν̃ by collocation
(see Remark 1.5.7) at an appropriate number of boundary points, and (iii) computing the
approximations to the mapping function f from (1.5.9), with ν replaced by ν̃. A similar, but
more refined, collocation method is proposed in [71]. This involves using C0 piecewise defined
quadratic polynomials (instead of step functions) for the approximation of ν. It should be
observed, however, that the methods of [157] and [71] do not provide any special treatment
for the singularities that ν might have at corner points on the boundary curve Γ. For this
reason, the methods are not recommended for the mapping of regions with corners.

Remark 1.5.4 In [84] the difficulties associated with corner singularities are treated by using
a numerical method based on: (i) approximating the source density ν by splines of various
degrees, (ii) modifying the spline approximation by introducing, in the neighborhood of each
corner, singular functions that reflect the main singular behavior of ν, and (iii) blending the
singular functions with the splines that approximate ν on the remainder of Γ, so that the
global piecewise defined approximating function has continuity of appropriate order at the
transition points between the two types of approximation. The same approach is used in
[85], in conjunction with the exterior and doubly-connected formulations of Gaier [46], [49],
for the approximation of the exterior and doubly-connected mappings; see also [121, §3] and
[138, §4.2].

Remark 1.5.5 Other publications that deal with various theoretical and numerical aspects
of the integral equation method of Symm are [23], [79], [80], [81] [83], [88], [104], [174], [176]
and [177].

Remark 1.5.6 Regarding numerical software, there is an excellent and highly automated
conformal mapping package based on the integral equation formulation (1.5.6), (1.5.9) of
Symm. This is the FORTRAN package CONFPACK of Hough [82]. The package is based
on a collocation method, and involves the judicious use of Jacobi polynomials for: (i) ap-
proximating the density function ν, (ii) reflecting the corner singularities (1.5.10) of ν, and
(iii) performing the necessary quadratures; see also [80] and [81]. In addition to the mapping
Ω → D1, CONFPACK can also deal with the problems of approximating the inverse mapping
D1 → Ω, as well as the exterior mapping C\Ω → {w : |w| > 1} and its inverse. CONFPACK
is available at Netlib and (at the time of writing) can also be obtained from the author’s
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webpage§. A more recent double precision version of the package is also available from the
author’s webpage.

Remark 1.5.7 Equation (1.5.6) is a linear “Fredholm integral equation of the first kind”.
In general, such equations are of the form

∫ b

a
K(σ, s)ν(s)ds = µ(σ), (1.5.11)

where a and b are fixed numbers, the “kernel” K(σ, s) and the “driving term” µ(σ) are
known for a ≤ σ, s ≤ b and a ≤ σ ≤ b, respectively, and ν is the sought unknown function.
Thus, Equation (1.5.6) has a logarithmic (and hence “weakly singular”) kernel K(σ, s) =
log |τ(σ)− τ(s)|.

The “method of collocation” for solving (1.5.11) involves the following:

(i) Approximating the unknown function ν by

νn(σ) :=
n∑

`=1

c`κ`(σ), (1.5.12)

where {κ`}n
`=1 is a suitably chosen set of linearly independent functions.

(ii) Determining the coefficients c`, in (1.5.12), by requiring that the residual function

rn(σ) :=
∫ b

a
K(σ, s)νn(s)ds− µ(σ),

is zero at n distinct points σk, k = 1, 2, . . . , n, in [a, b]. That is, the approximation
(1.5.12) is determined by solving the n× n linear system

Ac = µ,

where A = {ak,`} is the n× n matrix with elements

ak,` =
∫ b

a
K(σk, s)κ`(s)ds,

and c, µ are respectively the n-dimensional vectors

c = [c1, c2, . . . , cn]T and µ = [µ(σ1), µ(σ2) . . . , µ(σn)]T .

§http://www.mis.coventry.ac.uk/∼dhough/
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1.5.2 Schwarz-Christoffel mappings

By Schwarz-Christoffel mappings we mean the family of methods that are based on the use
of the well-known Schwarz-Christoffel formula, the underlying theory of which is treated
extensively in the complex variables literature; see e.g. [1, §5.6], [74, §5.12], [116, §6], [145,
§7.5 and Appendix A]. Although the formula is usually given in connection with the conformal
mapping of the upper half-plane onto a polygonal domain Ω, here (for the sake of uniformity)
we prefer to start by considering the equivalent formulation which is for the mapping f :
D1 → Ω, of the unit disc D1 onto Ω. We state the corresponding formula in the form of a
theorem.

Theorem 1.5.1 (Schwarz-Christoffel formula) Let Γ be a polygon with vertices (in counter-
clockwise order) at the points w1, w2, . . . , wn, let α1π, α2π, . . . , αnπ be respectively the (inte-
rior) angles of the vertices w1, w2, . . . , wn, and let Ω denote the polygonal domain Ω := Int(Γ).
If f : D1 → Ω is any conformal mapping of the unit disc D1 := {z : |z| < 1} onto Ω, then

f(z) = A

∫ z

0

n∏

k=1

(
1− ζ

zk

)αk−1

dζ + B, (1.5.13)

where zk, k = 1, 2, . . . , n, are the pre-images of the vertices wk, k = 1, 2, . . . , n, i.e.

f(zk) = wk, k = 1, 2, . . . , n, (1.5.14)

and A,B are integration constants which are determined by the position and size of the
polygon.

Formula (1.5.13) applies to polygons that have slits (i.e. vertices with angles 2π) and
infinite polygons (i.e. with vertices at infinity), and it can also be adapted easily to the
exterior conformal mapping {z : |z| > 1} → Ext(Γ); see e.g. [1, p. 352] and [116, p. 193].
From the constructive point of view, however, there is a major difficulty. This has to do with
the fact that formula (1.5.13) involves the “pre-vertices” zk, k = 1, 2, . . . , n, on the unit circle
(i.e. the pre-images of the vertices wk of Ω) which are not known a priory. The problem
of determining these pre-vertices is the so-called Schwarz-Christoffel “parameter problem”.
Solving this problem is a major numerical task of any Schwarz-Christoffel mapping procedure.
In addition, numerical quadrature is needed for approximating the integrals involved in the
parameter problem, and also for determining the transformation itself from (1.5.13). Finally,
considerable computational effort is needed for inverting the conformal mapping, i.e. for
computing the mapping Ω → D1.

For full details of the above we refer the reader to the recent monograph on Schwarz-
Christoffel mappings by Driscoll and Trefethen [35], which contains a thorough study of the
computational aspects of the subject covering all major developments up to 2002. Here, we
shall only make the following brief remarks in order: (i) to outline the main computational
steps involved in the process, and (ii) to indicate the available numerical software.
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Remark 1.5.8 Let zk = eiθk , k = 1, 2, . . . , n. Then, for the solution of the parameter
problem, the three degrees of freedom of the mapping may be used to fix the positions of
three of the pre-vertices on the unit circle, i.e. of three of the arguments

θk, k = 1, 2, . . . , n. (1.5.15)

The other n − 3 unknown real parameters in (1.5.13), i.e. the arguments of the remaining
pre-vertices, can then be determined from the n− 3 real conditions

∣∣∣∣
∫ zj+1

zj

∏n
k=1

(
1− ζ

zk

)αk−1
dζ

∣∣∣∣
∣∣∣∣
∫ z2

z1

∏n
k=1

(
1− ζ

zk

)αk−1
dζ

∣∣∣∣
=
|wj+1 − wj |
|w2 − w1| , j = 2, 3, . . . , n− 2. (1.5.16)

(These ensure that the polygon obtained by the transformation (1.5.13) is similar to the
given polygon Ω.) When solving the above system, it is essential that the pre-vertices zk

are constrained to lie in the correct order on the unit circle ∂D1. This can be achieved by
requiring that

0 < θ1 < θ2 < · · · < θn ≤ 2π. (1.5.17)

Remark 1.5.9 The constrained nonlinear system (1.5.16)–(1.5.17), for solving the param-
eter problem, comes about as a consequence of the following fact: Let Ω be a bounded
polygonal domain and assume (without loss of generality) that αn 6= 1 and αn 6= 2. Then, Ω
is uniquely determined (up to scaling, rotation and translation) by its angles and the n − 3
side-lengths ratios on the right-hand side of (1.5.16); see [35, Theor. 3.1]. Only a slight
modification of the system (1.5.16)–(1.5.17) is needed for dealing with polygons that have
vertices at infinity; see [35, p. 25].

Remark 1.5.10 Any Schwarz-Christoffel procedure requires the computation, by means of
numerical quadrature, of integrals of the form

∫ b

a

n∏

k=1

(
1− ζ

zk

)αk−1

dζ. (1.5.18)

In particular, the limits of integration a, b in the integrals that arise in (1.5.16) are, in general,
pre-vertices. This means that, in general, the associated integrands involve singularities at
both the two ends of integration. Therefore, care must be taken when choosing the numerical
quadrature so that it can deal with such singularities.

Remark 1.5.11 There are two computer packages available for the Schwarz-Christoffel map-
ping of a polygonal domain Ω onto the unit disc D1. The first of these is the FORTRAN
package SCPACK of Trefethen [165]. This is based on an algorithm proposed in [162], and is
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regarded as the first fully automated program for conformal mapping. The main features of
the underlying algorithm are as follows: (i) the integrations (1.5.18), needed for setting up the
nonlinear system (1.5.16) for the parameters of the mapping and for determining the mapping
function f from (1.5.13), are performed using a form of compound Gauss-Jacobi quadrature
(see [35, §3.2]), (ii) by a simple change of variables, the parameter problem (1.5.16)–(1.5.17)
is set up as an unconstrained nonlinear system in n − 1 real parameters, and is solved by
using a packaged subroutine (see [35, §3.1]), and (iii) the inverse conformal mapping Ω → D1

is computed in two steps by means of a packaged ODE solver and Newton’s method (see [35,
§3.3]). Like CONFPACK, SCPACK is available at Netlib.

Remark 1.5.12 The second Schwarz-Christoffel package is the so-called MATLAB SC Tool-
box of Driscoll [34]. In fact, the SC Toolbox may be regarded as a more capable successor of
SCPACK. In addition, to the disc mapping Ω → D1 and its inverse, the package can also deal
with the corresponding half-plane mappings as well as with exterior mappings. Moreover,
the toolbox can deal with the following: (i) constructing the mapping of D1 onto a polygon
using the cross ratios and Delaunay triangulation (CRDT) algorithm of Driscoll and Vavasis
[36] (see also [35, §3.4] and our discussion in Section 3.7), (ii) constructing the mapping of an
infinite strip {z : 0 < Imz < 1} onto a polygon (see [87] and [35, §4.2]), and (iii) constructing
the mapping of a rectangle onto a polygon (see [35, §4.3]). (As will become apparent later,
the techniques indicated in (i)-(iii) are of special interest to us in connection with some of the
topics covered Chapter 3.) Further details about the SC Toolbox, together with information
on how to obtain the package, can be found in [35, pp. 115–19].

Remark 1.5.13 If n is the number of vertices of the polygon, then the estimates of the CPU
times in the algorithms used by SCPACK and the MATLAB SC Toolbox are, in both cases,
O(n3) for solving the parameter problem, and (once the unknown parameters are determined)
O(n) for computing the conformal mapping f at a specific point of Ω. In a recent paper [9],
Banjai and Trefethen give a new implementation of the Schwarz-Christoffel method that
reduces the above estimates to O(n log n) and O(log n) respectively, thus allowing for the
mapping of polygons with tens of thousands of vertices. These cost reductions are achieved
by: (i) considering the logarithm of the Schwarz-Christoffel integrand and using the fast
multipole method, developed in [21], for computing the associated logarithmic sums, and (ii)
using a simple iterative method given in [28] (rather than the more sophisticated nonlinear
equation solvers used in SCPACK and the SC Toolbox) for the solution of the parameter
problem. Several impressive examples involving the mapping of polygons with very large
numbers of vertices (the largest of which is n = 196, 608!) can be found in [9, pp. 1052–
1064].

Remark 1.5.14 The Shwarz-Christoffel technique can be extended to the mapping of an
annulus onto a polygonal doubly-connected domain, i.e. onto a doubly-connected domain
bounded externally and internally by two polygonal curves. For further details of this we
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refer the reader to [35, §4.9] and [31]. There is also a software package (the conformal mapping
package DSPACK), due to Hu [89], for implementing such transformations. This package is
available at Netlib. Finally, we note the recent papers of Crowdy [26] and DeLillo et al [32]
on the extension of the Shwarz-Christoffel method to n-connected domains with n > 2.

We conclude our discussion of Schwarz-Christoffel mappings with two remarks about: (a)
the Schwarz-Christoffel formula for the mapping of the upper half-planeH+ := {z : Im z > 0}
onto a polygonal domain Ω, and (b) the problem of determining an explicit expression for
this formula in the important special case where Ω is a rectangular domain.

Remark 1.5.15 The Schwarz-Christoffel formula, for the conformal mapping from the upper
half-planeH+ onto a polygonal domain Ω, differs only slightly from the corresponding formula
(1.5.13) that we chose to use for the mapping D1 → Ω. Thus, with the notations of Theorem
1.5.1, the mapping function f : H+ → Ω is given by

f(z) = A

∫ z

0

n∏

k=1

(ζ − zk)
αk−1 dζ + B, (1.5.19)

where now the pre-vertices zk, k = 1, 2, . . . , n, lie on the real axis. If, as is frequently the
case, the pre-vertex zn is chosen to be the point at infinity (i.e. if the condition f(∞) = wn

is imposed), then the formula remains unaltered except that the factor corresponding to zn

is deleted from the integrand in the right-hand side of (1.5.19). Note, however, that if this is
done, then we are free to designate only two of the other pre-vertices.

As for the derivation of (1.5.19), this involves considering a function f whose derivative
is of the form

f ′(z) = A
n∏

k=1

(ζ − zk)
βk , βk = αk − 1,

noting that

arg f ′(z) = arg A +
n∑

k=1

βk arg(z − zk),

and showing that, as z traverses the real axis, f(z) generates a polygonal path whose tangent
at the point f(zk) makes a turn through an angle βkπ; see e.g. [116, pp. 189–192] and [145,
§7.5]. Regarding formula (1.5.13), for the conformal mapping D1 → Ω, this can be obtained
from (1.5.19) by using an intermediate bilinear (Möbius) transformation that takes D1 onto
H+; see e.g. [35, §4.1] and [116, pp. 192–193].

Remark 1.5.16 An inspection of (1.5.13) and (1.5.19) shows that for n > 4 it is not, in
general, possible to express the integrals involved in the two Schwarz-Christoffel formulas in
terms of elementary functions. Even in the case n = 4, there is no simple analytic way for
determining the one degree of freedom in the pre-vertices. However, as it is shown below, in
the important case where Ω is the interior of a rectangle, the symmetry of the domain allows
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us to obtain an explicit solution of the problem of determining f : H+ → Ω by means of
(1.5.19).

Let 0 < k < 1, and consider the problem of determining a conformal mapping of the
half-plane H+ onto a rectangle Ω, so that the four points z1 = −1, z2 = 1, z3 = 1/k and
z4 = −1/k on the real axis are mapped, respectively, onto the four vertices of Ω. Then, from
(1.5.19) we know that such a mapping is effected by the function

f(z) =
∫ z

0

dζ

(1− ζ2)
1
2 (1− k2ζ2)

1
2

=: sn−1(z, k), (1.5.20)

where sn(·, k) denotes the Jacobian elliptic sine with modulus k.
In order to determine the position and dimensions of the rectangle we first note that for

real z, −1 < z < 1, f(z) is real and f(−z) = −f(z). This means that one of the sides of the
rectangle coincides with part of the real axis and is situated symmetrically with respect to
the origin. Further,

f(1) =
∫ 1

0

dx

(1− x2)
1
2 (1− k2x2)

1
2

=: K(k). (1.5.21)

where K(k) denotes the complete elliptic integral of the first kind with modulus k. Hence,
f(−1) = −K(k). Finally, it can be shown (see Exercise 1.26) that

f(1/k) =
∫ 1/k

0

dx

(1− x2)
1
2 (1− k2x2)

1
2

=: K(k) + iK(k′), (1.5.22)

and hence that
f(−1/k) = −K(k) + iK(k′),

where K(k′) is the complete elliptic integral of the first kind with (complementary) modulus
k′ = (1− k2)

1
2 . Therefore, the Schwarz-Christoffel transformation (1.5.20) maps conformally

the upper half plane H+ onto the rectangle

Ω := {(x, y) : −K(k) < x < K(k), 0 < y < K(k′)}, (1.5.23)

so that the four points z1 = −1, z2 = 1, z3 = 1/k and z4 = −1/k, on the real axis,
go respectively to the four vertices w1 = −K(k), w2 = K(k), w3 = K(k) + iK(k′) and
w4 = −K(k)+ iK(k′) of Ω. Furthermore: (i) as is immediately clear f(0) = 0, and (ii) it can
be shown that f(∞) = iK(k′); see Exercise 1.26.

The above Schwarz-Christoffel transformation, of the upper half-plane onto a rectangle,
will play a very central role in our work in Chapter 3, where we shall also make extensive
use of various properties of elliptic functions and integrals. For a detailed study of these
properties the reader should consult the relevant literature; e.g. [18] and [116, pp. 280–296].
Here, we merely note the following:

(i) The name Jacobian elliptic “sine” and the symbol sn are used to denote the function whose
inverse is defined by (1.5.20), because of the analogies that sn presents with the trigonometric
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function sin. In fact, as it is easy to see, the function sin−1 z corresponds to the degenerate
case that results by letting k → 0 in (1.5.20). This analogy is carried further by the definition

cn(w, k) =
√

1− sn2(w, k), cn(0, k) = 1, (1.5.24)

for the “Jacobian elliptic cosine”, and the definition

dn(w, k) =
√

1− k2sn2(w, k), dn(0, k) = 1, (1.5.25)

for the Jacobian elliptic function dn. Also, the name “elliptic functions” is used because the
integral (1.5.20) was first encountered in connection with the problem of finding the length
of an arc of an ellipse.

(ii) The fundamental property of the three elliptic functions is that each is “doubly-periodic”,
i.e. that each has two different periods which are not integral multiples of the same number.
For example, for sn(·, k) the periods are 4K(k) and 2iK(k′), i.e.

sn(w + 4K(k), k) = sn(w, k) and sn(w + 2iK(k′), k) = sn(w, k). (1.5.26)

This can be shown by observing that z = sn(w, k) maps conformally the rectangle (1.5.23)
onto the upper half-plane, and applying repeatedly the Schwarz reflection principle; see e.g.
[116, pp. 282–283]. Similarly, for the functions cn(·, k) and dn(·, k) the pairs of periods are,
respectively, 4K(k), 2K(k) + 2iK(k′) and 2K(k), 4iK(k′).

(iii) The only zeros of sn(w, k) are simple zeros at the points

w = 2mK(k) + 2niK(k′), m, n ∈ Z, (1.5.27)

and the only finite singularities are simple poles at the points

w = 2mK(k) + (2n + 1)iK(k′), m, n ∈ Z. (1.5.28)

1.6 Numerical Example

The example that follows illustrates the remarkable accuracy that can be achieved by two of
the conformal mapping packages that we discussed in Section 1.5.
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Ω

z1

z2

z3 z4

z7 z6

z8

0

z5

Figure 1.4

Example 1.6.1 Let Ω be the L-shaped domain

Ω := {(x, y) : −1 < x < 3, |y| < 1} ∪ {(x, y) : |x| < 1, −1 < y < 3}, (1.6.1)

illustrated in Figure 1.4, and let zj , j = 1, 2, . . . , 7, be the following points on ∂Ω:

z1 = −1 + 3i, z2 = −1 + i, z3 = −1− i, z4 = 1− i,

z5 = 3− i, z6 = 3 + i, z7 = 1 + i, z8 = 1 + 3i.
(1.6.2)

Also, let f denote a conformal mapping f : Ω → D1, of Ω onto the unit disc, and let

ζj = f(zj), j = 1, 2, . . . , 8, (1.6.3)

be respectively the images of the points zj , j = 1, 2, . . . , 8, on ∂D1. Finally, let c1, c2 and c3

denote the cross-ratios

c1 := {ζ1, ζ3, ζ5, ζ6}, c2 := {ζ8, ζ4, ζ6, ζ7} and c3 := {ζ8, ζ1, ζ3, ζ6}, (1.6.4)

and recall that: (i) the cross-ratio c := {α1, α2, α3, α4}, of four distinct points αj , j = 1, 2, 3, 4,
in the complex plane, is given by

c := {α1, α2, α3, α4} =
α1 − α3

α1 − α4
· α2 − α4

α2 − α3
, (1.6.5)

and (ii) cross-ratios remain invariant under bilinear transformations; see Exercise 1.8.
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With reference to the points (1.6.3), it was shown by Gaier [45, p. 189] (using symmetry
arguments) that there exists a bilinear transformation that maps D1 onto the upper half-plane
H+ := {t : Im t > 0}, so that

ζ1 → 1−√3, ζ2 → 0, ζ3 → 1, ζ4 → 2,

ζ5 → 1 +
√

3, ζ6 → 3, ζ7 →∞, ζ8 → −1.
(1.6.6)

From this it follows that if the points αj , j = 1, 2, 3, 4, come from the set (1.6.3), then the
cross-ratio (1.6.5) can be calculated exactly. In particular, the exact values of the cross-ratios
(1.6.4) are, respectively,

c1 = 4(2−
√

3), c2 = 4, and c3 =
1√
3

+
1
2

, (1.6.7)

i.e. to 17 decimal places,

c1 = 1.071 796 769 724 490 83, c2 = 4, and c3 = 1.077 350 269 189 625 77 ; (1.6.8)

see also Example 3.6.1 in Section 3.6 below. Since f is not known exactly, in what fol-
lows we shall use (1.6.8) as comparison values for checking the accuracy of the computed
approximations to f .

In Table 1.1 we list the values of the approximations to c1, c2 and c3 that we computed
using, respectively, the double precision version of CONFPACK (see Remark 1.5.6), and the
Schwarz-Christoffel package SCPACK (see Remark 1.5.11). We make the following remarks in
connection with the use of the two packages and the quality of the resulting approximations:

(i) The computations were performed using double precision FORTRAN on a UNIX envi-
ronment.

(ii) The CONFPACK results were obtained by applying the package with 940 collocation
points. The CONFPACK error estimate for the approximation to f is 5.1× 10−13.

(iii) For the application of the SCPACK, apart from the physical corners z1, z3, z5, z6, z7

of the L-shape, the point z4 (whose image is involved in the cross-ratio c2) was also
defined as a “corner”. The SCPACK error estimate is 3.8× 10−14.

(iv) The results of Table 1.1 indicate that both the CONFPACK and SCPACK approxima-
tions to c1, c2 and c3 are, more or less, correct to machine precision. More generally,
the results illustrate the fact that both packages are capable of producing approxima-
tions of very high accuracy. As for the relative merits of the two packages, we strongly
recommend the following on the basis of our computational experience: (a) the use of
SCPACK or, indeed, of its successor the MATLAB SC Toolbox (see Remark 1.5.12)
for the mapping of polygonal domains, and (b) the use of CONFPACK (especially the
double-precision version of the package) for the mapping of domains with curved bound-
aries, and also for computing approximations to the mapping from Ω to D1 even in the



30 CHAPTER 1. STANDARD CONFORMAL MAPPINGS

polygonal case. In fact, in the case of Ω → D1, it might be preferable to use CONF-
PACK (rather than SCPACK) even when Ω is a polygonal domain. This is so, because
(due to the nature of the Schwarz-Christoffel transformation) SCPACK has been de-
signed, primarily, for the efficient computation of the inverse conformal mapping from
D1 onto Ω and not of Ω → D1; see [165, p.17].

CONFPACK SCPACK

c1 1.071 796 769 724 493 71 1.071 796 769 724 490 78
c2 4.000 000 000 000 005 32 3.999 999 999 999 984 90
c3 1.077 350 269 189 629 52 1.077 350 269 189 627 73

Table 1.1
(See (1.6.8) for the exact values of c1, c2 and c3.)

1.7 Additional bibliographical remarks

A substantial part of this chapter is based closely on material contained in Chapter 1 of the
monograph by N.S. Stylianopoulos and the author cited at the beginning of Section 3.11.

Sections 1.2–1.3: The theory associated with the conformal mapping of simply-connected
domains is extremely well known and is covered extensively even in undergraduate textbooks
of complex variables; see e.g. [69, §10.2], [74, §5.10], [75, §16.1], [116, Chap. V] and [145,
§7.2]. Although the corresponding theory for the mapping of doubly-connected domains is
not as well-known, all the essential details can be found for example in [75, §17.1] and [116,
Ch. VII].

Section 1.4: The material of this section is based on the results of Lehman [102] and on var-
ious studies carried out (for the purpose of improving the performance of numerical conformal
mapping techniques) in [105], [135], [137] and [138]; see also the discussion in § 2.6.1.

Section 1.5: The following books and review articles deal, either entirely or to a large
extend, with various theoretical and computational aspects of numerical conformal mapping:

(a) The proceedings [11] and [161] of two early conferences on the use of digital computers
for conformal mapping, which were edited by E.F. Beckenbach and J. Todd respectively.
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(b) The classic monograph by D. Gaier [44] which, although written in 1964, remains very
relevant (at least from the theoretical point of view) even today.

(c) Chapters 16-18 of Volume III of Henrici’s Applied and Computational Complex Analysis

[75].

(d) The collection of papers in numerical conformal mapping [164], edited by L.N. Trefethen
in 1986.

(e) Gutknecht’s survey article [68] on iterative methods (based on function conjugation) for
approximating the mapping from the unit disc onto a simply-connected domain Ω, in
cases where ∂Ω is smooth.

(f) The revised edition of the 1991 book on applications of conformal mapping by Schinzinger
and Laura [150].

(g) The recent numerical conformal mapping book of Kythe [99].

(h) The recent monograph on Schwarz-Christofell mappings, by Driscoll and Trefethen [35].

(i) The survey article [121], on Dieter Gaier’s contributions to numerical conformal mapping
and on the influence that his work had on further developments of the subject. (Dieter
Gaier (1928–2002) is considered by many as the “father” of modern numerical conformal
mapping. Apart from his classic monograph cited in (b) above, he published more that
35 research papers on numerical conformal mapping and played a leading role in the
modern development of the subject.)

(j) The recent and very detailed survey of methods for numerical conformal mapping of
Wegmann [172].

Apart from the four conformal mapping computer packages CONFPACK, SCPACK, SC
Toolbox and DSPACK, which were discussed in Remarks 1.5.6, 1.5.11, 1.5.12 and 1.5.14, we
also note the availability of the following (somewhat more specialized) conformal mapping
software:

(a) The Fortran package CAP of Björstad and Grosse [17] for the mapping of the unit disc
onto a circular arc polygonal domain, i.e. to a simply-connected domain bounded by
circular arcs and straight line segments; see also [86] and [35, §4.10]. This package is
available at Netlib.

(b) The Fortran package GEARLIKE of Pearce [140], for the mapping of the unit disc onto a
gearlike domain. Here, by a “gearlike domain” we mean a Jordan domain whose boundary
consists of arcs of circles, centered at the origin O, and rays emanating from O; see also
[10] and [35, §4.8]. The method is based, essentially, on applying the Schwarz-Christoffel
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formula to the logarithm of the domain under consideration. GEARLIKE is also available
at Netlib.

(c) The C package “zipper” of D.E. Marshall, for the mapping of interior and exterior regions.
This implements an interpolation method due to Kühnau [96], which is related to (but
different from) the so-called osculation methods which are discussed in [75, §16.2]. The
package can be obtained from the author’s webpage¶.

(d) The C package CirclePack of K. Stephenson, which is based on the circle packing con-
formal mapping technique that was motivated by a 1985 conjecture of W. Thurston; see
[154] and [143]. The package can be obtained from the author’s webpage‖.

1.8 Exercises

1.1 Let f : Ω → Ω̂ be a conformal mapping of a domain Ω onto a domain Ω̂. Show that if
γ1, γ2 are two differentiable arcs in Ω which intersect at a point z0 and form there an angle
α, then the angle formed by the images of γ1 and γ2 at the point w0 = f(z0) is again α.

1.2 Let f be a function which is analytic in the neighborhood of a point z0 and, as in
Exercise 1.1, let γ1, γ2 be two differentiable arcs that meet at z0 and form there an angle α.
Show that if f (m), m ≥ 1, is the first non-vanishing derivative of f at the point z0, then the
angle formed by the images of γ1 and γ2 at the point w0 = f(z0) is β = mα.

1.3 Let f denote a conformal mapping of a domain Ω in the z-plane (z = x + iy) onto a
domain Ω̂ in the w-plane (w = ξ + iη). Also, let U := U(x, y) be a real-valued function which
is twice continuously differentiable in Ω, and let Û := Û(ξ, η) be the transplant (under the
mapping f) of U in Ω̂, i.e.

Û(ξ, η) := U(x(ξ, η), y(ξ, η)) and U(x, y) = Û(ξ(x, y), η(x, y)).

Prove the following:

(i)
∆zU = |f ′(z)|2∆wÛ ,

where ∆z and ∆w denote, respectively, the Laplace operator in the z-plane and in the w-plane.
That is, ∆z := ∂2/∂x2 + ∂2/∂y2 and ∆w := ∂2/∂ξ2 + ∂2/∂η2.

(ii) If the function U is harmonic in Ω, then its transplant Û is harmonic in Ω̂. That is, if
∆zU = 0 in Ω, then ∆wÛ = 0 in Ω̂.

¶http: //www.math.washington.edu/∼marshall/zipper.html
‖http: //www.math.utk.edu/∼kens
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1.4 With the notations of Exercise 1.3, let γ be a differentiable arc in Ω and assume that
the function U is differentiable in Ω. Prove the following:

(i)
gradzU = f ′(z) gradwÛ ,

where gradz := ∂/∂x + i∂/∂y and, similarly, gradw := ∂/∂ξ + i∂/∂η. That is, gradzU and
gradwÛ are the “gradients”∗∗ of the functions U and Û .

(ii) The angle between the arc γ and the vector gradzU , at any point z ∈ γ, equals the angle
between the image γ̂ = f(γ) of γ and the vector gradwÛ at the point w = f(z).

(iii) If ∂/∂l denotes differentiation in the direction l in the z-plane and if this direction
passes to a direction λ in the w-plane, then

∂U

∂l
= |f ′(z)|∂Û

∂λ
.

1.5 With the notations of Exercise 1.3, assume that the function U is differentiable in Ω.
Prove the following:

(i) If γ ∈ Ω is a smooth arc and γ̂ ∈ Ω̂ is its image under f : Ω → Ω̂, then
∫

γ
|gradzU ||dz| =

∫

bγ
|gradwÛ ||dw|

(Remark: Let z = z(t) = x(t) + iy(t) a ≤ t ≤ b, be a parametrization of γ and let s(t)
denote the length of γ traversed in going from the point z(a) to z(t). Then, ds/dt = |dz/dt|,
i.e. |dz| = ds.)

(ii) The Dirichlet integral

DΩ[U ] :=
∫∫

Ω
|gradzU |2dxdy =

∫∫

Ω

{(
∂U

∂x

)2

+
(

∂U

∂y

)2
}

dxdy,

of U with respect to Ω, is conformally invariant. (Here we assume that the domain Ω is
bounded.)

1.6 Show that the inversion
w = f(z) =

1
z
,

maps a straight line or a circle onto either a straight line or a circle††. More specifically, show
the following:
∗∗gradzU is a two-dimensional vector whose component, in any direction, is the value of the directional

derivative of U in that direction. Moreover, the vector gradzU is, at any point, orthogonal to a level curve

U(x, y) = c through that point.
††If we regard a straight line as a circle with an infinite radius, then we can say that inversion maps

“generalized circles” onto “generalized circles”.



34 CHAPTER 1. STANDARD CONFORMAL MAPPINGS

(i) Straight lines passing through the origin are mapped onto straight lines passing through
the origin.

(ii) Straight lines not passing through the origin are mapped onto circles passing through
the origin.

(iii) Circles passing through the origin are mapped onto straight lines not passing through
the origin.

(iv) Circles not passing through the origin are mapped onto circles not passing through the
origin.

(Remark: It is natural to define the transformation f on the extended plane, by writing
f(0) = ∞, f(∞) = 0 and f(z) = 1/z for the remaining points z. The transformation is then
a one-to-one continuous mapping of the extended plane onto itself.)

1.7 A transformation of the form

w = T (z) :=
az + b

cz + d
, (1.8.1)

where a, b, c, d are complex numbers such that

ad− bc 6= 0, (1.8.2)

is called a bilinear or Möbius transformation. Prove the following:

(i) When c 6= 0, T can be expressed in composite form as T = T3 ◦ T2 ◦ T1, where T1 and T3

are linear transformations and T2 denotes the inversion z → 1/z.

(ii) A bilinear transformation maps straight lines and circles onto straight lines or circles.

(Remark: We note that the condition (1.8.2) ensures that the bilinear transformation (1.8.1)
is not a constant function. We also note that the domain of definition of (1.8.1) can be
extended (so that T is defined on the extended z-plane) by writing T (∞) = ∞, if c = 0, and
T (−d/c) = ∞ and T (∞) = a/c, if c 6= 0. The transformation is then a one-to-one continuous
mapping of the extended complex plane onto itself. Finally, we note that since

T ′(z) =
ad− bc

(cz + d)2
and ad− bc 6= 0,

T is conformal at every point except its pole z = −d/c. )

1.8 The cross-ratio {z1, z2, z3, z4}, of four distinct points z1, z2, z3, z4, is defined by

{z1, z2, z3, z4} :=
z1 − z3

z1 − z4
· z2 − z4

z2 − z3
.
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In other words, {z1, z2, z3, z4} is the image of z1 under the bilinear transformation

z → z − z3

z − z4
· z2 − z4

z2 − z3
,

that carries z2, z3 and z4, respectively, into the points 1, 0 and ∞. Prove the following:

(i) Cross-ratios remain invariant under bilinear transformations.

(ii) The bilinear transformation that maps three distinct points z1, z2, z3, respectively, into
three distinct points w1, w2, w3 can be determined by solving for w the equation

{w, w1, w2, w3} = {z, z1, z2, z3}.

(iii) {z1, z2, z3, z4} is real if and only if the four points z1, z2, z3, z4 all lie on a circle or a
straight line.

1.9 Let γ be a straight line or a circle, and let T be a bilinear transformation. Show that
two points z and z∗ are symmetric with respect to γ if and only if their images T (z) and
T (z∗) are symmetric with respect to the image of γ under T .

(Remark: Recall that: (i) Two points z and z∗ are symmetric with respect to a straight
line γ, if γ is the perpendicular bisector of the straight line segment joining z and z∗, i.e.
if z and z∗ are mirror images of each other in γ. (ii) Two points z and z∗ are symmetric
with respect to a circle γ, if every straight line or circle passing through z and z∗ intersects
γ orthogonally.)

1.10 Let z1, z2, z3 be three distinct points that lie on a circle or a straight line γ. Show
that the points z and z∗ are symmetric with respect to γ if and only if

{z, z1, z2, z3} = {z∗, z1, z2, z3}.

1.11 Let z∗ be the symmetric point of z with respect to a circle γ with center c and radius
r. Show that

z∗ = c +
r2

z − c
.

1.12 Find all the bilinear transformations T that map the unit disc D1 := {z : |z| < 1}
onto itself so that T (ζ) = 0, where ζ is some fixed point in D1.

(Hint: Make use of the results of Exercises 1.9 and 1.11)

1.13 Show that every bilinear transformation that maps the upper half-plane onto the unit
disc is of the form

w = T (z) = eiα · z − z0

z − z0
, where Im(z0) > 0,

and α is some real constant.
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1.14 Let re(γ) denote the exponential radius of a Jordan arc γ defined in Definition 1.2.3.
Starting with the Koebe 1

4 -theorem, stated in Remark 1.2.3, show that

1 ≤ re(γ) ≤ 4,

where the number 4 in the right-hand side of the inequality cannot be replaced by a smaller
number.

1.15 Let Ω be a domain of the form illustrated in Figure 1.3(b). That is Ω is bounded by
the straight lines Re z = 0 and Re z = 1 and two Jordan arcs γ1 and γ2 that meet the two
lines at the points z1, z2, z3 and z4. Let F be the conformal mapping which, for a certain
value of H, takes Ω onto a rectangle of the form (1.3.12) so that the four corners z1, z2, z3

and z4 are mapped respectively onto the four corners 0, 1, 1 + iH and iH of RH . Show that
the problem of determining F : Ω → RH is equivalent to that of determining the conformal
mapping f of a certain symmetric doubly-connected domain Ω̂ onto a circular annulus A(q, 1)
of the form (1.3.9), and find the relation between F and f . Find also the formula that gives
H in terms of the conformal modulus of Ω̂.

(Hint: Let the arcs γj , j = 1, 2, have cartesian equations y = τj(x), j = 1, 2, and apply to Ω
the transformation z → exp(iπz).)

1.16 With the notations of § 1.4.1, let Ω be a simply-connected domain and assume that
part of ∂Ω consists of two analytic arcs γ1 and γ2 that meet at a point zc and form there a
corner of interior angle απ. If γ1 and γ2 are not both straight lines, write down the first six
terms of the asymptotic expansion of the mapping function f : Ω → D1 at z = zc, in each
of the cases where α = 1/2, 2/3, 1, 3/2 and, in each case, indicate the type of singularity
that occurs z = zc. Also, indicate the simplifications that occur in each of the three cases
α = 1/2, α = 2/3 and α = 3/2, when γ1 and γ2 are both straight lines.

1.17 Starting with the definition that the points z and I(z), given by (1.4.6), are symmetric
with respect to an analytic arc γ having analytic parametric equation (1.4.4), find I(z) when:

(i) γ is a segment of the real axis.
(ii) γ is an arc of a circle with center c and radius r.

1.18 Starting with the definition (1.4.6) for I(z), find the symmetric point I(0) of the origin
with respect to the half ellipse

γ := {z : z = a cos s + i sin s, 0 ≤ s ≤ π, a > 1}.
1.19 Let Ω be the domain whose closure is

Ω := {z : |z − 0.9| ≤ 1.5} ∪ {z : |z + 1.6| ≤ 2},
let Γ be its boundary, and let ΩE denote the exterior domain ΩE := Ext(Γ). Also, let Γ̂ be
the image of Γ under the inversion z → 1/z, and let Ω̂ := Int(Γ̂). Find the singularities that
the mapping function f̂ : Ω̂ → D1 (with f̂(0) = 0 and f̂ ′(0) > 0) has in C \ Ω̂.
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1.20 Let Ω be the doubly-connected domain Ω := Int(Γ1) ∩ Ext(Γ2), where Γ1 and Γ2 are,
respectively, the unit circle Γ1 := {z : |z| = 1} and the circle Γ2 := {z : |z − 0.3| = 0.3},
i.e. Ω is a disc with a non-concentric circular hole. Find the common symmetric points with
respect to Γ1 and Γ2, and hence determine: (i) a conformal mapping of Ω onto a circular
annulus {w : a < |w| < b}, (ii) the conformal modulus of Ω.

1.21 Let Ω be the doubly-connected domain Ω := Int(Γ1)∩Ext(Γ2), where the inner bound-
ary Γ2 is a circle

Γ2 := {z : |z| = a, a < 1},
and the outer boundary Γ1 is a concentric N -sided polygon with

` :=
{

z : z = 1 + iy, |y| ≤ tan
π

N

}

as one of its sides. Find all the pairs of common symmetric points associated with Γ1 and
Γ2.

(Hint: Take γ1 := ` and γ2 := {z : z = aeiθ, |θ| ≤ π/N}, and find the pair of common
symmetric points with respect to γ1 and γ2.)

1.22 Let Ω be the doubly-connected domain of Exercise 1.21 and let M be its conformal
modulus. Discuss the situation regarding the singularities that the mapping function f : Ω →
{w : 1 < |w| < M} might have on the boundary ∂Ω := Γ1 ∪ Γ2.

1.23 With the notations of § 1.5.1, let Γ be the circle Γ := {z : |z| = r} and let T denote
the corresponding integral operator on the left-hand side of (1.5.6). Show that T has an
eigenvalue λ = 2π log r with corresponding eigenfunction ν ≡ const. What happens when
r = 1?

(Hint: Choose an appropriate representation z = τ(s) for Γ, and evaluate the integral∫
Γ log |τ(σ)− τ(s)| ds.)

1.24 With the notations of § 1.5.1, prove the assertion of Remark 1.5.2 (regarding the
leading term of the asymptotic expansion of the density function ν in the neighborhood of
a corner zc = τ(sc) of interior angle απ, 0 < α < 2) in the case where the two arms of the
corner are both straight lines. Hence, determine the behavior of ν at s = sc in the three
cases: (i) 1 < α < 2, (ii) 1/(N +1) < α < 1/N , where N ≥ 1 is an integer, and (iii) α = 1/N ,
where N > 1 is an integer.

1.25 Find the Shwarz-Christoffel transformations that map, respectively, the upper half-
plane H+ onto:

(i) The semi-infinite strip

Ω := {(ξ, η) : −1 < ξ < 1, η > 0}.
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(ii) The infinite domain Ω that lies to the left of the curve that consists of the negative
imaginary axis ξ = 0, η < 0, and the straight lines 0 ≤ ξ ≤ 1, η = 0 and ξ = 1, η > 0,
so that the points −1 and 1 go respectively to the vertices of Ω at 0 and 1.

(iii) The right-angled (L-shaped) channel Ω in the first quadrant, bounded by the co-ordinate
axes and the rays ξ ≥ 1, η = 1 and ξ = 1, η ≥ 1, so that the points −1, 0 and 1 go
respectively to the points 0, ∞ and 1 + i.

(Hint: For (iii): (a) consider the channel as the limiting case c →∞ of a domain Ω̂ bounded
by the co-ordinate axes, the ray ξ = 1, η ≥ 1, and a straight line joining the point 1 + i to a
point c > 0 on the real axis, and (b) make use of the fact that 1/{ζ(ζ2 − 1)

1
2 } has indefinite

integral − sin−1(1/ζ).)

1.26 With the notations of Remark 1.5.16, show that

f(1/k) = K(k) + iK(k′) and f(∞) = iK(k′).

(Hint: To obtain the result for f(1/k), express the integral in (1.5.22) as the sum
∫ 1/k
0 =∫ 1

0 +
∫ 1/k
1 and evaluate the integral

∫ 1/k
1 by applying a suitable change of variables.)

1.27 Show that the elliptic functions sn(·, k), cn(·, k) and dn(·, k) have the differentiation
formulas

d

dw
{sn(w, k)} = cn(w, k)dn(w, k),

d

dw
{cn(w, k)} = −sn(w, k)dn(w, k),

d

dw
{dn(w, k)} = −k2sn(w, k)cn(w, k).



Chapter 2

Orthonormalization methods

2.1 Introduction

By orthonormalization methods we mean a class of methods that approximate the confor-
mal mappings of simply and multiply-connected domains by series expansions in orthogonal
polynomials or functions. In particular, the methods studied in this chapter are based on
the theory of series developments of analytic functions in the space L2(Ω), i.e. the space
of functions that are square integrable (with respect to the area measure) and analytic in a
domain Ω.

In what follows we shall present a study of the classical theory of the space L2(Ω) and
shall consider in detail (both from the theoretical and computational viewpoints) four closely
related othonormalization methods for the conformal mapping of simply, doubly and multiply-
connected domains.

2.2 The space L2(Ω)

Let Ω be a bounded domain of finite connectivity in the complex z–plane and denote by
L2(Ω) the space of functions u that are analytic in Ω and such that

I(u) :=
∫∫

Ω
|u(z)|2dm < ∞, (2.2.1)

where dm is the two–dimensional Lebesgue measure, i.e.

L2(Ω) := {u : u analytic in Ω, and I(u) < ∞}. (2.2.2)

It should be noted that the integral (2.2.1) is also defined in the sense of Riemann, but
only for functions that are continuous on compact sets whose boundary is at least piecewise
smooth. If the integral is to be defined constructively in a more general setting, then it must
be defined as the limit of Riemann integrals in the manner described, for example, in [27, p.
207], [51, pp. 2], [75, pp. 529] and, in particular, in [166, p. 7].

39
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Lemma 2.2.1 The space L2(Ω) is a linear space.

Proof Let u, v ∈ L2(Ω). Then, clearly, any combination αu + βv, α, β ∈ C, is analytic in
Ω. Also, by noting that the identity

|z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2), z1, z2 ∈ C,

implies the inequality

|z1 + z2|2 ≤ 2(|z1|2 + |z2|2), z1, z2 ∈ C,

we have that
I(αu + βv) ≤ 2|α|2I(u) + 2|β|2I(v) < ∞.

Therefore, if u, v ∈ L2(Ω), then also αu + βv ∈ L2(Ω), i.e. L2(Ω) is a linear space.

Lemma 2.2.2 If u, v ∈ L2(Ω), then the integral
∫∫

Ω
u(z)v(z)dm, (2.2.3)

exists.

Proof Using the identity

uv =
1
2
|u + v|2 +

i

2
|u + iv|2 − 1 + i

2
(|u|2 + |v|2) ,

we have that ∫∫

Ω
u(z)v(z)dm =

1
2
I(u + v) +

i

2
I(u + iv)− 1 + i

2
{I(u) + I(v)},

where each of the integrals I(·) in the right hand side exists, because u, v ∈ L2(Ω) and L2(Ω)
is a linear space.

Let u, v ∈ L2(Ω). If we write

(u, v) :=
∫∫

Ω
u(z)v(z)dm, (2.2.4)

then it is easy to show that (u, v) satisfies the inner product axioms

(u, v) = (v, u),

(αu1 + βu2, v) = α(u1, v) + β(u2, v), α, β ∈ C,

(u, u) ≥ 0 and (u, u) = 0 if and only if u = 0.

Therefore L2(Ω) is an inner product space and, as usual, it becomes a normed space if we
define

||u|| := (u, u)1/2 =

√∫∫

Ω
|u(z)|2dm. (2.2.5)
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Lemma 2.2.3 Let u ∈ L2(Ω). Then, for any z0 ∈ Ω,

|u(z0)|2 ≤ 1
πd2

||u||2, (2.2.6)

where d is the distance of z0 from ∂Ω.

Proof Let D% := {z : |z − z0| < %}, where 0 < % < d, and observe that D% is a compact set
contained in Ω. Thus,

||u||2 ≥
∫∫

D%

|u(z)|2dm =
∫ %

0
rdr

∫ 2π

0
|u(z0 + reiθ)|2dθ,

where by making use of the mean value theorem for analytic functions (see Remark 2.2.1)
∫ 2π

0
|u(z0 + reiθ)|2dθ ≥

∣∣∣∣
∫ 2π

0
{u(z0 + reiθ)}2dθ

∣∣∣∣ = 2π|u(z0)|2,

independently of r. Therefore,

||u||2 ≥ 2π|u(z0)|2
∫ %

0
rdr = π%2|u(z0)|2.

The required inequality (2.2.6) is obtained from the above in the limit as % → d.

Remark 2.2.1 The mean value theorem states that if a function ϕ is analytic in a domain
Ω and the circle Cr := {z : |z − z0| = r} is in Ω, then

ϕ(z0) =
1
2π

∫ 2π

0
ϕ(z0 + reiθ)dθ.

The result comes about by setting z = z0 + reiθ in Cauchy’s integral formula

ϕ(z0) =
1

2πi

∫

Cr

ϕ(z)
z − z0

dz.

Theorem 2.2.1 In the space L2(Ω) convergence in the norm implies uniform convergence
in every compact subset of Ω.

Proof We have to show that if a sequence of functions {uk} ∈ L2(Ω) converges in the norm
to the function u ∈ L2(Ω), then {uk} converges uniformly to u in any compact subset B ⊂ Ω.
This is a direct consequence of Lemma 2.2.3, because from (2.2.6) we have that for any z ∈ B,

|uk(z)− u(z)| ≤ 1√
πd

· ||uk − u||,

where d := dist(B, ∂Ω) is the distance of B from ∂Ω.
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Theorem 2.2.2 With the inner product (·, ·) defined by (2.2.4), the space L2(Ω) is a Hilbert
space.

Proof We have already seen that L2(Ω) is an inner product space. Therefore, it remains to
be shown that this space is complete with respect to the norm ||u|| = (u, u)1/2. To this end,
suppose that {uk} is a Cauchy sequence in L2(Ω), i.e. suppose that

||um − un||2 < ε, ∀ m,n > N. (2.2.7)

Then, for each compact B ⊂ Ω, Lemma 2.2.3 implies that

|un(z)− um(z)|2 <
ε

πd2
, m, n > N, z ∈ B,

where d := dist(B, ∂Ω). This means that, in each compact subset B of Ω, the sequence
{uk} is a Cauchy sequence with respect to the uniform norm, and hence that {uk} converges
uniformly to a function u which is analytic in Ω; see Remark 2.2.2. From (2.2.7) we also have
that ∫∫

B
|un(z)− um(z)|2dm < ||un − um||2 < ε, ∀ m, n > N.

Thus, allowing m →∞,
∫∫

B
|un(z)− u(z)|2dm < ε, n > N,

for each compact B ⊂ Ω. Hence (since B is arbitrary)

||un − u||2 < ε, n > N.

This implies that: (i) un − u ∈ L2(Ω) and hence (since un ∈ L2(Ω)) that u ∈ L2(Ω), and (ii)
||un − u|| → 0, as n →∞.

Remark 2.2.2 Here we made use of the following: (i) the definition which states that a
sequence {uk(z)}, whose terms are functions of a complex variable defined on a set E ∈ C, is
said to be uniformly convergent on E if given any ε > 0 there exists an N := N(ε) ∈ N such
that |un+p(z)− un(z)| < ε, for all n > N , p > 0 and z ∈ E, and (ii) the Weierstrass theorem
on uniformly convergent sequences of analytic functions, which states that if a sequence
{uk(z)} is uniformly convergent in every compact subset of a domain Ω and if every term uk

is analytic in Ω, then the limit function u(z) = limk→∞ uk(z) ia also analytic in Ω; see e.g.
[111, §76].

The next theorem expresses the inner product of the space L2(Ω) as a contour integral.
The result is essentially a restatement (in complex form) of the classical Green’s formula.
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Theorem 2.2.3 Let Ω be a connected domain with piecewise smooth boundary, and let the
functions u and v be analytic in Ω and continuous in Ω := Ω ∪ ∂Ω. Then

(u, v′) :=
∫∫

Ω
u(z)v′(z)dm =

1
2i

∫

∂Ω
u(z)v(z)dz. (2.2.8)

Proof See Exercise 2.3.

Remark 2.2.3 In Theorem 2.2.3, the assumptions about the continuity of the functions u

and v on ∂Ω can be replaced by somewhat weaker conditions. For example, it can be shown
(by using limiting arguments) that Green’s formula (2.2.8) holds even when the functions u

and v′ involve a finite number of branch point singularities of the form (z − zc)α, zc ∈ ∂Ω,
−1/2 < α < 0.

The last theorem of this section shows that, under certain mild assumptions on the nature
of a simply-connected domain Ω, the set of monomials {zj−1}∞j=1 forms a complete set for
the space L2(Ω). Its proof (which is not given here) depends on deeper function theoretic
arguments concerning the continuity of mapping functions.

Theorem 2.2.4 Let Ω be a bounded simply-connected domain. If the boundary of the com-
plement of Ω coincides with that of Ω, then the monomial set

zj−1, j = 1, 2, . . . , (2.2.9)

forms a complete set for the space L2(Ω).

Proof See e.g. [27, Theor. 11.4.8], [51, p.17], [75, p. 543], [111, p. 117] and [166]. See also
Exercise 2.4

Remark 2.2.4 Let S be a subset of an inner product space H. Then: (i) the set S is closed
if the linear combinations of elements in S are dense in H, i.e. if every element of H can be
approximated arbitrarily closely by a finite linear combination of elements of S, and (ii) S

is complete if (y, x) = 0 (y ∈ H) for all x ∈ S implies y = 0. If H is a Hilbert space, then
closure and completeness are equivalent concepts; see e.g. [27, §8.9, §11.1].

Remark 2.2.5 Domains that satisfy the hypothesis of Theorem 2.2.4 are called “Caratheodory
domains”. In particular, all Jordan domains are Caratheodory domains. Note, however, that
domains with slits are not. For example, if Ω is the domain obtained from the unit disc D1

by removing the straight line 0 ≤ x < 1, then the complement of Ω (i.e. the domain |z| > 1)
has boundary |z| = 1 which is only part of ∂Ω. For further details see e.g. [27, p. 279], [75,
p. 542] and [116, p. 254].
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2.3 The Bergman kernel function

Theorem 2.3.1 Let Ω be a bounded domain of finite connectivity and let ζ be any fixed point
in Ω. Then, the Hilbert space L2(Ω) has a unique reproducing kernel K(·, ζ) such that

(u, K(·, ζ)) = u(ζ), ∀ u ∈ L2(Ω). (2.3.1)

Proof Define the linear functional L by

L(u) = u(ζ), u ∈ L2(Ω).

Then, by Lemma 2.2.3, L is bounded. Therefore, by the Fréchet-Riesz theorem (see Remark
2.3.1), L has a unique representation of the form (2.3.1).

Remark 2.3.1 The Fréchet-Riesz theorem states that if L is a bounded linear functional
over a Hilbert space H, then there exists a unique u0 ∈ H such that L(u) = (u, u0), u ∈ H;
see e.g. [27, Theor. 9.3.3].

The reproducing kernel K(·, ζ) of Theorem 2.3.1 is known as the Bergman kernel function
of Ω with respect to ζ. The name comes from Stephan Bergman (1895–1987) who introduced
its study in 1922; see e.g. [13].

Theorem 2.3.2 Let Ω be a bounded domain of finite connectivity, and let ζ be a fixed point
in Ω. If {uj}∞j=1 is a complete orthonormal set of functions for L2(Ω), then the Bergman
kernel function K(·, ζ) has the Fourier series expansion

K(z, ζ) =
∞∑

j=1

uj(ζ)uj(z), (2.3.2)

which converges uniformly in every compact subset of Ω.

Proof Because of the reproducing property (2.3.1), the Fourier coefficients of K(·, ζ) with
respect to the set {uj} are

(K(·, ζ), uj) = uj(ζ), j = 1, 2, . . . .

Therefore, from the general theory of Hilbert spaces, the series (2.3.2) converges in the norm
of L2(Ω) and, by Theorem 2.2.1, this implies that it converges uniformly in every compact
subset of Ω.

The next theorem establishes a relation between the Bergman kernel function and the
conformal mapping of simply-connected domains.
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Theorem 2.3.3 Let Ω be a bounded simply-connected domain, and let f be the conformal
mapping

f : Ω → D1 := {w : |w| < 1},
normalized by the conditions

f(ζ) = 0, f ′(ζ) > 0,

where ζ is some fixed point in Ω. Then, the mapping function f is related to the Bergman
kernel function K(·, ζ) of Ω by means of

K(z, ζ) =
1
π

f ′(ζ)f ′(z) and f ′(z) =
{

π

K(ζ, ζ)

} 1
2

K(z, ζ). (2.3.3)

Proof Let G% := {z : |f(z)| < %}, 0 < % < 1. Then, by making use of Theorem 2.2.3, we
have that for any u ∈ L2(Ω)

∫∫

G%

u(z)f ′(z)dm =
1
2i

∫

∂G%

u(z)f(z)dz =
%2

2i

∫

∂G%

u(z)
f(z)

dz.

If u(ζ) 6= 0, then u/f has a simple pole at the point z = ζ. Hence, by using he residue
theorem, ∫∫

G%

u(z)f ′(z)dm = π%2 u(ζ)
f ′(ζ)

;

see Remark 2.3.2. If, on the other hand u(ζ) = 0, then u/f has a removable singularity at
z = ζ and hence ∫∫

G%

u(z)f ′(z)dm = 0.

Thus, in either case, we have that
∫∫

G%

u(z)
f ′(ζ)f ′(z)

π
dm = %2u(ζ).

Therefore, by letting % → 1,
(

u(·), 1
π

f ′(ζ)f ′(·)
)

:=
∫∫

Ω
u(z)

f ′(ζ)f ′(z)
π

dm = u(ζ), u ∈ L2(Ω),

and (because of the uniqueness of the reproducing kernel) this implies that

K(z, ζ) =
1
π

f ′(ζ)f ′(z).

The second relation in (2.3.3) follows, at once, from the above by observing that

K(ζ, ζ) =
1
π
{f ′(ζ)}2.
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Remark 2.3.2 If a function F has a simple pole at z = ζ, then the residue Res(F ; ζ) of F

at ζ is given by
Res(F ; ζ) = lim

z→ζ
{(z − ζ)F (z)} .

For the problem under consideration, the mapping function f has a simple zero at the point
ζ, i.e. f(z) = (z − ζ)φ(z), with φ(ζ) 6= 0. Therefore,

Res(u/f ; ζ) = lim
z→ζ

{
(z − ζ)

u(z)
f(z)

}
=

u(ζ)
φ(ζ)

=
u(ζ)
f ′(ζ)

.

Let H be a Hilbert space, let h be a non-zero element of H and denote by K{c} the set

K{c} := {u : u ∈ H and (u, h) = c}. (2.3.4)

(Observe that K{c}, c 6= 0, is a convex subset of H, while K{0} is a subspace of H.) Finally,
let

u0 := h/||h||2, (2.3.5)

and observe that u0 ∈ K{1}.
The lemma below is needed for establishing the last theorem of this section as well as

Theorem 2.5.3 in Section 2.5.

Lemma 2.3.1 The element u0, given by (2.3.5), minimizes uniquely the norm of H over all
u ∈ K{1}. Furthermore, u0 is characterized uniquely by the orthogonality property u0⊥K{0},
i.e. u0 is the only element of K{1} with the property

(u0, v) = 0, ∀ v ∈ K{0}. (2.3.6)

Proof For any u ∈ K{1}, the Schwarz inequality (see e.g. [27, Theor. 8.1.1]) gives

1 = (u, h) ≤ ||u||||h||. (2.3.7)

Hence 1/||h|| ≤ ||u|| or ||u0|| ≤ ||u||, for all u ∈ K{1}. The uniqueness of u0 follows because
equality in (2.3.7) occurs if and only if u = constant× h.

The orthogonality property (2.3.6) follows trivially from the definition of u0, because

(u0, v) =
1

||h||2 × (h, v) = 0, ∀ v ∈ K{0}.

To prove the uniqueness part, assume that there exists another element û0 ∈ K{1} such that
û0⊥K{0}. Then

(uo − û0, h) = (u0, h)− (û0, h) = 1− 1 = 0,

i.e. uo − û0 ∈ K{0}. Therefore,

||uo − û0||2 = (uo − û0, uo − û0) = (u0, uo − û0)− (û0, uo − û0) = 0,

i.e. û0 = u0.
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Theorem 2.3.4 Let Ω be a bounded simply-connected domain, assume without loss of gen-
erality that 0 ∈ Ω, and let r := R0(Ω) be the conformal radius of Ω with respect to 0. Also,
let g denote the conformal mapping

g : Ω → Dr := {w : |w| < r},

normalized by the conditions

g(0) = 0, g′(0) = 1.

Finally, let L{c} denote the set

L{c} := {u : u ∈ L2(Ω) and u(0) = c}. (2.3.8)

Then:

(i) The derivative g′, of the mapping function g, minimizes uniquely the norm of L2(Ω)
over all functions u ∈ L{1}.

(ii) The minimal function g′ is characterized uniquely by the orthogonality property g′⊥L{0}.

(iii) The square of the minimum norm is equal to the area of Dr, i.e. ||g′||2 = πr2.

Proof Let K(·, 0) be the Bergman kernel function of Ω with respect to 0. Then parts (i)
and (ii) follow trivially from the results of Lemma 2.3.1, by taking h = K(·, 0) and recalling
the reproducing property (u,K(·, 0)) = u(0) and the relation (see Exercises 2.5 and 2.6)

g′(z) =
1

K(0, 0)
K(z, 0) =

1
||K(·, 0)||2 K(z, 0).

For the last part, the use of (2.2.8) gives

||g′||2 =
∫ ∫

Ω
g′(z)g′(z)dm =

1
2i

∫

∂Ω
g′(z)g(z)dz =

1
2i

∫

∂Dr

wdw.

Thus,

||g′||2 =
1
2

∫ 2π

0
r2dθ = πr2.

The variational property of Theorem 2.3.4 is known as the property of minimum area of
Bieberbach [16].
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2.4 Numerical methods for simply-connected domains

Let Ω be a simply-connected domain bounded by a closed Jordan curve, assume (without
loss of generality) that the origin 0 ∈ Ω, and let f and g denote the conformal mappings

f : Ω → D1 := {w : |w| < 1}, (2.4.1)

with
f(0) = 0, f ′(0) > 0, (2.4.2)

and
g : Ω → Dr := {w : |w| < r}, r := R0(Ω), (2.4.3)

with
g(0) = 0, g′(0) = 1. (2.4.4)

That is f and g are, respectively, the conformal mappings of Theorem 2.3.3 (with ζ = 0) and
Theorem 2.3.4.

The purpose of this section is to describe two (theoretically equivalent) numerical methods
for approximating f or g. These methods are based on the theory of Section 2.3 and are
known, respectively, as the Bergman kernel and the Ritz methods.

2.4.1 The Bergman kernel method (BKM)

This method is based on the following properties of the Bergman kernel function K(·, 0) of
Ω with respect to 0:

(i) The reproducing property of Theorem 2.3.1, which states that

(u,K(·, 0)) = u(0), ∀ u ∈ L2(Ω). (2.4.5)

(ii) The relations

f ′(z) =
{

π

K(0, 0)

} 1
2

K(z, 0), and f(z) =
{

π

K(0, 0)

} 1
2
∫ z

t=0
K(t, 0)dt, (2.4.6)

that connect the mapping function (2.4.1)–(2.4.2) with K(·, 0); see (2.3.3).

(iii) The relation
R0(Ω) = (πK(0, 0))−1/2 , (2.4.7)

that gives the conformal radius of Ω with respect to 0 in terms of the Bergman kernel
function K(·, 0); see Exercise 2.6 (i).
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From the constructive point of view, (2.4.5)–(2.4.7) show, respectively, that: (i) the determi-
nation of the Fourier coefficients of the Bergman kernel function K(·, 0) (with respect to any
orthonormal system for L2(Ω)) does not require the explicit knowledge of the kernel, (ii) the
derivative f ′ of the mapping function (2.4.1)–(2.4.2) is a scalar multiple of K(·, 0), and (iii)
the conformal radius of Ω with respect to 0 is a scalar multiple of the square root of K(0, 0).

Let {ηj}∞1 be any complete set of functions for L2(Ω). Then (2.4.5)–(2.4.7) suggest the
following numerical procedure for approximating the mapping function f and the conformal
radius R0(Ω):

(i) Orthonormalize the functions {ηj}n
1 , by means of the Gram-Schmidt process, to obtain

the orthonormal set {η∗j }n
1 ; see Remark 2.4.1.

(ii) Approximate K(·, 0) by the finite Fourier sum

Kn(z, 0) :=
n∑

j=1

(K(·, 0), η∗j )η∗j (z)

=
n∑

j=1

η∗j (0)η∗j (z). (2.4.8)

(iii) Approximate f ′, f and r := R0(Ω) respectively by

f
′
n(z) :=

{
π

Kn(0, 0)

} 1
2

Kn(z, 0), fn(z) =
{

π

Kn(0, 0)

} 1
2
∫ z

t=0
Kn(t, 0)dt, (2.4.9)

and
rn := (πKn(0, 0))−1/2. (2.4.10)

We shall refer to the above numerical procedure as the Bergman kernel method (BKM for
short), and to the approximations given by (2.4.8)–(2.4.10) as the nth BKM approximations
to K(·, 0), f ′, f and R0(Ω) corresponding to the basis set {ηj}. (In order to ensure that
Kn(0, 0) 6= 0, it is convenient to take η1(z) = 1.)

Remark 2.4.1 Let ηj , j = 1, 2, . . ., be a complete set of a Hilbert space H, or just a linearly
independent set of an inner product space. Then, the Gram-Schmidt process is based on
constructing the corresponding orthonormal set η∗j , j = 1, 2, . . ., by means of the following
recursion:

η∗1 = η1/||η1||,

η̂k = ηk −
∑k−1

j=1(ηk, η
∗
j )η

∗
j , η∗k = η̂k/||η̂k||, k = 2, 3, . . . ;





(2.4.11)

see Exercise 2.9. It is clear that η̂k, and hence η∗k, is a linear combination of the elements
ηj , j = 1, 2, . . . , k. It is also clear that ||η̂k|| cannot vanish. This is so because ||η̂k|| = 0
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would imply that η̂k = 0, and hence that the elements η1, η2, · · · , ηk are linearly dependent.
It follows that the process for determining η∗k involves constructing a lower triangular array
{ak,j}k

j=1, with positive diagonal elements ak,k = 1/||η̂k||, such that

η∗k =
k∑

j=1

ak,jηj , k = 1, 2, . . . . (2.4.12)

It is also easy to show that, for each k, we can find a lower triangular array {bk,j}k
j=1, with

bk,k > 0, such that

ηk =
k∑

j=1

bk,jη
∗
j , k = 1, 2, . . . ; (2.4.13)

see e.g. [27, Cor. 8.3.5]. Finally, it is important to note the approximation (2.4.8) can also
be expressed as

Kn(z, 0) =
n∑

k=1

c
{n}
k ηk(z), (2.4.14)

where the coefficients c
{n}
k , k = 1, 2, . . . , n, satisfy the Gram linear system (the “normal

equations”)

n∑

k=1

(ηk, ηl)c
{n}
k = (K(·, 0), ηl)

= ηl(0), l = 1, 2, . . . , n. (2.4.15)

Remark 2.4.2 Regarding convergence, from Theorem 2.3.2 we know that the sequence of
approximations (2.4.8) to K(z, 0) (and hence the approximations (2.4.9) to f ′ and f) converge
uniformly in every compact subset of Ω. Also, if

Λn := span{η1, η2, · · · , ηn}, (2.4.16)

then form the general theory of least squares approximations we know that (2.4.8) is the
unique least squares approximation to K(z, 0) corresponding to Λn, i.e.

||Kn(·, 0)−K(·, 0)|| = inf
u∈Λn

||u−K(·, 0)||. (2.4.17)

Remark 2.4.3 Let Λn be the set (2.4.16). Then,

(u,Kn(·, 0)) = u(0), ∀ u ∈ Λn, (2.4.18)
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where Kn(·, 0) is the nth BKM approximation (2.4.8) to K(·, 0). In other words, Kn(·, 0)
mimics the the reproducing property (2.3.1) of the Bergman kernel function.

To prove (2.4.18), we note that every u ∈ Λn can be expressed in the form

u(z) =
n∑

j=1

αjη
∗
j (z), αj ∈ C;

see (2.4.13). Thus,

(u,Kn(·, 0)) =




n∑

j=1

αjη
∗
j (·),

n∑

j=1

η∗j (0)η∗j (·)



=
n∑

j=1

αjη
∗
j (0)(η∗j , η

∗
j ) =

n∑

j=1

αjη
∗
j (0) = u(0).

Remark 2.4.4 With reference to the mapping function (2.4.3)–(2.4.4), the nth BKM ap-
proximation to g′ is

g
′
n(z) =

1
Kn(0, 0)

Kn(z, 0) =
1

||Kn(·, 0)||2 Kn(z, 0). (2.4.19)

This follows trivially from (2.4.8) and the relation connecting g′ with K(·, z); see Exercise
2.6.

2.4.2 The Ritz method (RM)

Let
L{c}n = L{c} ∩ Λn,

where L{c} and Λn are, respectively, the sets (2.3.8) and (2.4.16), i.e.

L{c}n := {u : u ∈ Λn and u(0) = c}. (2.4.20)

The theorem below is the finite dimensional counterpart of Theorem 2.3.4.

Theorem 2.4.1 The function g
′
n, given by (2.4.19), minimizes uniquely the norm of L2(Ω)

over all u ∈ L{1}n . Furthermore, the minimal function g
′
n is characterized uniquely by the

orthogonality property g
′
n⊥L{0}n , i.e.

(g
′
n, v) = 0, ∀ v ∈ L{0}n . (2.4.21)
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Proof The theorem is a direct consequence of (2.4.18), (2.4.19) and the finite dimensional
counterpart of Lemma 2.3.1.

In the Ritz method (RM for short) the approximation g
′
n to the derivative of the mapping

function (2.4.3)–(2.4.4) is determined by solving directly the variational problem contained in
Theorem 2.4.1, rather than using (2.4.19) and computing first the nth BKM approximation
to K(·, 0). This is done as follows:

Take η1(z) ≡ 1 (or, more generally, choose η1 so that η1(0) = 1), define the functions νk,
k = 1, 2, . . . , n, by

ν1(z) = η1(z) and νk(z) = ηk(z)− ηk(0), k = 2, 3, . . . , n, (2.4.22)

and observe that the set {νk}n
k=2 forms a basis for L{0}n . Next, let

g
′
n(z) = ν1(z) +

n∑

k=2

α
{n}
k νk(z), (2.4.23)

and observe that a necessary and sufficient condition for (2.4.21) to hold is that
(

ν1 +
n∑

k=2

α
{n}
k νk, νl

)
= 0, l = 2, 3, . . . , n,

or that the coefficients {α{n}k }n
k=2 satisfy the (n− 1)× (n− 1) Gram linear system

n∑

k=2

(νk, νl)α
{n}
k = −(ν1, νl), l = 2, 3, . . . , n. (2.4.24)

The RM is based on the above observations. That is, the nth RM approximations gn, g
′
n,

to the mapping function (2.4.1)–(2.4.2) and its derivative, and the approximation rn to the
conformal radius r := R0(Ω) are determined by:

(i) Solving the linear system (2.4.24) for the unknown coefficients α
{n}
k , k = 2, 3, . . . , n.

(Observe that the matrix of coefficients of (2.4.24) is Hermitian and positive definite.
This means that (2.4.24) can be solved by means of the Cholesky method.)

(ii) Computing the approximation g
′
n to g′ from (2.4.23).

(iii) Computing the approximations gn and rn to the mapping function g and the conformal
radius r := R0(Ω) from

gn(z) =
∫ z

0
g
′
n(t)dt =

∫ z

0
ν1(t)dt +

n∑

k=2

α
{n}
k

∫ z

0
νk(t)dt, (2.4.25)

and (see Theorem 2.3.4(iii))

rn =
||g′n||√

π
. (2.4.26)
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Also, since g(z) = rf(z), the nth RM approximation to the mapping function (2.4.1)–(2.4.2)
is given by

fn(z) =
1
rn

gn(z), (2.4.27)

where gn and rn are respectively the RM approximations (2.4.25) and (2.4.26).
Regarding convergence, it follows from Theorem 2.3.2 and (2.4.19) that the sequence of

approximations {g′n} converges uniformly to g′ in every compact subset of Ω. We also have
that

||g′n − g′|| = inf
u∈L{1}n

||u− g′||. (2.4.28)

To derive (2.4.28), we first note that for every u ∈ L{1}n , g′ − u ∈ L{0}. Therefore, from
Theorem 2.3.4,

0 = (g′ − u, g′) = ||g′||2 − (u, g′), u ∈ L{1}n .

Hence, for all u ∈ L{1}n ,

||g′ − u||2 = (g′ − u, g′ − u) = −(u, g′) + ||u||2 = ||u||2 − ||g′||2,

and (2.4.28) follows, because from Theorem 2.4.1 we know that g
′
n minimizes || · || over all

u ∈ L{1}n .

2.4.3 Exterior domains

Let Γ be a closed Jordan curve, assume (without loss of generality) that the origin lies in the
interior Ω of Γ, i.e. 0 ∈ Ω := Int(Γ), and let ΩE denote the region exterior to Γ, i.e.

ΩE := Ext(Γ) = C \ Ω.

Then, both the BKM and the RM can be used in an obvious manner in order to compute
approximations to the exterior conformal mapping (1.2.9)–(1.2.10), i.e. to the mapping

φ := fE : ΩE → {w : |w| > 1}, (2.4.29)

normalized by the conditions

φ(∞) = ∞ and φ′(∞) = lim
z→∞

φ(z)
z

> 0. (2.4.30)

This can be done, quite simply, by using the relation (1.2.13) (that connects φ := fE with
the interior mapping function f̂ given by (1.2.11)–(1.2.12)) and applying the BKM or the
RM to the problem of approximating f̂ . The details are as follows:

As we have seen in Section 1.2, the inversion z → 1/z transforms Γ into a closed curve Γ̂
and maps conformally the exterior domain ΩE onto the interior of Γ̂, i.e. onto the bounded
domain Ω̂ := Int(Γ̂). Therefore, if f̂ denotes the conformal mapping

f̂ : Ω̂ → D1, (2.4.31)
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normalized by the conditions

f̂(0) = 0 and f̂
′
(0) > 0, (2.4.32)

then φ := fE and f̂ are related to each other by means of (1.2.13), i.e. by means of

φ(z) = 1/f̂(1/z). (2.4.33)

From (1.2.14) and (1.2.15) we also have that the capacity of the curve Γ is given by

cap(Γ) =
1

φ′(∞)
= f̂

′
(0) =

1

R0(Ω̂)
, (2.4.34)

where R0(Ω̂) is the conformal radius of the domain Ω̂ with respect to 0.
Let f̂n(ζ) and r̂n denote, respectively, the nth BKM (or RM) approximations to the

mapping function f̂(ζ) and the conformal radius r̂ := R0(Ω̂), corresponding to a complete
set of functions {ηj(ζ)}∞j=1 for the space L2(Ω̂). Then, the corresponding approximations to
the exterior mapping function φ and the capacity c := cap(Γ) are given respectively by

φn(z) = 1/f̂n(1/z) and cn = 1/rn. (2.4.35)

From the computational point of view, it is important to observe that the inner product
(·, ·) of L2(Ω̂) can be related back to the original boundary curve Γ by means of Green’s
formula (2.2.8). In particular, the inner products

(ηr, ηs) =
∫ ∫

bΩ
ηr(ζ)ηs(ζ)dm,

which are needed for applying the Gram-Schmidt process, in the BKM, and for determining
the coefficients of the Gram linear system (2.4.24), in the RM, are given by

(ηr, ηs) =
1
2i

∫
bΓ

ηr(ζ)µs(ζ)dζ =
1
2i

∫

Γ

1
z2

ηr

(
1
z

)
µs

(
1
z

)
dz, (2.4.36)

where µ
′
s(ζ) = ηs(ζ).

2.5 Numerical methods for doubly-connected domains

Let Γ1 and Γ2 be two closed Jordan curves, such that Γ1 is in the interior of Γ2, denote by
Ω the doubly-connected domain

Ω := Int(Γ2) ∩ Ext(Γ1), (2.5.1)

and assume without loss of generality that the origin 0 lies in the hole of Ω, i.e. 0 ∈ Int(Γ1).
Also, let r1 be a prescribed number and denote by f the conformal mapping

f : Ω → A(r1, r2) := {w : r1 < |w| < r2}, (2.5.2)
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normalized by the condition

f(z1) = r1, (2.5.3)

where z1 is some fixed point on Γ1. We recall our discussion in Section 1.3, and note that
r2 = Mr1 where M := M(Ω) is the unknown conformal modulus of Ω. We also note that the
notation (2.5.1) for Ω differs from that used in Section 1.3. More precisely, here (in order to
conform with the notations of the main references on the subject) we choose to denote the
inner and outer component of ∂Ω by Γ1 and Γ2, respectively, rather than by Γ2 and Γ1 as
was done in Section 1.3.

The purpose of this section is to describe two closely related numerical methods for
determining approximations to f and to the conformal modulus M . The two methods may,
in fact, be regarded as generalizations (to the mapping of doubly-connected domains) of the
BKM and RM procedures of the previous section. We begin by considering the theory on
which the two methods are based.

Let L2
s(Ω) denote the set

L2
s(Ω) := {u : u ∈ L2(Ω), and u has a single-valued indefinite integral}, (2.5.4)

and observe that it is a closed subspace of Ω. Therefore, L2
s(Ω) is itself a Hilbert space with

inner product (2.2.4). (Note that if Ω is a simply-connected domain, then because of Cauchy’s
theorem L2

s(Ω) ≡ L2(Ω). This, however, is not true for domains of higher connectivity. For
example, if Ω is a doubly-connected domain of the form (2.5.1) and the point z0 ∈ Int(Γ1),
then the function 1/(z − z0) is in L2(Ω) but not in L2

s(Ω).)
Next, let the functions A and H be defined respectively by

A(z) := log f(z)− log z, (2.5.5)

and

H(z) := A′(z) =
f ′(z)
f(z)

− 1
z
, (2.5.6)

so that A is analytic and single-valued in Ω, H ∈ L2
s(Ω) and

f(z) = z expA(z). (2.5.7)

The methods of this section are based principally on the results of the following theorems.

Theorem 2.5.1 Assume that the boundary curves Γ1 and Γ2 are analytic, and let H be the
function (2.5.6). Then, for any function u ∈ L2

s(Ω) which is continuous in Ω := Ω ∪ ∂Ω,

(u,H) = i

∫

∂Ω
u(z) log |z|dz. (2.5.8)
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Proof The use of Green’s formula (2.2.8) gives that

(u,H) =
1
2i

∫

∂Ω
u(z)A(z)dz, (2.5.9)

where
A(z) = −A(z) + 2{log |f(z)| − log |z|}. (2.5.10)

Therefore,

(u,H) = − 1
2i

∫

∂Ω
u(z)A(z)dz +

1
i

2∑

j=1

log rj

∫

Γj

u(z)dz + i

∫

∂Ω
u(z) log |z|dz. (2.5.11)

The required result follows by observing that, since u and A are analytic in Ω and u has a
single-valued indefinite integral,

∫

∂Ω
u(z)A(z)dz = 0 and

∫

Γj

u(z)dz = 0, j = 1, 2. (2.5.12)

Remark 2.5.1 The observation of Remark 2.2.3 (about the conditions under which (2.2.8)
holds) and the local behavior of the mapping function f at a corner point of ∂Ω (see § 1.4.1)
imply that the result of Theorem 2.5.1 holds under the following weaker conditions:

(i) The boundary components Γ1 and Γ2 are piecewise analytic curves without cusps.

(ii) The function u ∈ L2
s(Ω) is continuous on ∂Ω apart from a finite number of branch point

singularities of the form (z − zc)α, zc ∈ ∂Ω, −1/2 < α < 0.

Theorem 2.5.2 If the boundary components Γ1 and Γ2 of Ω are piecewise analytic curves
without cusps, then

||H||2 = −i

∫

∂Ω

1
z

log |z|dz − 2π log M, (2.5.13)

where M := r2/r1 is the conformal modulus of Ω.

Proof In view of Remark 2.5.1, formula (2.5.8) can be applied to ||H||2 = (H,H). This
gives

||H||2 = i

∫

∂Ω
H(z) log |z|dz = i

∫

∂Ω
A′(z) log |z|dz.

Hence, by partial integration (see Exercise 2.10),

||H||2 = i

{
[A(z) log |z|]∂Ω −

∫

∂Ω
A(z)Re

(
dz

z

)}

= − i

2

∫

∂Ω

1
z
A(z)dz − i

2

∫

∂Ω

1
z
A(z)dz

=
i

2

∫

∂Ω

1
z
A(z)dz,
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where we made use of the facts that A(z)/z is analytic in Ω and ||H||2 is real. Hence, by
using (2.5.10),

||H||2 = − i

2

∫

∂Ω

1
z
A(z)dz − i

∫

∂Ω

1
z

log |z|dz + i
2∑

j=1

log rj

∫

Γj

1
z
dz

= −i

∫

∂Ω

1
z

log |z|dz − 2π log r2 + 2π log r1

= −i

∫

∂Ω

1
z

log |z|dz − 2π log M.

Theorem 2.5.3 With the notations introduced above, let

L{c} := {u : u ∈ L2
s(Ω) and (u,H) = c}. (2.5.14)

Then, the function
u0 := H/||H||2, (2.5.15)

minimizes uniquely the norm of L2
s(Ω) over all functions u ∈ L{1}. Furthermore, the minimal

function (2.5.15) is characterized uniquely by the orthogonality property u0⊥L{0}.

Proof The theorem is a direct consequence of Lemma 2.3.1.

The next theorem, which is stated without proof, may be regarded as the extension of
Theorem 2.2.4 to doubly-connected domains. Its proof is based on the observation that a
function u which is analytic in a doubly connected domain of the form 2.5.1 can be expressed
as the sum u = uI + uE , where uI and uE are analytic in Int(Γ2) and Ext(Γ1) respectively;
see e.g. [92, p. 362].

Theorem 2.5.4 Let Ω be a doubly-connected domain of the form (2.5.1). Then, the “mono-
mial” set

{zj}∞j=−∞, j 6= −1, (2.5.16)

forms a complete set for the space L2
s(Ω).

We are now in a position to describe the two numerical methods.

2.5.1 The orthonormalization method (ONM)

This method is based primarily on Theorem 2.5.1, which shows that the determination of
the Fourier coefficients of the function H (with respect to any orthonormal system for the
space L2

s(Ω)) does not require the explicit knowledge of H. More precisely, the method may
be regarded as the extension of the BKM to doubly-connected domains, where the function
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H and the property (2.5.8) take respectively the place of the Bergman kernel function K(·, 0)
and the reproducing property (2.4.5).

Let {ηj}∞j=1 be a complete set of functions for L2
s(Ω). Then, the details of the numerical

procedure are as follows:

(i) Orthonormalize the functions {ηj}n
j=1, by means of the Gram-Schmidt process, to obtain

the orthonormal set {η∗j }n
j=1; see Remark 2.4.1.

(ii) Approximate H by the finite Fourier sum

Hn(z) :=
n∑

j=1

(H, η∗j )η∗j (z), (2.5.17)

where the Fourier coefficients (H, η∗j ) are given by means of (2.5.8).

(iii) Use (2.5.5)–(2.5.7) and (2.5.13) in order to approximate the mapping function (2.5.2)–
(2.5.3) and the conformal modulus of Ω, respectively, by

fn(z) :=
r1z

z1
exp

{∫ z

t=z1

Hn(t)dt

}
, (2.5.18)

and

Mn := exp
{

1
2π

(−i

∫

∂Ω

1
z

log |z|dz − ||Hn||2)
}

. (2.5.19)

We shall refer to the above numerical procedure as the orthonormalization method (ONM for
short), and to the approximations given by (2.5.17)–(2.5.19) as the nth ONM approximations
to H, f and M corresponding to the basdis set {ηj}.

Regarding convergence, from Theorem 2.2.1, we have that the sequence {Hn} converges
to H in every compact subset of Ω. Also, if

Λn := span{η1, η2, · · · , ηn},
then from the general theory of least squares approximations we know that Hn is the unique
least squares approximation to H, i.e.

||Hn −H|| = inf
u∈Λn

||u−H||. (2.5.20)

Finally, with reference to the last observation of Remark 2.4.1, we now have that the approx-
imation (2.5.17) can also be expressed as

Hn(z) =
n∑

k=1

c
{n}
k ηk(z), (2.5.21)

where the coefficients c
{n}
k , k = 1, 2, . . . , n, satisfy the Gram linear system

n∑

k=1

(ηk, ηl)c
{n}
k = (H, ηl), l = 1, 2, . . . , n. (2.5.22)
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2.5.2 The variational method (VM)

Let L{c} denote the set (2.5.14) and, as before, let

Λn := span{η1, η2, · · · , ηn}.

Also, let L{c}n = L{c} ∩ Λn, i.e.

L{c}n := {u : u ∈ Λn and (u,H) = c}, (2.5.23)

and observe that if Hn denotes the approximation (2.5.17), then

(u,H) = (u,Hn), ∀ u ∈ Λn; (2.5.24)

see Exercise 2.11. The theorem below is the finite dimensional counterpart of Theorem 2.5.3.

Theorem 2.5.5 Let Hn be given by (2.5.17) and assume that η1 /∈ L{0}, so that the set L{1}n

is not empty. Then, the function

u0,n := Hn/||Hn||2, (2.5.25)

minimizes uniquely the norm of L2
s(Ω) over all u ∈ L{1}n . Furthermore, the minimal function

u0,n is characterized uniquely by the orthogonality property u0,n⊥L{0}n , i.e.

(u0,n, v) = 0, ∀ v ∈ L{0}n . (2.5.26)

Proof The theorem is a direct consequence of (2.5.24) and the finite dimensional counterpart
of Lemma 2.3.1.

The variational method (VM for short) of this subsection is related to the orthonormalza-
tion method of the previous subsection in the same way as (in the case of simply-connected
domains) the RM is connected to the BKM. That is, the approximation Hn (to the function
(2.5.6)) is obtained from (2.5.25), by solving directly the variational problem contained in
Theorem 2.5.5. The details are as follows:

Set
γk := (ηk,H), k = 1, 2, . . . , n,

where the inner products are known by means of (2.5.8). Next, let

ν1(z) = γ−1
1 η1(z) and νk(z) = γ1ηk(z)− γkη1(z), k = 2, 3, . . . , n, (2.5.27)

and observe that the set {νk}n
k=2 forms a basis for L{0}n . Finally, let

u0,n(z) = ν1(z) +
n∑

k=2

α
{n}
k νk(z). (2.5.28)



60 CHAPTER 2. ORTHONORMALIZATION METHODS

Then, by using the orthogonality property (2.5.26) (and following the argument that led to the
RM linear system (2.4.24)), we see that the coefficients {α{n}k }n

k=2 satisfy the (n−1)× (n−1)
Gram linear system

n∑

k=2

(νk, νl)α
{n}
k = −(ν1, νl), l = 2, 3, . . . , n. (2.5.29)

Once the linear system (2.5.29) is solved (by means of the Cholesky method) and u0,n

is determined from (2.5.28), the nth VM approximation to H (i.e. the function (2.5.17)) is
given by

Hn(z) =
1

||u0,n||2 u0,n(z). (2.5.30)

Then, as in the ONM, the corresponding approximations to the mapping function (2.5.2)–
(2.5.3) and the conformal modulus of Ω are given by (2.5.18) and (2.5.19).

Remark 2.5.2 Let Ω be a simply-connected domain bounded by a piecewise analytic Jordan
curve without cusps and assume that 0 ∈ Ω. Then, it is easy to see that the ONM and the
VM can also be used for approximating the mapping function g : Ω → Dr, normalized by the
conditions g(0) = 0 and g′(0) = 1. To see this observe that the underlying theory remains
unaltered except that now formula (2.5.13), of Theorem 2.5.2, becomes

||H||2 = −i

∫

∂Ω

1
z

log |z|dz − 2π log r, (2.5.31)

where r = R0(Ω) is the conformal radius of Ω with respect to 0. Naturally, in addition to
this (in the simply-connected case) L2

s(Ω) ≡ L2(Ω) and the monomial set (2.2.9), i.e. the set
{zj−1}∞j=1, takes the place of the set (2.5.16). In general, however, in the simply-connected
case, there is nothing to be gained in using the ONM or the VM, instead of the BKM or the
RM.

2.6 Computational considerations

Let the pair Ω, f denote either: (i) a simply-connected domain (with 0 ∈ Ω) and the mapping
function (2.4.1)–(2.4.2), or (ii) a doubly-connected domain of the form (2.5.1) and the map-
ping function (2.5.2)–(2.5.3). Then, an important advantage of the four numerical methods
considered in in Sections 2.4 and 2.5 is that they all lead to approximations in closed form.
More precisely, in the simply-connected case, the BKM and RM approximations to f are of
the form

fn(z) =
n∑

j=1

ajµj(z), (2.6.1)



2.6. COMPUTATIONAL CONSIDERATIONS 61

while, in the doubly-connected case, the ONM and VM approximations to f are of the form

fn(z) =
r1z

z1
exp{

n∑

j=1

ajµj(z)}, (2.6.2)

where in each case the µj are integrals of the basis functions ηj . There is, however, a serious
numerical drawback. As is explained below, this has to do with the way that the coefficients
aj in (2.6.1) and (2.6.2) are determined.

We recall that the determination of the coefficients aj involves the application of the Gram-
Schmidt orthonormalization process, in each of the BKM and the ONM, and the solution of
a Gram linear system in each of the RM and the VM. Unfortunately, both these methods for
determining the aj may lead to significant loss of accuracy. This is due to the well-known
facts that: (i) the Gram-Schmidt process can be extremely unstable, and (ii) the matrices of
coefficients of the linear systems (2.4.24) and (2.5.29) can be severely ill-conditioned. Thus, in
practice, only a limited number of terms in the series approximations (2.6.1) and (2.6.2) can
be computed accurately. This implies that the success of any of the four methods depends
critically on the rate of convergence of the approximating sequence {fn}. It also implies
that care must be taken so that all intermediate calculations are carried out as accurately as
possible.

In what follows we discuss various matters associated with the numerical implementation
of the four methods and also present a number of illustrative examples.

2.6.1 Choice of the basis set

As was explained above, the success of any of the four methods depends critically on the
speed of convergence of the approximating series (2.6.1) and (2.6.2) and this, in turn, depends
crucially on the choice of the basis set {ηj}. Thus, the choice of {ηj} plays a very decisive
role in the application of any of the four methods.

Two computationally convenient basis sets are given immediately from the results of
Theorems 2.2.4 and 2.5.4. These are, respectively, the “monomial” sets

ηj(z) = zj−1, j = 1, 2, . . . , (2.6.3)

for when Ω is simply-connected, and

η2j−1(z) = zj−1, η2j(z) = 1/zj+1, j = 1, 2, . . . , (2.6.4)

for when Ω is doubly-connected. In particular, if Ω is simply-connected and (2.6.3) is used,
then the nth BKM and RM approximations fn and gn, to the mapping functions f and g given
by (2.4.1)–(2.4.2) and (2.4.3)–(2.4.4), are polynomials of degree n. In fact, the polynomials

πn(z) := gn(z) = fn(z)/f
′
n(0), (2.6.5)
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that approximate the mapping function g, are called the “Bieberbach polynomials” of Ω with
respect to 0. As is apparent from the theory of § 2.4.2, these polynomials satisfy the following
two minimal properties:

Denote by Pn the class of all polynomials of degree at most n and let

P∗n := {p : p ∈ Pn, with p(0) = 0 and p′(0) = 1}. (2.6.6)

Then, for each n ∈ N, the Bieberbach polynomial πn minimizes uniquely the norms

||p′|| and ||p′ − g′||, (2.6.7)

over all p ∈ P∗n; see Theorem 2.4.1 and (2.4.28).
Unfortunately, the speed of convergence of the sequence of Bieberbach polynomials {πn}

is often extremely slow. More generally, this is true for any sequence of approximations, of
the form (2.6.1) or (2.6.2), that arises from the use of the basis sets (2.6.3) or (2.6.4). Thus,
because of the inherent instability of the numerical methods, the use of the monomial basis
sets (2.6.3) and (2.6.4) is not in general recommended for practical computational work.

As for the cause of the slow convergence, this is always due to the presence of singularities
of the mapping function f in C \ Ω, i.e. to corner singularities (on the boundary ∂Ω) or to
pole singularities (close to ∂Ω in C \ Ω), of the type discussed in Section 1.4.

The remainder of this subsection is devoted to the description of a procedure for selecting
appropriate non-monomial basis sets for use in the numerical implementation of the methods.
This procedure was first proposed in [105] (in connection with the use of the BKM for the
mapping of simply-connected domains), and involves the use of “augmented” basis sets, which
are constructed by introducing appropriate “singular” functions in the monomial sets (2.6.3)
and (2.6.4). These singular functions are selected so as to reflect the dominant singular
behavior (of the function which is approximated by each of the methods) in C \ Ω. In
other words, the singular functions are selected to reflect the singular behavior of K(·, 0) (or,
equivalently, of f ′) in the BKM and RM, and the singular behavior of the the function H,
given by (2.5.6), in the ONM and the VM. We begin by considering the treatment of pole
(or, more precisely, pole-type) singularities.

We consider first the case where Ω is simply-connected and assume that (from the Schwarz
reflection principle or the more general theory for inverse points discussed in § 1.4.2) we know
that the mapping function f (or more precisely its analytic extension) has a simple pole at a
point p ∈ C\Ω. This means that f ′ (and hence K(·, 0)) has a double pole at p. Thus, in order
to remove the damaging influence of this singularity from the numerical process associated
with the use of the BKM or the RM, we introduce the function

η(z) =
d

dz

{
z

z − p

}
= − p

(z − p)2
, (2.6.8)

into the monomial set (2.6.3). An analogous technique is used for treating a double pole or a
branch point singularity, of the form (1.4.8) or (1.4.9), at some point p ∈ C\Ω. For example,
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the singular function for treating branch point singularity of the form (1.4.9) is

η(z) =
d

dz

{
(z − p)−m/n

}
. (2.6.9)

In the case of the exterior mapping problem of § 2.4.3, the BKM (or RM) approximations
(2.4.35) (to the mapping function φ : ΩE := Ext(Γ) → {w : |w| > 1} and to the capacity
c := cap(Γ)) are obtained, from (2.4.35), after first computing the BKM (or the RM) approx-
imation to the interior mapping function f̂ : Ω̂ := Int(Γ̂) → D1, where Γ̂ is the image of the
boundary curve Γ under the inversion z → 1/z. Thus, in this case, we are interested in the
singular behavior (in C \ Ω̂) of f̂ . If this function has a pole-type singularity at some point
p̂ ∈ C\Ω̂, then we proceed as above and augment the monomial set ηj(ζ) = ζj−1, j = 1, 2, . . .,
corresponding to the space L2(Ω̂), by introducing the appropriate singular function. In this
connection we recall the following:

As was indicated in § 1.4.2, the use of the inversion z → 1/z makes it less likely for f̂ to
have pole-type singularities. For example, if the original boundary curve Γ is a polygon, then
f̂ has no pole-type singularities in C \ Ω̂. If, on the other hand, part of Γ is a circular arc
whose center p lies in Int(Γ) and does not coincide with 0, then (in general) f̂ has a simple
pole at the point p̂ := 1/p ∈ C \ Ω̂.

We consider next a doubly-connected domain Ω of the form (2.5.1), and assume that it
has common symmetric points at

p1 ∈ Int(Γ1) and p2 ∈ Ext(Γ2). (2.6.10)

Then, our discussion in § 1.4.2 suggests that the singular behavior of the function H at these
two points can be reflected, by taking as basis set (for use with the ONM or the VM) the
augmented set obtained by introducing into (2.6.4) the functions

η1(z) =
1

z − p1
− 1

z
and η2(z) =

1
z − p2

. (2.6.11)

(The term −1/z is introduced in η1, so that the function has a single-valued integral in Ω.)
We consider now the treatment of singularities that the mapping function f might have

on the boundary ∂Ω of the domain under consideration, and recall that these are always
corner singularities of the type discussed in § 1.4.1. We also recall that the asymptotic form
of these singularities can be determined from the expansions (1.4.1)–(1.4.3) of Lehman [102].

Assume first that Ω is simply-connected and suppose that part of ∂Ω consists of two
analytic arcs that meet at a point zc and form there a corner of interior angle απ, where
0 < α < 2. Then, in order to remove the damaging influence of the resulting singularity of
f ′ from the numerical process, we construct the BKM (or RM) basis set by introducing into
the monomial set (2.6.3) the derivatives of the first few singular terms of the appropriate
asymptotic series (1.4.1), (1.4.2) or (1.4.3). (Recall that (1.4.1) is used if α is rational, (1.4.2)
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if α is irrational, and (1.4.3) if both arms of the corner are straight lines, for both rational
and irrational α.) That is, the singular basis functions used are of the form

η(z) =
d

dz

{
(z − zc)k+l/α

}
, (2.6.12)

and
η(z) =

d

dz

{
(z − zc)k+l/α(log(z − zc))m

}
, (2.6.13)

where k ∈ N0 and l, m ∈ N.
In the case of the exterior mapping problem of § 2.4.3, a corner of exterior angle απ at

a point zc ∈ Γ is transformed by the inversion z → 1/z into a corner of interior angle απ at
the point ζc := 1/zc ∈ Γ̂. Therefore, since the BKM (or RM) approximation to the mapping
function φ is determined by means of (2.4.35) from the corresponding approximation to the
interior mapping function f̂ : Ω̂ := Int(Γ̂) → D1, the details for constructing the augmented
basis for ÃL2(Ω̂) are the same as those given above. It is, however, important to observe
that the inversion z → 1/z =: ζ transforms a straight line γ ∈ z-plane into a straight line
γ̂ ∈ ζ-plane, only if γ passes through the origin of the z-plane; see Exercise 1.6. This means
that in the case of the mapping function f̂ , the simple asymptotic expansion (1.4.3) cannot
be assumed, in general, even if both the arms of the corner zc are straight lines.

In the doubly-connected case, the question regarding the choice of basis functions for
dealing with the corner singularities of the function H, can again be answered by using the
asymptotic expansions (1.4.1)–(1.4.3). Here, however, the form of the ONM and VM singular
functions used for augmenting the set (2.6.4) depends on whether the corner point zc lies on
the inner or outer component of ∂Ω. More precisely, the singular functions are of the form
(2.6.12)–(2.6.13) when zc is on the outer boundary curve Γ2, and of the form

η(z) =
d

dz

{(
1
z
− 1

zc

)k+l/α
}

(2.6.14)

and

η(z) =
d

dz

{(
1
z
− 1

zc

)k+l/α (
log

(
1
z
− 1

zc

))m
}

, (2.6.15)

when zc is on the inner boundary curve Γ1; see the remark below.

Remark 2.6.1 Recall the remark that a function u analytic in a doubly-connected domain
Ω := Int(Γ2)∩Ext(Γ1) can be expressed as a sum u = uI +uE , where uI is analytic in Int(Γ2)
and uE is analytic In Ext(Γ1) (see § 2.5), and observe that the basis sets used in the ONM
and VM can be considered to consist of two component sets: (i) a set corresponding to the
interior conformal mapping problem for Int(Γ2), that consists of the monomial set (2.6.3)
and the appropriate singular functions that correspond to the associated function H, and (ii)
a set corresponding to the exterior mapping problem for Ext(Γ1), that consists of the set
1/zj+1, j = 1, 2, . . . and the appropriate singular functions that correspond to the associated
function H.
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2.6.2 Rotational symmetry

As before, we let the pair Ω, f denote either: (i) a simply-connected domain (with 0 ∈ Ω) and
the mapping function (2.4.1)–(2.4.2), or (ii) a doubly-connected domain of the form (2.5.1)
and the mapping function (2.5.2)–(2.5.3). In this subsection we explain how we can take
advantage of the rotational symmetry that Ω may have, in order to reduce the number of
basis functions used in the orthonormalization process, and thus simplify the computations
of the BKM, RM, ONM and VM procedures.

Let
ωN := exp(2πi/N), N ∈ N, N ≥ 2. (2.6.16)

Then, the domain Ω is said to have N -fold (N ≥ 2) rotational symmetry about the origin if
z ∈ Ω implies ωNz ∈ Ω. It is easy to see that, for such a symmetric domain, the corresponding
mapping function f , its derivative f ′ and the associated function H, given by (2.5.6), satisfy
respectively the following relations

f(ωNz) = ωNf(z), f ′(ωNz) = f ′(z) and ωNH(ωNz) = H(z). (2.6.17)

This means that, given a complete set {ηj}, we need only consider those functions ηj that
satisfy the relation

ηj(ωNz) = ηj(z), (2.6.18)

when Ω is simply-connected, and the relation

ωNηj(ωNz) = ηj(z), (2.6.19)

when Ω is doubly-connected. Thus, in particular, if Ω has N -fold rotational symmetry, then
(instead of (2.6.3)) we may use the set

ηj(z) = z(j−1)N , j = 1, 2, . . . , (2.6.20)

in the BKM and RM, when Ω is simply-connected, and (instead of (2.6.4)) we may use the
set

η2j−1(z) = zjN−1, η2j(z) = 1/zjN+1, j = 1, 2, . . . , (2.6.21)

in the ONM and VM, when Ω is doubly-connected. (The above are direct consequences of
the fact that (ωNz)jN = zjN and ωN (ωNz)jN−1 = zjN−1.)

Similarly, the singular functions needed for augmenting the sets (2.6.20) and (2.6.21) can
be constructed so that they reflect the symmetry relations (2.6.17). For example, if Ω is
simply-connected and f has a simple pole at a point p1 ∈ C \ Ω, and hence (because of the
N -fold rotational symmetry) a simple pole at each of the N points

p1 and pj+1 = ωNpj , j = 1, 2, . . . , N − 1, (2.6.22)
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then (in the BKM and the RM) the singular behavior of f ′ at each of these points can be
reflected by introducing into the set (2.6.20) the single singular function

η(z) =
d

dz

{
z

zN − pN
1

}
. (2.6.23)

(Observe that, since 1, ωN , ω2
N , . . . , ωN−1

N , are the N Nth roots of unity,

zN − pN
1 = (z − p1)(z − ωNp1)(z − ω2

Np1) · · · (z − ωN−1
N p1)

= (z − p1)(z − p2)(z − p3) · · · (z − pN ). )

The case where a doubly-connected domain Ω has N -fold rotational symmetry is treated in
a similar manner.That is, if Ω has a pair of common symmetric points at (2.6.10), then the
singular behavior of the function H at these two points and at the other (N − 1) pairs (that
occur because of the symmetry) is reflected by introducing into the ONM (or VM) basis set
(2.6.21) the two singular functions

η1(z) =
NzN−1

zN − pN
1

− N

z
and η2(z) =

NzN−1

zN − pN
2

. (2.6.24)

The construction of a single “symmetric” function for dealing with the branch point
singularities at M singular symmetric corners

z1 and zj = ωNzj−1, j = 2, 3, . . . , N, (2.6.25)

on ∂Ω, is a little more involved. If Ω is simply-connected and the interior angle at each of
the corners (2.6.25) is απ, then the N singular functions of the form (2.6.12) that correspond
to these corners can be combined into a single function as follows:

Let s = k + l/α− 1, and set

ξj(z) := (z − zj)s

= |z − zj |s exp{isθj(z)}, j = 1, 2, . . . , N, (2.6.26)

where the arguments θj(z) := arg(z − zj), j = 1, 2, . . . , M , are defined so that they are
continuous and single-valued in Ω. Then, it is always possible to determine coefficients cj ,
j = 2, 3, . . . , N , so that the function

η(z) = ξ1(z) +
N∑

j=2

cjξj(z), (2.6.27)

satisfies the symmetry relation η(ωNz) = η(z). To see this we note that

ξj+1(ωNz) = djξj(z), j = 1, 2, . . . , N, (2.6.28)
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where

ξN+1 = ξ1 and dj := exp
{

2πis(
1
N

+ κj)
}

, j = 1, 2, . . . , N, (2.6.29)

and where each κj is an integer that depends on the branch cuts used for defining the functions
θj and θj+1. (It is easy to show that d1d2 · · · dN = 1 and κ1 + κ2 + · · · + κN + 1 = 0; see
Exercise 2.14.) Hence,

η(ωNz) = ξ1(ωNz) +
N∑

j=2

cjξj(ωNz)

= dNξN (z) +
N−1∑

j=1

cj+1djξj(z). (2.6.30)

Therefore, from (2.6.27) and (2.6.30) (in order that η(ωNz) = η(z)), the coefficients cj must
be given by

cN = dN and cj = cj+1dj , j = N − 1, N − 2, . . . , 2. (2.6.31)

It is important to observe that above constants depend on the branches used for defining the
functions ξj . For this reason, great care must be taken when constructing singular functions
of the form (2.6.27).

The same procedure (but with obvious modifications) can be used in order to construct
symmetric singular ONM or VM basis functions, for dealing with branch point singularities
at M symmetric corners (2.6.25) on ∂Ω, in the case where Ω is doubly-connected. In this
case, the singular functions are linear combinations of functions of the form (2.6.26), if the
corners zj , j = 1, 2, · · · , N , lie on the outer boundary component Γ2, and of the form

ξj(z) =
1
z2

(
1
z
− 1

zj

)s

, (2.6.32)

if the zj lie on the inner boundary component Γ1.

Remark 2.6.2 If Ω is simply-connected, then (with the notations used in (2.6.25) and
(2.6.26)) the function

η(z) = (zN − zN
1 )s, (2.6.33)

satisfies the symmetry relation η(ωMz) = η(z) and also reflects the appropriate singular
behavior of f ′ at each of the corners (2.6.25). Similarly, if Ω is doubly-connected and s :=
k + l/α, then the two functions

η(z) =
d

dz

{
(zN − zN

1 )s
}

, (2.6.34)

for when the corners (2.6.25) lie on the outer boundary component Γ2, and

η(z) =
d

dz

{(
1

zN
− 1

zN
1

)s}
, (2.6.35)
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for when the corners (2.6.25) lie on the outer boundary component Γ1, reflect both the
symmetry of H and its singular behavior at each of the corners. Naturally, the symmetric
singular functions (2.6.33)–(2.6.35) are simpler to construct than (2.6.27). However, the
available numerical evidence suggests that higher accuracy is achieved when the N singular
functions, that correspond to the singularities at each of the corners (2.6.25), are combined
into a single symmetric function of the form (2.6.27).

2.6.3 The computation of inner products

The application of each of the numerical methods involves the computation of the inner
products hm,n := (ηm, ηn), where {ηm} is the basis set used in the process. By using the
Green’s formula (2.2.8), these inner products can be expressed as

hm,n =
1
2i

∫

∂Ω
ηm(z)µn(z)dz, where µ

′
n = ηn, (2.6.36)

i.e. the hm,n can be computed by quadrature rather than by cubature. In addition, the
application of each of the ONM and the VM also involves the computation of the inner
products lm := (ηm,H) and, on using (2.5.8), these can be expressed as

lm := i

∫

∂Ω
ηm(z) log |z|dz. (2.6.37)

We note the following in connection with the above:

(i) For all the basis functions considered in Sections 2.6.1 and 2.6.2, the functions µn in
(2.6.36) are known exactly.

(ii) All the basis functions considered in Sections 2.6.1 and 2.6.2 satisfy the continuity
requirements for the formulas (2.2.8) and (2.5.8) to hold, and (because it is assumed
that ∂Ω is piecewise analytic) the same is true for the function H; see Remarks 2.2.3
and 2.5.1.

Let the boundary ∂Ω, of the domain Ω under consideration, consist of Nb analytic arcs
γk, k = 1, 2, . . . , Nb, whose parametric representations are, respectively,

z = zk(t), ak < t < bk, k = 1, 2, . . . , Nb.

Then, the inner products (2.6.36) and (2.6.37) are expressed as

hm,n =
1
2i

Nb∑

k=1

h{k}m,n, h{k}m,n :=
∫ bk

ak

ηm(zk(t))µn(zk(t))z
′
k(t)dt, (2.6.38)

lm = i

Nb∑

k=1

l{k}m , l{k}m :=
∫ bk

ak

ηm(zk(t)) log |zk(t)|z′k(t)dt, (2.6.39)
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and are then computed by Gauss-Legendre quadrature. That is, the integrals h
{k}
m,n and l

{k}
m

in (2.6.38) and (2.6.39) are approximated, respectively, by

h̃{k}m,n :=
Nq∑

j=1

wj,kηm(zj,k)µn(zj,k)z
′
j,k and l̃{k}m :=

Nq∑

j=1

wj,kηm(zj,k) log |zj,k|z′j,k, (2.6.40)

where zj,k := zk(tj,k), z
′
j,k := z

′
k(tj,k), and where wj,k > 0 and tj,k, j = 1, 2, . . . , Nq, are

respectively the weights and quadrature points of the Gauss-Legendre formula of order Nq

that corresponds to the interval (ak, bk). Similarly, the integral

I := −i

∫

∂Ω

1
z

log |z|dz, (2.6.41)

which is needed for the ONM and the VM, is expressed as

I = −i

Nq∑

k=1

I{k}, I{k} :=
∫ bk

ak

1
zk(t)

log |zk(t)|z′k(t)dt

and the I{k} are then approximated by

Ĩ{k} :=
Nq∑

j=1

wj,k
1

zj,k
log |zj,k|z′j,k. (2.6.42)

The above direct use of the Gauss-Legendre formula leads to accurate approximations
when the basis functions ηr are monomials or rational functions of the form (2.6.3), (2.6.4),
(2.6.8) or (2.6.11), provided that: (i) the order Nq of the Gaussian rule used is sufficiently
high, and (ii) care is taken (when selecting the boundary segments γk) for dealing with rational
basis functions reflecting pole singularities in C \ Ω that lie close to ∂Ω. In particular, if the
boundary ∂Ω is polygonal (i.e. if all the γk are straight lines) and the basis functions ηr

are monomials of the form (2.6.3), then (for sufficiently high Nq) the process will give the
exact values of the inner products hr,s. (Recall that a Gaussian rule of order Nq is exact for
polynomials of degree 2Nq − 1.)

The direct use of the Gauss-Legendre formula is not, in general, recommended when, due
to the presence of a corner at zc ∈ ∂Ω, the basis set includes singular functions of the form
(2.6.12)–(2.6.13) or (2.6.14)–(2.6.15). This is because, in such a case, some of the integrals in
(2.6.38) and (2.6.39) will be singular and, as a result, the Gauss-Legendre formula may fail
to produce sufficiently accurate approximations. However, the severity of the corresponding
integrand singularities can be reduced considerably or, in some cases, removed completely by
means of a simple re-parametrization of the boundary. This can be done as described below.

Consider an integral of the form

Iγ :=
∫

γ
(z − zc)r(log(z − zc))` ϕ(z)dz, (2.6.43)
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over a boundary segment γ of Ω with parametric equation

z = z(t), t0 < t < t1, (2.6.44)

with zc = z(t0) and z′(t0) 6= 0. We assume that γ is one of the arms of a singular corner
zc ∈ ∂Ω, that the function

(z − zc)r(log(z − zc))`, r ∈ R, (r > −1/2), ` ∈ N0, (2.6.45)

is one of the singular functions introduced in the basis set for dealing with the singularity at
zc, and that the function ϕ is analytic on the closure of γ. Then Iγ can be expressed as

Iγ =
∫ t1

t0

(z(t)− zc)r(log(z(t)− zc))` ϕ(z(t))z′(t)dt, (2.6.46)

with the integrand having a singularity of the form

(t− t0)r(log(t− t0))`, (2.6.47)

at t = t0. The above describes the singular form that some of the integrals (2.6.38)–(2.6.39)
have, when the basis set contains singular functions of the form (2.6.45).

Now let
t = t(s) := t0 + (t1 − t0)sν , ν ∈ N, 0 < s < 1, (2.6.48)

and define a new parametrization of γ by means of

z = τ(s) := z(t(s))− zc, 0 < s < 1. (2.6.49)

Also, let
ψ(s) := ν × (t1 − t0)ϕ(zc + τ(s)). (2.6.50)

Then, the integral (2.6.46) can be written as

Iγ =
∫ 1

0
(τ(s))r(log τ(s))`sν−1ψ(s)ds. (2.6.51)

The significance of the re-parametrization (2.6.48)–(2.6.49) is that it transforms the integrand
singularity (2.6.47) into a singularity of the form s(r+1)ν−1(log s)`, at s = 0. Therefore, if
ν is chosen to be sufficiently large, then the application of the Gauss-Legendre formula to
(2.6.51) will give an accurate approximation to Iγ . It is important to note that, in many
cases, the above re-parametrization process removes completely the integrand singularities
of the integrals (2.6.38). This occurs when r is rational, ` = 0 and the arms of the corner
at z0 are both straight lines. Assume, for example, that part of ∂Ω consists of two straight
line segments γ1 and γ2 which meet at the point z0 and form there a corner of interior angle
pπ/q, p 6= 1, and suppose that (because of this) the basis set contains functions of the form

(z − zc)
kp+lq−p

p , k ∈ N0, l ∈ N. (2.6.52)
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Then, the integrand singularities that correspond to the use of these basis functions can be
removed completely from the integrals (2.6.38), by using the following parametric represen-
tations for γ1 and γ2:

z = aj(t− tc)p exp{iθj}+ zc, z ∈ γj , j = 1, 2, (2.6.53)

where tan θj , j = 1, 2, are respectively the slopes of the straight lines γj , j = 1, 2, and where
aj , j = 1, 2, are real constants that are chosen so that γj , j = 1, 2, correspond respectively
to intervals t1 < t < tc and tc < t < t2.

We end by indicating how the computation of the integrals (2.6.36), (2.6.37) and (2.6.41)
can be simplified in the case where the domain Ω under consideration has N -fold rotational
symmetry about the origin. In such a case, it is easy to see that if ∂ΩN denotes one of the
N symmetric parts of ∂Ω, then:

(i) The inner products (2.6.36) can be written as

hm,n = N × 1
2i

∫

∂ΩN

ηm(z)µn(z)dz, (2.6.54)

provided that the basis functions satisfy the relation (2.6.18) in the BKM or the RM,
and the the relation (2.6.19) in the ONM or the VM.

(ii) The inner products (2.6.41) can be written as

lm := Ni

∫

∂ΩN

ηm(z) log |z|dz, (2.6.55)

provided that the ONM or VM basis functions satisfy the relation (2.6.19).

(iii) In the ONM or the VM, the integral (2.6.41) can be written as

I := −Ni

∫

∂ΩN

1
z

log |z|dz. (2.6.56)

2.6.4 Estimate of maximum error in modulus

Let

f(z) = |f(z)| exp{iϑ(z)},

be the mapping function of the domain Ω under consideration, and let

fn(z) = |fn(z)| exp{iϑn(z)},
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be the corresponding nth BKM, RM, ONM or VM approximation to f . Then, by the maxi-
mum modulus principle∗, the maximum of

|f(z)− fn(z)|2 = | |f(z)| − |fn(z)| |2

+ 4|f(z)||fn(z)| sin2

(
ϑ(z)− ϑn(z)

2

)
,

is attained at some point on the boundary ∂Ω of Ω. Naturally, in the simply-connected case,

|f(z)| = 1, z ∈ ∂Ω.

Also, in the doubly-connected case, if Ω := Int(Γ2) ∩ Ext(Γ1) and f is normalized to map Ω
onto A(1, M) := {w : 1 < |w| < M}, where M is the conformal modulus of Ω, then

|f(z)| =
{

1, z ∈ Γ1,

M, z ∈ Γ2.

The above suggest that the maximum error in modulus can be estimated as follows:

(i) In the simply-connected case, by computing the quantity

En := max
j
|1− |fn(zj)||, (2.6.57)

where {zj} is a set of appropriately chosen boundary test points on ∂Ω.

(ii) In the doubly-connected case, by computing the quantity

En := max{max
j
|1− |fn(zj,1)||, max

j
|Mn − |fn(zj,2)||}, (2.6.58)

where {zj,1} and {zj,2} are test points on the boundary components Γ1 and Γ2, re-
spectively, and Mn is the nth approximation to the conformal modulus M . We expect
(2.6.58) to be a reliable estimate because, in general, the approximation Mn is more
accurate than |fn(z)|, z ∈ ∂Ω; see Theorems 2.8.8 and 2.8.9 and the numerical results of
Example 2.7.5. (Heuristically, this can be explained by observing that the computation
of Mn involves an averaging process; see (2.5.19).)

Each of the numerical methods should be programmed recursively so that it computes a
sequence of approximations {fn}, where at each step the number of basis functions used is
increased by one. If this is done, then it is quite simple to include a termination criterion for
determining an “optimum” number nopt of basis functions which gives a “best” approximation
in some predefined sense. The number nopt can be determined by using essentially the
following simple procedure:

∗This principle states that a function analytic in a bounded domain and continuous up to and including

its boundary attains its maximum modulus on the boundary.
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A minimum number nmin of basis functions to be used is defined and then, for each
n > nmin, the error estimate En is computed by means of (2.6.57) or (2.6.58). If, at the
(n + 1)th step, the inequality

En+1 < En (2.6.59)

holds, then the number of basis functions is increased by one and the approximation fn+2

is computed. When for a certain value of n, due to numerical instability, (2.6.59) no longer
holds, then the process is terminated and n is taken to be the optimum number nopt of basis
functions.

We note the following in connection with the above process for determining nopt:

(i) If an augmented basis is used, then the value of nmin should be chosen so that the set
{η1, η2, . . . , nmin} includes the main singular basis functions.

(ii) The process does not take into account the possibility of non-monotonic convergence.
(Even with exact arithmetic, there is no guarantee that the sequence {En} will decrease
monotonically.) It might be possible to remedy this shortcoming by computing the
quantities

Ẽnmin = Enmin , Ẽn = min{En, Ẽn−1}, n = nmin + 1, nmin + 2, . . . , (2.6.60)

and taking as nopt the first n > nmin for which

Ẽn+j = Ẽn, j = 1, 2, 3. (2.6.61)

(iii) In general the process should include a termination criterion that safeguards against
slow convergence. For example, we may take nopt to be the first n > nmin for which
either the equality (2.6.61) or the inequality

Ẽn+5 > 0.5Ẽn, (2.6.62)

holds.

Regarding the requirement for the recursive implementation of the methods, we note
that in the BKM and the ONM the Gram-Schmidt process is, by its nature, recursive. We
also note that, in the RM and the VM, the computations for the Cholesky solution of the
linear systems (2.4.24) and (2.5.29) can be organized, as described in [167, §2.3], so that the
successive approximations to f are determined recursively.

2.7 Numerical examples I

The first five examples of this section are taken from [105] and [122]–[124]†. In each of these
examples we list the following:

†In [105] and [122]–[124], all computations were carried out using single precision FORTRAN on a CDC

7600 computer. The precision of single length working on the CDC was ε = 2−47 ≈ 7.1× 10−15.
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(i) The augmented basis used for dealing with the singularities of the mapping function
under consideration; see § 2.6.1 and § 2.6.2.

(ii) The Gaussian quadrature rule used and, when applicable, the special parametric repre-
sentations used for representing ∂Ω; see § 2.6.3.

(iii) The boundary test points used for computing the estimate (2.6.57) or (2.6.58) of the
maximum error in modulus, and for determining the optimum number nopt of basis
functions; see § 2.6.4.

In presenting the numerical results, we use the abbreviations BKM/MB and BKM/AB to de-
note, respectively, the BKM with monomial and augmented basis sets, and employ analogous
abbreviations for the other three numerical methods. (Note that, in the simply-connected
case, the n-th BKM/MB (or RM/MB) approximation to the mapping function g of (2.4.3)–
(2.4.4) is the n-th Bieberbach polynomial of Ω with respect to 0; see (2.6.5).)

Example 2.7.1 ([105, Example 1]) The use of the BKM for approximating the mapping
f : Ω → D1, where Ω is a rectangle of the form

Ω := {(x, y) : |x| < a, |y| < 1}, a ≥ 1. (2.7.1)

Basis sets: Ω has two-fold rotational symmetry about the origin, when a 6= 1, and four-fold
rotational symmetry when a = 1. Because of this, the monomial basis sets used are:

ηj(z) = z2(j−1), j = 1, 2, . . . , when a 6= 1,

and
ηj(z) = z4(j−1), j = 1, 2, . . . , when a = 1.

The mapping function f has a simple pole singularity at each of the four points z = ±2a and
z = ±2i, i.e. at the symmetric points (the mirror images) of the origin with respect to each
of the four sides of Ω. Because of the symmetry, these four singularities can be reflected by
two singular functions when a 6= 1, and by a single singular function when a = 1. Thus, the
augmented basis sets used are:

η1(z) =
{

z

z2 − 4a2

}′

, η2(z) =
{

z

z2 + 4

}′

, ηj+2(z) = z2(j−1), j = 1, 2, . . . , a 6= 1,

and

η1(z) =
{

z

z4 − 16

}′

, ηj+1(z) = z4(j−1), j = 1, 2, . . . , a = 1.

Quadrature: Gauss-Legendre formula with 48 quadrature points along each side of the rect-
angle. Because of the symmetry the integrations need only be performed along one of the
symmetric parts of ∂Ω.
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Boundary test points: The points are distributed in steps of a/5 on the two sides of Ω that
lie on the lines y = ±1, and in steps of 0.2 on the two sides that lie on the lines x = ±a.
Because of the symmetry, En can be determined by sampling (2.6.57) at the test points of
only one of the symmetric parts of ∂Ω.

Numerical results: The BKM/MB and BKM/AB results (i.e. the values of nopt and Enopt)
that correspond to the three cases a = 1, a = 2 and a = 6 are given below.

a = 1 : BKM/MB : nopt = 9, E9 = 1.4× 10−8,

BKM/AB : nopt = 5, E5 = 3.4× 10−11,

a = 2 : BKM/MB : nopt = 17, E17 = 2.1× 10−5,

BKM/AB : nopt = 10, E10 = 2.0× 10−10,

a = 6 : BKM/MB : nopt = 13, E13 = 4.4× 10−2,

BKM/AB : nopt = 10, E10 = 1.9× 10−6.

The numerical results illustrate nicely the substantial improvements in accuracy that can
be achieved by the use of appropriate basis sets that reflect the main singular behavior of the
mapping function. In the example under consideration, the simple pole singularities at the
points ±2i become more serious as a increases, in the sense that these two points “approach”
the boundary points ±i (i.e. their distance from ∂Ω decreases relative to the dimension of
Ω) as a increases. Thus, when a = 1 the singularities are far from ∂Ω and, as a result, the
BKM/MB with nine monomials gives an accurate approximation to f . However, even in this
case, the BKM/AB gives a substantially more accurate approximation to f , with just five
basis functions. Similar remarks apply to the case a = 2, although in this case the damaging
effect of the singularities on the BKM/MB approximation is much more noticeable. When
a = 6, the points ±2i are “close” to ∂Ω and, because, of this the BKM/MB approximation to
f is not accurate. By contrast, the BKM/AB (with ten basis functions) leads to an accurate
approximation to f , which is four powers of 10 better than that of the BKM/MB.

Example 2.7.2 ([122, Example 5.1]) The use of the BKM and the RM for approximating
the mapping f : Ω → D1, where Ω is the trapezium illustrated in Figure 2.1.

Basis sets: The mapping function f has a simple pole singularity at each of the points

p1 = −2i, p2 = 2 + 2i, p3 = 2i and p4 = −2,

which are, respectively, the symmetric points of the origin 0 with respect to the sides AB,
BC, CD and DA of the trapezium. The mapping function also has a branch point singularity
due to the corner (of interior angle 3π/4) at the point C. For this reason, the augmented
basis is formed by introducing the monomial set (2.6.3) the four rational functions

d

dz

{
z

z − pj

}
, j = 1, 2, 3, 4,



76 CHAPTER 2. ORTHONORMALIZATION METHODS

that reflect the pole singularities of f at the points pj , j = 1, 2, 3, 4, and the two functions

d

dz

{
(z − zC)4k/3

}
, k = 1, 2, (2.7.2)

that reflect the main singular behavior of f at the corner zC := C.

A(−1,−1)

D(−1, 1) C(1, 1)

B(3,−1)

·0

Ω

Figure 2.1

Quadrature: Gauss-Legendre formula with 16 quadrature points on each side of the trapezium.
In order to deal with the integrant singularities that the basis functions (2.7.2) introduce, the
parametric representations of BC and CD are taken to be:

z =

{
(zB − zC)(2− t)3 + zC , 1 ≤ t ≤ 2, for BC,

(zD − zC)(t− 2)3 + zC , 2 ≤ t ≤ 3, for CD.

Boundary test points: Sixteen equally spaced points, in steps of 0.25, starting from A.

Numerical results: The BKM values of nopt and the corresponding error estimates Enopt for
each of the four methods are listed below. For each method, we also give the approximation
rnopt to the conformal radius of Ω with respect to 0.

BKM/MB : nopt = 13, E13 = 5.87× 10−3, r13 = 1.156 082 653 13,
RM/MB : E13 = 5.87× 10−3, r13 = 1.156 082 653 25,

BKM/AB : nopt = 16, E16 = 5.37× 10−6, r16 = 1.156 015 153 24,
RM/AB : E16 = 5.29× 10−6, r16 = 1.156 015 153 16.

Example 2.7.3 ([123, Example 3.3]) The use of the BKM and the RM for approximating
the exterior conformal mapping φ : ΩE → {w : |w| > 1}, where ΩE := C \ Ω and Ω is the
equilateral triangle illustrated in Figure 2.2.
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Basis sets: Both ΩE and the corresponding bounded domain Ω̂ (the image of ΩE under the
inversion z → 1/z) have three-fold rotational symmetry about the origin. Because of this,
the monomial set used for approximating the interior conformal mapping f̂ : Ω̂ → D1 is

ζ3(j−1), j = 1, 2, . . . . (2.7.3)

The points zCj := Cj , j = 1, 2, 3, are re-entrant corners, each of angle 5π/3, of ΩE . Therefore
the points ζCj = 1/zCj , j = 1, 2, 3, are re-entrant corners (of the same interior angle) of Ω̂.
For this reason, the augmented basis for the mapping f̂ must include functions of the form

d

dζ

{
(ζ − ζCj )

k+ 3l
5

}
, k = 0, 1, . . . , l ≥ 1.

Here, the augmented set is formed by introducing into (2.7.3) the singular functions

η
{r}
j (z) :=

d

dζ

{
(ζ − ζCj )

r
}

, r =
3
5
,
6
5
,
8
5
,
9
5
, j = 1, 2, 3.

Because of the symmetry, for each r, the three functions η
{r}
j , j = 1, 2, 3, can be combined

into a single singular function in the manner described in § 2.6.2; see (2.6.26)–(2.6.27).

C1 C2

C3(0, 2)

·
F (0,−1)

·G·H

·0

Figure 2.2

Quadrature: Gauss-Legendre formula with 48 quadrature points along C1F , FC2, . . ., HC1.

In order to deal with the integrant singularities that the singular basis functions η
{r}
j intro-

duce, the following parametric representation of ∂Ω is used:

z =





(zH − zC1)(1− t)5 + zC1 , 0 ≤ t ≤ 1, for HC1,

(zF − zC1)(t− 1)5 + zC1 , 1 ≤ t ≤ 2, for C1F,

(zF − zC2)(3− t)5 + zC2 , 2 ≤ t ≤ 3, for FC2,

e.t.c.
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Because of the symmetry, the integrations need only be performed along one of the symmetric
parts HC1F , FC2G or GC3H of ∂Ω; see (2.6.54).

Boundary test points: Because of the symmetry we only consider nine points on HC1F . These
are defined by the parametric representation of HC1F , with t increasing from 0 in steps of
0.25 up to t = 2.

Numerical results: The BKM values of nopt and the corresponding error estimates for each of
the BKM/MB, BKM/AB and RM/AB are listed below. For each of the three methods, we
also give the approximation cnopt to the capacity of ∂Ω.

BKM/MB : nopt = 20, E13 = 2.7× 10−1, c13 = 1.399 · · · ,

BKM/AB : nopt = 13, E13 = 3.2× 10−5, c13 = 1.460 998 57,
RM/AB : E13 = 3.3× 10−5, c13 = 1.460 998 55,

Exact value: c = 1.460 998 49.

The exact value of c listed above was computed from the exact formula given in Pólya and
Szegö [141, p. 256].

Example 2.7.4 ([124, Example 5.2]) The use of the ONM and the VM for approximating
the conformal mapping f : Ω → {w : 1 < |w| < M}, where Ω is the square frame

Ω := {(x, y) : a < |x| < 1, |y| < 1} ∪ {(x, y) : |x| < 1, a < |y| < 1}, a < 1; (2.7.4)

see Figure 2.3.

Basis sets: Ω has four-fold rotational symmetry about the origin and, because of this, the
monomial basis set used is:

η2j−1(z) = z4j−1, η2j(z) = 1/z4j+1, j = 1, 2, . . . ,

Each of the four corners Cj , j = 1, 2, 3, 4, of the inner square, is a re-entrant corner (of interior
angle 3π/2) of Ω. For this reason, the augmented basis must include functions of the form

d

dz

{(
1
z
− 1

zCj

)k+ 2l
3

}
, k = 0, 1, . . . , l ≥ 1.

Here, the augmented set is formed by introducing into monomial set the singular functions

η
{r}
j (z) :=

d

dz

{(
1
z
− 1

zCj

)r}
, r =

2
3
,
4
3
,
5
3
,
7
3
, j = 1, 2, 3, 4.

Because of the symmetry, for each r, the four functions η
{r}
j , j = 1, 2, 3, 4, can be combined

into a single singular function in the manner described in § 2.6.2.
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·0 ·A(a, 0) ·D(1, 0)

·C1

·E

Ω

·B·C2

·
C3

·
C4

·F

Figure 2.3

Quadrature: Gauss-Legendre formula with 48 quadrature points along each half side of the
inner and outer squares. In order to deal with the integrant singularities that the singular ba-
sis functions η

{r}
j introduce, the parametric representation of the inner boundary component

is taken to be:

z =





(zA − zC1)(1− t)3 + zC1 , 0 ≤ t ≤ 1, for AC1,

(zB − zC1)(t− 1)3 + zC1 , 1 ≤ t ≤ 2, for C1B,

e.t.c.

Because of the symmetry, the integrations need only be performed along the symmetric parts
AC1B and DEF of the inner and outer boundary components; see (2.6.54)–(2.6.56).

Boundary test points: Five equally spaced points on each of AC1, C1B, DE and EF .

Numerical results: The ONM values of nopt and the corresponding ONM/MB, ONM/AB and
VM/AB error estimates are listed below, for each of the three cases a = 0.2, a = 0.5 and
a = 0.8. In each case, we also give the corresponding approximation Mnopt to the conformal
modulus of Ω.
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a = 0.2 : ONM/MB : nopt = 30, E30 = 1.8× 10−2, M30 = 4.575 2 · · · ,

ONM/AB : nopt = 24, E24 = 1.1× 10−8, M24 = 4.570 859 677 117,
VM/AB : E24 = 1.1× 10−8, M24 = 4.570 859 677 116,

Exact value: M = 4.570 859 677 215.

a = 0.5 : ONM/MB : nopt = 30, E30 = 4.3× 10−2, M30 = 1.856 9 · · · ,

ONM/AB : nopt = 24, E24 = 5.0× 10−8, M24 = 1.847 709 011 217,
VM/AB : E24 = 5.0× 10−8, M24 = 1.847 709 011 216,

Exact value: M = 1.847 709 011 236.

a = 0.8 : ONM/MB : nopt = 30, E30 = 5.0× 10−2, M30 = 1.250 2 · · · ,

ONM/AB : nopt = 26, E26 = 3.7× 10−7, M26 = 1.201 452 809 479,
VM/AB : E26 = 4.1× 10−7, M26 = 1.201 452 809 478,

Exact value: M = 1.201 452 809 469.

The exact values of M listed above were computed by using the exact formulas of Bowman
[18, p. 104] which give M in terms of elliptic integrals; see also § ?.

Example 2.7.5 ([124, Example 5.1], [135, Example 1]) The use of the ONM and the VM
for approximating the conformal mapping f : Ω → {w : 1 < |w| < M}, where Ω is the
doubly-connected domain

Ω := {(x, y) : |x| < 1, |y| < 1} ∩ {z : |z| > a, a < 1}, (2.7.5)

i.e. Ω is a square, of side length 2, with a concentric circular hole of radius a < 1.

Basis sets: As in Example 2.7.4, because of the four-fold rotational symmetry about the
origin, the monomial basis set used is:

η2j−1(z) = z4j−1, η2j(z) = 1/z4j+1, j = 1, 2, . . . ,

In this case there are no corner singularities, but the function H has singularities at the
common symmetric points with respect to the two boundary components of ∂Ω, i.e. at the
points

z
{j}
1 = z1ω

j−1
4 , z

{j}
2 = z2ω

j−1
4 , j = 1, 2, 3, 4,

where
z1 = 1 +

√
1− a2, z2 = 1−

√
1− a2,

and ω4 := exp(πi/2); see Exercise 1.21. At each of these points, the singular behavior of
H mimics that of a simple pole; see § 1.4.2. Thus, because of the symmetry, the singular
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behavior of H at the common symmetric points can be reflected approximately by means of
the two singular basis functions

η{1}(z) =
4z3

z4 − z4
1

and η{2}(z) =
4z3

z4 − z4
2

− 4
z

;

see § 2.6.2.

Quadrature: Gauss-Legendre formula with 48 quadrature points along each quarter of the
circle and each half side of the square. Because of the symmetry, the integrations need only
be performed along the circular arc z = aeiϑ, 0 ≤ ϑ ≤ π/4, and the half side λ := {z : z =
1 + iy, 0 ≤ y ≤ 1} of the square.

Boundary test points: Because of the symmetry, these are taken to be the points z = aeiτ ,
τ = 0(π/16)π/4 on the circle, and the points z = 1 + ih, h = 0(0.25)1 on the half side λ of
the square.

Numerical results: The ONM/MB values of nopt and the corresponding ONM/MB and VM/MB
error estimates are listed below, for each of the three cases a = 0.2, a = 0.4 and a = 0.8. In
each case, we also give the corresponding approximation Mnopt to the conformal modulus of
Ω.

a = 0.2 : ONM/MB : nopt = 20, E20 = 9.5× 10−12, M20 = 5.393 525 710 616,
VM/MB : E20 = 9.0× 10−12, ?

a = 0.4 : ONM/MB : nopt = 22, E22 = 5.2× 10−12, M22 = 2.696 724 431 230,
VM/MB : E22 = 3.1× 10−12, ?

a = 0.8 : ONM/MB : nopt = 28, E28 = 1.8× 10−10, M30 = 1.342 990 365 599,
VM/MB : E28 = 7.0× 10−11, ?

(? In each case the VM approximation to M agrees with the ONM approximation to the
number of figures shown.)

The numerical results listed above illustrate the remarkable accuracy that can be achieved
by the ONM/MB and the VM/MB, when the domain under consideration is highly symmetric
and does not involve corner singularities. In fact, as is reported in [135, p. 103], for the three
values of a considered, the use of an augmented basis (involving the singular functions η{1}

and η{2}) can lead to less accurate approximations. This is due to a deterioration of the
stability properties of the process, and can be explained by noting that the function η{2} has
the series expansion

η{2}(z) = (4/z2)
∞∑

j=1

(z2/z)4j+1, |z| > z2,
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which for “small” values of a converges rapidly in Ω. (In other words, for “small” values
of a there is “near” linear dependence between η{2} and the first few “negative” monomials
η2j(z) = 1/z4j+1, j = 1, 2, . . . ; see also Section 2.9.) In fact, the inclusion of the singular
functions η{1} and η{2} into the basis set leads to considerable improvements only in cases
where the value of a is very close to unity. This is illustrated by the ONM/MB and ONM/AB
results for the cases a = 0.9, a = 0.99 and a = 0.999 which are listed below.

a = 0.9 : ONM/MB : nopt = 25, E25 = 4.7× 10−8,

ONM/AB : nopt = 17 E17 = 3.0× 10−9, M17 = 1.184 090 961,

a = 0.99 : ONM/MB : nopt = 25, E25 = 1.9× 10−3,

ONM/AB : nopt = 23 E23 = 1.8× 10−9, M23 = 1.040 412 137,

a = 0.999 : ONM/MB : nopt = 27, E27 = 1.7× 10−2,

ONM/AB : nopt = 11 E11 = 1.3× 10−5, M11 = 1.011 633 061.

The above remark (regarding the use of the functions η{1} and η{2} as singular basis
functions) reflects, more generally, the situation associated with the conformal mapping of
a domain of the form considered in Exercise 1.21. In particular, if (as in Exercise 1.21) Ω
is bounded internally by a circle of radius a and externally by a concentric N -sided regular
polygon, then when N > 4 the function H has a branch point singularity at each of the
N corners of the polygon; see Exercise 1.22. These corner singularities are always serious
and, for this reason, the augmented basis must always contain appropriate “corner” singular
functions. However, as is reported in [135, Example 1], the inclusion of basis functions that
correspond to the common symmetric points leads to improved approximations only when a

is very close to unity.

The numerical results of Examples 2.7.1–2.7.5 illustrate the very serious damage that the
singularities of the mapping function can cause to the accuracy of the numerical process,
and highlight the decisive role that an appropriately chosen “augmented basis set” plays
in overcoming this difficulty. In particular, the numerical results show that it is absolutely
essential to introduce into the basis sets appropriate singular functions in cases where the
mapping function has: (i) pole singularities that lie very close to the boundary (case a = 6,
of Example 2.7.1), and (ii) branch-point boundary singularities due to re-entrant corners
(Examples 2.7.3 and 2.7.4). We also note that the BKM and RM results of Examples 2.7.2
and 2.7.3, and the ONM and VM results of Examples 2.7.4 and 2.7.5 are essentially identical.
These reflect, respectively, the theoretical equivalence of the BKM with the RM and of the
ONM with the VM.

Our last example involves the use of a BKM conformal mapping package, the FORTRAN
package BKMPACK for approximating the simply-connected conformal mapping f : Ω → D1.
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The package is due to Warby [168] and is based, essentially, on the implementation outlined
in Section 2.6. In particular, with regards to the choice of the basis set {ηj}, the package
allows the user to define this set. Alternatively, the package contains a subroutine which,
given a parametric description of ∂Ω, attempts to determine the main corner and pole-type
singularities of f ′, and hence to construct an appropriate set {ηj}. In addition to the mapping
f , BKMPACK can also deal with the exterior conformal mapping φ : C\Ω → {w : |w| > 1},
by making use of the relation (2.4.33) as described in § 2.4.3.

Example 2.7.6 As in Example 1.6.1, we consider the L-shaped domain of Figure 1.4, but
now seek to compute approximations to the cross-ratios c1, c2 and c3, defined in (1.6.4),
by means of the conformal mapping package BKMPACK. The BKMPACK approximations
(which, as in Example 1.6.1, were computed using double precision FORTRAN on a UNIX
environment) are as follows:

c1 ≈ 1.071 832 25, c2 ≈ 3.999 799 19, c3 ≈ 1.077 391 45. (2.7.6)

These correspond to the use of a basis set consisting of the monomials zj , j = 0, 1, . . . , 21,
the four singular functions

{(z − z7)2l/3}′, l = 1, 2, 4, 5,

that reflect the branch point singularity of f ′ at the re-entrant corner z7, and the four rational
functions (

z

z − pj

)′
, j = 1, 2, 3, 4,

that reflect the simple pole singularities of f at the points

p1 = −2i, p2 = −2, p3 = 6 and p4 = 6i.

(This set was constructed, from the parametric description of ∂Ω, by the package itself.) The
BKMPACK estimate of the maximum error in modulus in the computed approximation to
f is 5.0× 10−5.

A comparison with the exact values (1.6.7)–(1.6.8) shows that the approximations (2.7.6)
are correct to about four decimal places only. This is in contrast to the corresponding
CONFPACK and SCPACK approximations (listed Table 1.1), which are (more or less) correct
to machine precision. In addition, both CONFPACK and SCPACK are fully automated and
(to a large extent) adaptive, whereas BKMPACK is much less automated and certainly non-
adaptive.

The comments made above reflect the general situation regarding the use of the three con-
formal mapping packages, and illustrate the fact that, in general, CONFPACK and SCPACK
are much more efficient than BKMPACK, both in terms of accuracy and ease of application.
There are, however, situations where the use of BKMPACK (which like CONFPACK can deal
with the mapping of both polygonal and non-polygonal domains) presents a clear advantage.
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These have to do with applications for which a closed form approximation to the mapping
function is advantageous. (See e.g. [128], where BKMPACK is used in connection with the
study of the asymptotic behavior of the zeros of Bieberbach polynomials.)

2.8 Convergence

As we have seen already (because of the least squares nature of each of the numerical methods
and the result of Theorem 2.2.1) the BKM, RM, ONM and VM approximations converge
uniformly on each compact subset of Ω. In addition, there are several other important results
which, under various assumptions on the smoothness of ∂Ω and the choice of the basis set,
establish the uniform convergence of the approximations in Ω := Ω ∪ ∂Ω, and also provide
estimates of the rates of convergence. The purpose of this section is to present a review of
what we consider to be the most significant of these additional convergence results. However,
because the associated convergence theories are beyond the scope of the present lecture
notes, the results will be given without detailed proofs. Thus, for a good understanding of
the relevant theories, the interested reader will have to consult the corresponding references
which are indicated below.

We consider first the simply-connected case, and examine the current state of the con-
vergence theory associated with the BKM or RM approximations to conformal mapping of
simply-connected domains.

2.8.1 BKM and RM

Let Ω := Int(Γ), where Γ is a closed Jordan curve, assume that 0 ∈ Ω and, as in Section
2.4, let g denote the conformal mapping g : Ω → Dr normalized by the conditions g(0) = 0
and g′(0) = 1. Also, as in § 2.4.3, let ΩE := Ext(Γ) = C \ Ω and let φ denote the exterior
conformal mapping φ : ΩE → {w : |w| > 1}, normalized by the conditions φ(∞) = ∞ and
φ′(∞) > 0. Further, for each R > 1, let ΓR denote generically the locus

ΓR := {z : |φ(z)| = R},

set Γ1 = Γ = ∂Ω, and let ΩR denote the collection of points interior to the “level curve”
ΓR. Finally, let g

{M}
n denote the nth BKM (or RM) approximation to g corresponding to

the monomial basis set (2.6.3) (i.e. g
{M}
n denotes the nth Bieberbach polynomial πn of Ω

with respect to 0; see (2.6.5)). Then, the theory of maximal convergence of polynomial
approximations of Walsh [166, pp. 77–79] leads to the following:

Theorem 2.8.1 Assume that there exists an R > 1 such that the mapping function g has an
analytic (and single-valued) extension throughout ΩR, and let ρ (ρ > 1) be the highest index
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for which g has such an extension in Ωρ. Then, the sequence {g{M}
n } converges maximally

on Ω to g, in the sense that

max
z∈Ω

∣∣∣g(z)− g{M}
n (z)

∣∣∣ = O(R−n), ∀ R, 1 < R < ρ, (2.8.1)

but for no R > ρ.

Proof See [51, pp. 27–35] and [44, p. 125]. The proof makes use of the following:

(i) Bernstein’s lemma, in order to show that (2.8.1) cannot hold for R > ρ. (Bernstein’s
lemma states that if P is a polynomial of degree n and |P (z)| ≤ 1 for z ∈ Γ, then
|P (z)| ≤ Rn for z ∈ ΓR and hence also for z ∈ ΩR; see Exercise 2.17.)

(ii) The fact that there exist (interpolating) polynomials pn ∈ Pn such that

max
z∈Ω

|g′(z)− pn(z)| = O(R−n), ∀ R, 1 < R < ρ ;

see [44, p. 66].

(iii) The observation that the result in (ii) implies that ||g′ − pn|| = O(R−n) and hence
(because of the least squares property (2.4.28) of the function g

{M}′
n ) that

∣∣∣
∣∣∣g′ − g{M}′

n

∣∣∣
∣∣∣ = O(R−n), ∀ R, 1 < R < ρ. (2.8.2)

(iv) Lemma 2.2.3 in conjunction with Bernstein’s lemma, for the transition from (2.8.2) to
(2.8.1); see [51, pp. 27–29]. Alternatively the transition from (2.8.2) to (2.8.1) can be
achieved by using Andrievskii’s polynomial lemma. (Andrievskii’s lemma states that
for every polynomial P of degree n ≥ 2 and with P (0) = 0,

max
z∈Ω

|P (z)| ≤ c(Ω) ·
√

log n · ||P ′||, (2.8.3)

where the constant c(Ω) depends only on Ω; see [5] and [52].)

Theorem 2.8.1 holds whenever Γ := ∂Ω is an analytic curve or, more generally, whenever
the mapping function g is analytic in Ω. The latter might occur when Γ is piecewise analytic
but involves only corners of interior angle π/N , N ∈ N; see (1.4.3). For example, if Ω is the
rectangle (2.7.1) or the equilateral triangle of Figure 2.2, then g is analytic in Ω.

Essentially the same method of analysis can be used to provide theoretical justification
for the substantially improved rates of convergence that are observed, when appropriate
augmented basis sets are used in cases where g is analytic in Ω and the singularities of g

nearest to ∂Ω are simple poles. To see this, let g be analytic in Ω and assume that its
analytic extension across ∂Ω has simple poles at the points pj ∈ ΩE , j = 1, 2, . . . , k, where

|φ(p1)| = |φ(p2)| = · · · = |φ(pk)|.
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Also, assume that the other singularities of the analytic extension of g occur at points
pk+1, pk+2, . . ., where

|φ(p1)| < |φ(pk+1)| ≤ |φ(pk+2)| ≤ · · · .

This means that (2.8.1) holds with
ρ = |φ(p1)|. (2.8.4)

Next, let g
{A}
n denote the n-th BKM (or RM) approximation to g corresponding to the

augmented basis

ηj(z) =
d

dz

{
z

z − pj

}
, j = 1, 2, . . . , k, ηk+j = zj−1, j = 1, 2, . . . , (2.8.5)

which reflects the dominant singularities of g′. Then, the k singular basis functions ηj ,
j = 1, 2, . . . , k, “cancel out” the nearest singularities of g at the points pj , j = 1, 2, . . . , k, in
the sense of the following theorem:

Theorem 2.8.2 With the notations and assumptions introduced above, the sequence of ra-
tional approximations {g{A}n } converges maximally on Ω to g, in the sense that

max
z∈Ω

∣∣∣g(z)− g{A}n (z)
∣∣∣ = O(R−n), ∀ R, 1 < R < ρ{A}, (2.8.6)

where
ρ{A} = |φ(pk+1)| > ρ. (2.8.7)

Proof See [136, p. 652]. Here, the L2–norm estimate
∣∣∣
∣∣∣g′ − g{A}

′
n

∣∣∣
∣∣∣ = O(R−n), ∀ R, 1 < R < ρ{A}, (2.8.8)

is obtained from the least squares property (2.4.28) of g
{A}′
n , after first applying the argument

of Step (ii) of the proof of Theorem 2.8.1 to the derivative of the function which is obtained by
subtracting from g the pole singularities at the points pj , j = 1, 2, . . . , k. Also, the transition
from (2.8.8) to (2.8.6) is achieved by using again Lemma 2.2.3 but, in this case, in conjunction
with Gaier’s extension of the Andrievskii polynomial lemma to rational functions; see [52].
(Gaier’s extension of Andrievskii’s lemma can be stated as follows: Let R = P/Q be a rational
function, where P is a polynomial of degree n ≥ 2 with P (0) = 0, and Q is a fixed polynomial
with Q(z) 6= 0 for z ∈ Ω. Then

max
z∈Ω

|R(z)| ≤ c(Ω, Q) ·
√

log n · ||R′||, (2.8.9)

where the constant c(Ω, Q) depends only on Ω and Q.)

As was previously remarked, the results of Theorems 2.8.1 and 2.8.2, on the convergence
of the BKM or RM approximations to the mapping function g, apply if the boundary of Ω
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is analytic and only in some very exceptional cases if ∂Ω is piecewise analytic. We shall now
consider the more general case where ∂Ω is piecewise analytic without cusps.

Suppose that ∂Ω consists of a finite number of analytic arcs joined together so that
adjacent arcs meet at κ points ζj , j = 1, κ, and form there corners with interior angles αjπ,
0 < αj < 2, j = 1, κ. (Here j = 1, κ, stands for j = 1, 2, . . . , κ.) As before, let g

{M}
n denote

the n-th BKM (or RM) approximation to g corresponding to the monomial basis set (2.6.3)
(i.e. g

{M}
n denotes the n-th Bieberbach polynomial πn of Ω with respect to 0). Then, we have

the following:

Theorem 2.8.3 Let ∂Ω be a piecewise analytic Jordan curve and, with the notations intro-
duced above, for each αj, j = 1, κ, let

γj :=

{
2(2− αj)/αj , if αj = 1/N with N ∈ N,
(2− αj)/αj , otherwise.

(2.8.10)

Then

max
z∈Ω

∣∣∣g(z)− g{M}
n (z)

∣∣∣ = O
(

log n

nγ

)
, (n →∞), (2.8.11)

with

γ := min{γj ; j = 1, κ}. (2.8.12)

Proof See Gaier [56]. The proof is based on refining earlier methods of analysis ([152], [5])
and, in particular, the methods used by Gaier himself in two earlier papers ([53] and [54]).
It involves the following three main steps: (i) making use of Lehman’s asymptotic formulas
(1.4.1)–(1.4.3), in order to show that there exist polynomials pn ∈ Pn such that

||g′ − pn|| = O
(√

log n

nγ

)
, (n →∞),

(ii) using the least squares property of g
{M}′
n to conclude that

∣∣∣
∣∣∣g′ − g{M}′

n

∣∣∣
∣∣∣ = O

(√
log n

nγ

)
, (n →∞), (2.8.13)

and (iii) using Andrievskii’s Polynomial Lemma (2.8.3) for the transition from (2.8.13) to
(2.8.11).

We note that the theorem confirms the heuristic expectation (based on the examination
of the asymptotic expansions (1.4.1)–(1.4.3)) that the rate of convergence should decrease as
α := max{αj} increases. For example, if Ω is a polygonal L-shaped domain, then α = 3/2 and
the theorem gives that (2.8.11) holds with γ = 1/3. If, on the other hand, ∂Ω is composed of
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four analytic arcs that meet at four points and form there right angled corners, then αj = 1/2,
j = 1, 2, 3, 4, and the theorem gives that (2.8.11) holds with γ = 6. Regarding the sharpness
of (2.8.11)–(2.8.12), it is shown in [56] that the result is sharp for α := max{αj} > 1, in
the sense that the exponent γ cannot be improved. However, there are always domains with
αj = 1/N , N ∈ N, for which the order of convergence can be improved. For example, as we
have seen already, if Ω is the rectangle (2.7.1) or the equilateral triangle of Figure 2.2, then g

is analytic in Ω and the convergence of the sequence {g{M}
n } is geometric of the form (2.8.1)

with ρ > 1.
We end this subsection by presenting two theorems, from a recent paper by Maymeskul,

Saff and Stylianopoulos [113], The results of these theorems are particularly important, be-
cause they provide theoretical justification for the improvements that are observed when (in
the presence of singular corners at ζj ∈ ∂Ω) the basis set is augmented by introducing singular
functions of the form (2.6.12)–(2.6.13), i.e. functions of the form

{(z − ζj)β}′, with β = k + l/αj or β = l/αj , k ∈ N0, l ∈ N, (2.8.14)

or
{(z − ζj)β((log(z − ζj))m}′, m ∈ N. (2.8.15)

As before, we assume that ∂Ω is composed of κ analytic arcs that meet at the points ζj ,
j = 1, κ, and form there corners with interior angles αjπ, 0 < αj < 2, j = 1, κ. Following
[113, §3], we also assume that no logarithmic terms occur in the asymptotic expansions of the
mapping function g near the corners ζj , and recall that this would be the case if for every j,
j = 1, κ, either: (a) both arms of the corner ζj are straight lines or circular arcs, or (b) αj is
irrational; see the discussion in § 1.4. Finally, we let κs be the number of singular corners, i.e.
the corners for which αj 6= 1/N , N ∈ N. We assume that κs ≥ 1 (otherwise, because of our
assumption about the logarithmic terms, g would be regular in Ω) and denote the singular
corners by ζj , j = 1, ks.

We consider now the use of augmented basis sets composed by introducing into the mono-
mial set functions of the form (2.8.14) that reflect the main singular behavior of g at the
corners ζj , j = 1, ks. More specifically the augmented sets are constructed by:

(i) Considering the asymptotic expansion of g near each of the singular corners ζj , j = 1, ks.

(ii) For each j, j = 1, ks, introducing into the monomial set (2.6.3) the first νj (νj ≥ 0)
functions of the form (2.8.14) that correspond to fractional values of β. (See [113, pp.
526–527] for one way of ordering the basis functions.)

Then, we have the following:

Theorem 2.8.4 Let ∂Ω be a piecewise analytic Jordan curve without cusps and, with the
assumptions and notations introduced above, let g

{A}
n denote the n-th BKM approximation
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to g corresponding to an augmented basis set constructed as described in (i) and (ii) above.
Also, for each j, j = 1, ks, let βj be the first fractional power of (z − ζj), in the asymptotic
expansion of g near ζj, for which the function {(z − ζj)βj}′ is not included in the basis set.
Then,

max
z∈Ω

∣∣∣g(z)− g{A}n (z)
∣∣∣ = O

(√
log n

nγ

)
, (n →∞), (2.8.16)

where
γ := min{(2− αj)βj , j = 1, ks}. (2.8.17)

Proof See [113, Theorem 3.1]. The proof is based on the use of Lehman’s asymptotic
formulas (1.4.1)–(1.4.3)), on the methods of analysis used by Gaier in [53], [54] and [56], and
also on several important new results that are derived in [113]. These new results include
upper and lower bounds for the error in the best L2(Ω) nth degree polynomial approximation
to functions of the form (2.8.14) and (2.8.15), as well as extensions of Andrievskii’s Lemma
(2.8.3) to the case where singular functions of the form (2.8.14)–(2.8.15) are adjoined to
ordinary polynomials.

If νj = 0, j = 1, ks, i.e. if the basis set is the monomial set, then

βj =
1
αj

, j = 1, ks.

Therefore, (2.8.16)–(2.8.17) give (as a special case) the following estimate for the Bieberbach
polynomials {g{M}

n }:

max
z∈Ω

∣∣∣g(z)− g{M}
n (z)

∣∣∣ = O
(√

log n

nγ

)
, (n →∞), (2.8.18)

where

γ := min
{

2− αj

αj
, j = 1, ks

}
. (2.8.19)

The above estimate is an improvement of that given, for the case αj 6= 1/N , N ∈ N, by
Theorem 2.8.3. This is so because (2.8.11) contains the factor log n rather than (log n)1/2;
see also [8] and [121, Remark 2.5].

The paper by Maymeskul et al [113] contains an even sharper version of Theorem 2.8.4
that covers both the Bieberbach polynomials {g{M}

n } and the augmented approximations
{g{A}n }. This can be stated as follows:

Theorem 2.8.5 With the assumptions and notations of Theorem 2.8.4, let κ be the index
for which the minimal value in (2.8.17) is attained. If in the asymptotic expansion of g, near
the corner ζκ, the coefficient of the fractional power (z − ζκ)βκ is non-zero, then

1
nγ

¹ max
z∈Ω

∣∣∣g(z)− g{A}n (z)
∣∣∣ ¹

√
log n

nγ
, (2.8.20)
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where γ = (2 − ακ)βκ. In particular (since all the coefficients of the powers (z − ζj)1/αj ,
j = 1, ks, are non-zero) we always have that, under the conditions of Theorem 2.8.4,

1
nγ

¹ max
z∈Ω

∣∣∣g(z)− g{M}
n (z)

∣∣∣ ¹
√

log n

nγ
, (2.8.21)

where γ is given by (2.8.19).

Proof See [113, Theorem 3.2].

Remark 2.8.1 Let A > 0 and B > 0 be two quantities. Then, the notation A ¹ B

(inequality with respect to order) means that A ≤ const × B where the constant does not
depend on the main parameters that define A and B. If A ¹ B and B ¹ A simultaneously,
then we write A ³ B.

Remark 2.8.2 As might be expected, the estimates of Theorems 2.8.1–2.8.5 remain valid
when the mapping g and the BKM or RM approximations g

{M}
n and g

{A}
n are replaced, re-

spectively, by the mapping f (of (2.4.1)–(2.4.2)) and the corresponding BKM or RM approx-
imations f

{M}
n and f

{A}
n . We note, in particular, that if Kn(·, 0) and gn denote, respectively,

the nth approximations (with respect to a given basis set) to the Bergman kernel function
K(·, 0) and the mapping g, then

||g′ − g
′
n|| ³ ||K(·, 0)−Kn(·, 0)||;

see [127, Lemma 4.4].

2.8.2 ONM and VM

As in Section 2.5, we let Ω be a doubly-connected domain bounded by two closed Jordan
curves Γ1 and Γ2 such that Γ1 ∈ Int(Γ2) and assume that 0 ∈ Int(Γ1). We also let f

denote the conformal mapping (2.5.2)–(2.5.3) with r1 = 1, i.e. the conformal mapping of Ω
onto the annulus A(r1, r2) := {w : 1 < |w| < M}, where M is the conformal modulus of
Ω. We recall that in the ONM the approximation to f is obtained after first determining
a least squares approximation to the auxiliary function H(z) := f ′(z)/f(z) − 1/z, while
the corresponding VM approximation is related to that of the ONM by means of (2.5.25).
Regarding convergence, the state of the associated theory of the two methods is in a good
shape only in relation to the use of the monomial set (2.5.16).

Let f2n denote the ONM approximation to f corresponding to the use of the monomial
set,

η2j−1(z) = zj−1, η2j(z) = 1/zj+1, j = 1, 2, . . . , n, (2.8.22)

and let φ1 and φ2 denote, respectively, the interior conformal mapping φ1 : Int(Γ1) → D1,
normalized by the conditions φ1(0) = 0 and φ

′
1(0) > 0, and the exterior conformal mapping
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φ2 : Ext(Γ2) → {w : |w| > 1}, normalized by the conditions φ2(∞) = 0 and φ
′
2(∞) > 0.

Then, the following theorem may be regarded as the extension of Theorem 2.8.1 to the
mapping of doubly-connected domains.

Theorem 2.8.6 Assume that the auxiliary function H is analytic in Ω and suppose that its
nearest singularities in Int(Γ1) and Ext(Γ2) are situated on the level curves

Γρ1 := {z : |φ1(z)| = ρ1, 0 < ρ1 < 1},

and
Γρ2 := {z : |φ2(z)| = ρ2, 1 < ρ2 < ∞}.

Then, the sequence of ONM approximations {f2n} converges maximally on Ω to f , in the
sense that

max
z∈Ω

|f(z)− f2n(z)| = O(R−n), ∀ R, 1 < R < ρ := min(1/ρ1, ρ2). (2.8.23)

Proof See [136, pp. 653–654] and [126, Theorem 2.1]. The proof is again based on the theory
of maximal convergence, and makes use of the fact that the function H can be expressed as
H = H1 +H2, where H2 is analytic in Int(Γρ2) and H1 is analytic in Ext(Γρ1) (including the
point at infinity) and H1(∞) = 0.

We consider next the case where Ω is bounded by piecewise analytic curves without cusps,
i.e. the case where each of the Jordan curves Γ1 and Γ2 consists of a finite number of analytic
arcs, so that every two adjacent arcs meet each other at a point and form there s corner
with interior angle (with respect to Ω) θ, 0 < θ < 2π. Then, for the sequence of ONM
approximations {f2n}, the following result of [126] extends the result of Theorem 2.8.3 to the
doubly-connected case:

Theorem 2.8.7 Suppose that the boundary components Γ1 and Γ2 of Ω are piecewise analytic
without cusps, and let απ be the largest interior (with respect to Ω) angle among all the corner
points on Γ1 and Γ2. Then,

max
z∈Ω

|f(z)− f2n(z)| = O
(

log n

nγ

)
, (n →∞), (2.8.24)

where
γ = (2− α)/α. (2.8.25)

Proof See [126, Theorem 2.3]. The proof follows, essentially, the methods used earlier
by Andrievskii [5] and Gaier [53], [54] for proving the uniform convergence of Bieberbach
polynomials. In particular, the proof involves showing (as a first step) that

||H −H2n|| = O
(√

log n

nγ

)
, (n →∞), (2.8.26)
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where H2n is the corresponding ONM approximation to the function H; see [126, Lemma
4.5].

The results of both Theorems 2.8.6 and 2.8.7 refer to sequences of “diagonal” approxima-
tions {f2n}, i.e. to approximations that correspond to the use of the monomial set with equal
number of positive and negative powers of z as indicated by (2.8.22). It is, however, reason-
able to expect that this diagonal selection of powers need not always be the best choice. The
question of using a more appropriate selection of powers of z has been considered in [126], for
the case where the function H can be extended analytically in compl(Ω). In fact, [126, §2.1]
contains an asymptotic result which, for the case where (as in Theorem 2.8.6) f is analytic
in Ω, gives (in terms of the values ρ1 and ρ2) the optimal proportion of positive and negative
powers m and n of z in the least squares approximation to H that corresponds to the use of
the monomial set

{zj}n
j=−m, j 6= −1 ;

see [126, §2.1]. In addition, [126] contains two important results that provide theoretical
confirmation for the experimental observations concerning the quality of the approximations
to the conformal modulus M , i.e. confirmation that the approximations to M are more accu-
rate than the corresponding approximations to the full conformal mapping f . For diagonal
sequences of approximations, these results of [126] can be stated as follows:

Theorem 2.8.8 Let M2n denote the ONM approximation to the modulus M of Ω that cor-
responds to the use of the monomial set (2.8.22). Then, with the notations and assumptions
of Theorem 2.8.6, the sequence of approximations {M2n} converges monotonically to M from
above, and

0 ≤ M2n −M = O(R−2n), ∀ R, 1 < R < ρ := min(1/ρ1, ρ2). (2.8.27)

Proof See [126, Theorem 2.2]. The proof makes use of the fact that

M2n −M ³ ||H −H2n||2; (2.8.28)

see [126, Lemma 4.3].

Theorem 2.8.9 Let M2n be as above. Then, with the notations and assumptions of Theorem
2.8.7,

0 ≤ M2n −M = O
(

log n

n2γ

)
, (n →∞), (2.8.29)

where
γ = (2− α)/α. (2.8.30)
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Proof See [126, Theorem 2.4]. The result follows from (2.8.26) and (2.8.28).

The results of the two theorems show that, in each of the two cases under consideration,
the rate of convergence of the sequence of approximations to the conformal modulus M is,
essentially, twice that of the corresponding sequence of approximations to the conformal
mapping f . Thus, in particular, the available convergence theory provides confirmation (at
least for the case where the monomial basis set is used) of the experimental observation (see
e.g. Example 2.7.4) that the ONM or VM approximations to M are more accurate than those
to f . Unfortunately, however, in the doubly-connected case we do not, as yet, have theoretical
results (similar to those of Theorems 2.8.2 and 2.8.4–2.8.5 for the simply-connected case) to
explain the numerically observed improvements that occur from the use of the ONM and the
VM with augmented basis sets. (With reference to a possible extension of Theorem 2.8.2,
one of the difficulties has to do with the fact that in the doubly-connected case it is not, in
general, possible to reflect “exactly” the singularities of H in C \ Ω.)

2.9 Stability

The stability properties of the orthonormalization step of the methods are studied fully in
[136, §2,3], where: (a) a geometrical characterization of the degree of instability is established,
and (b) various computable indicators, that measure the level of instability at each step of
the process, are derived. In particular, the following (more or less heuristically obvious facts)
can be concluded from the associated theory, in connection with the use of the BKM or the
RM:

(i) Best stability occurs when the boundary of Ω is “nearly” circular” and, conversely, the
process is seriously unstable when Ω is a “thin” domain.

(ii) For the purposes of stability, the origin should be positioned so that its maximum
distance from ∂Ω is as small as possible.

(iii) The stability of the process deteriorates when rational functions are used to reflect
pole-type singularities that are far from the boundary.

The observation contained in (iii), can be explained (heuristically) as follows: Suppose that,
due to the presence of a pole at a point p ∈ C \ Ω, the BKM (or RM) basis set is formed by
introducing into the monomial set zj−1, j = 1, 2, . . ., the rational function

η(z) = − p

(z − p)2
.

In this case, if p is “far” from ∂Ω, then the function η has the series expansion

η(z) = −1
p

∞∑

j=1

j

(
z

p

)j−1

,
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which converges rapidly in Ω. In other words, if p is far from ∂Ω, then there is “near”
linear dependence between η and the first few monomials 1, z, z2, . . . . A similar situation will
arise in the case of the ONM or the VM, if an attempt is made to reflect “weak” pole-type
singularities by singular functions of the form (2.6.11); see the discussion in Example 2.7.5.

2.10 Numerical examples II

In this section we present three numerical examples illustrating how the theoretical results
of the previous section are reflected in practice.

Example 2.10.1 ([136, Example 5.1] and [121, Example 2.1]) Let Ω be the ellipse

Ω :=
{

(x, y) :
x2

a2
+ y2 < 1, a > 1

}
,

and note that in this case the conformal mapping f : Ω → D1 is known exactly and is given
by

f(z) =
√

k sn
(

2K(k)
π

sin−1

(
z√

a2 − 1

)
, k

)
, (2.10.1)

where the parameter k satisfies the relation

K(k′)
K(k)

=
2
π

sinh−1

(
2a

a2 − 1

)
, and k′ := (1− k2)

1
2 ; (2.10.2)

see [93, p. 177] and [116, p. 296]. In (2.10.1)–(2.10.2), sn(·, k) and K(k) denote respectively
the Jacobian elliptic sine and the complete elliptic integral, each with modulus k; see Remark
1.5.16. Therefore, in this case, the singularities of f in C\Ω can be determined directly from
(2.10.1)–(2.10.2), by recalling (see Remark 1.5.16) that the elliptic sine sn(z, k) has simple
poles at the doubly infinite array of points

z = 2mK(k) + i(2n + 1)K(k′), m, n = 0,±1,±2, . . . .

From this it follows that the mapping function (2.10.1)–(2.10.2) has simple poles at the
infinite array of points

z = i(a2 − 1)1/2 sinh
(

(2n + 1) sinh−1

(
2a

a2 − 1

))
, n = 0,±1,±2, . . . , (2.10.3)

on the imaginary axis. Thus, the dominant singularities of f are the two simple poles at the
points‡

z = ± 2ia

(a2 − 1)1/2
=: ±ip1, (2.10.4)

‡Recall that the dominant singularities (2.10.4) can also be predicted by the generalized symmetry principle;

see § 1.4.2 and Exercise 1.18.
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while the next two nearest poles occur at the two points

z = ±ip1

(
3 +

4p2
1

a2 − 1

)
=: ±ip2; (2.10.5)

see Exercise 2.18. As might be expected, the singularities become more serious as a increases,
in the sense that the points (2.10.4) “approach” the boundary points ±i as a increases.

Because Ω has two-fold rotational symmetry about the origin, for the application of the
BKM with monomial basis (BKM/MB), the basis set used is

ηj(z) = z2j−1, j = 1, 2, . . . .

Similarly, for the application of the BKM with augmented basis (BKN/AB), the basis set is
formed by introducing into the above monomial set a single singular function that reflects
the singularities f at the points (2.10.4).. That is, the augmented basis used is

η1(z) =
{

z

z2 + p2
1

}′
, ηj+1(z) = z2j−1, j = 1, 2, . . . .

Let f
{M}
n and f

{A}
n denote respectively the nth BKKM/MB and BKM/AB approximations

to f , note that {f{M}
n } is the sequence of BKM polynomial approximations to f of degree

2n− 2, and set

E{M}
n := max

z∈Ω

∣∣∣f(z)− f{M}
n (z)

∣∣∣ and E{A}
n := max

z∈Ω

∣∣∣f(z)− f{A}n (z)
∣∣∣ .

Then, from Theorems 2.8.1 and 2.8.2 and Remark 2.8.2, we know that

E{M}
n = O(R−n), ∀ R, 1 < R < ρ := |φ(±ip1)|2,

and
E{A}

n = O(R−n), ∀ R, 1 < R < ρ{A} := |φ(±ip2)|2,
where φ denotes the exterior conformal mapping φ : C \Ω → {w : |w| > 1}.§ In fact, for the
ellipse under consideration, the mapping φ is known exactly and is given by

φ(z) =
z + (z2 − a2 + 1)1/2

a + 1
;

see e.g. [3, pp. 94–95]. Thus, the indices ρ and ρ{A} that measure, respectively, the rates of
convergence of the BKM/MB and BKM/AB are given by

ρ =
a + 1
a− 1

and ρ{A} =
(p2 + (p2

2 + a2 − 1)1/2)2

(a + 1)2
.

§Here we made use of the fact that the basis sets used reflect the two-fold rotational symmetry of Ω.
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In particular, for the three cases a = 2, 4, 8, the values of ρ and ρ{A} are as follows:

a = 2 : ρ = 3, ρ{A} = 243,

a = 4 : ρ = 1.666, ρ{A} = 12.860,

a = 8 : ρ = 1.285, ρ{A} = 3.513.

Therefore, for the domain under consideration, the theory indicates clearly: (i) the serious
effect that singularities close to ∂Ω have on the rate of convergence of the BKM/MB, and
(ii) the substantial improvement in convergence which is achieved by the BKM/AM.

To illustrate how well the theoretical results are reflected in practice, we list below (for
each of the three cases a = 2, a = 4 and a = 8) the values nopt, of the optimum numbers of
BKM/MB and BKM/AM basis functions, together with the corresponding error estimates
Enopt. These are taken from [136, p. 657], and (as in the case of the examples of Section
2.7) they were computed on a CDC 7600 computer, using single precision FORTRAN i.e. a
precision ε ≈ 7.1× 10−15.

a = 2 : BKM/MB : nopt = 19, E19 = 2.6× 10−9,

BKM/AB : nopt = 6, E6 = 3.5× 10−13,

a = 4 : BKM/MB : nopt = 14, E14 = 1.2× 10−3,

BKM/AB : nopt = 11, E11 = 7.5× 10−12,

a = 8 : BKM/MB : nopt = 12, E12 = 6.6× 10−2,

BKM/AB : nopt = 16, E16 = 5.6× 10−8.

The above numerical results are also in accord with the stability theory outlined in Section
2.9. In particular, we note the following:

(i) For the BKM/MB, the values of nopt (which, in a sense, give a measure of the stability
of the process) decrease (i.e. the stability of the process deteriorates) as a increases, i.e.
as Ω becomes thinner.

(ii) For the BKM/AB, the values of nopt increase (i.e. the stability of the process improves)
as a increases, i.e. as the pole singularities at the points ±ip1 approach the boundary
of Ω.

All the above are discussed in much greater detail in [136, pp. 654–663], where also the
BKM convergence and stability proprties of the conformal mapping of Example 2.7.1 are
discussed. In particular, it is shown in [136] that for the four cases a = 1, 2, 4, 8, of the
rectangle (2.7.1), the BKM/MB and BKM/AB convergence indices ρ and ρ{A} are as follows:
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a = 1 : ρ = 8.884, ρ{A} = 205.9,

a = 2 : ρ = 1.987, ρ{A} = 10.45,

a = 4 : ρ = 1.486, ρ{A} = 5.596,

a = 8 : ρ = 1.242, ρ{A} = 2.813.

Example 2.10.2 ([121, Example 2.2]) Let Ω be the L-shaped domain

Ω := {(x, y) : −1 < x < 3, |y| < 1} ∪ {(x, y) : |x| < 1, −1 < y < 3},

considered in Example 1.6.1; see Figure 2.4. Then, ∂Ω has a re-entrant corner of interior
angle 3π/2 at the point zc = 1+ i. In fact zc is the only singular corner. All the other corners
of ∂Ω are right-angled and (because they are formed by straight lines) are not singular. Apart
from the corner singularity at zc, the analytic extension of the mapping function f : Ω → D1

also has simple pole singularities at the mirror images of the origin in the sides AB, BC, CD

and EA of ∂Ω, i.e. at the four points

p1 = −2, p2 = −2i, p3 = 6 and p4 = 6i. (2.10.6)

·
B(−1,−1)

·
C(3,−1)

·D(3, 1)

·E(1, 3)·A(−1, 3)

· zc ≡ (1, 1)

·0

Figure 2.4

Let f
{M}
n denote the nth BKM approximation to f corresponding to the use of the mono-

mial set (2.6.3). Then, because of the observation contained in Remark 2.8.2, Theorem 2.8.4
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gives that

max
z∈Ω

∣∣∣f(z)− f{M}
n (z)

∣∣∣ = O
(√

log n

n1/3

)
, (n →∞). (2.10.7)

Consider next the use of an augmented basis set formed by introducing into the monomial
set the first ν functions from the set

{(z − zc)2l/3}′, l = 1, 2, 4, 5, 7, 8, 10, . . . , (2.10.8)

and let f
{Aν}
n denote the corresponding nth BKM (BKM/AB(ν)) approximation to f . Then,

from Theorem 2.8.4 (and Remark 2.8.2) we have the following estimates for ν = 1, 6

max
z∈Ω

|f(z)− f{Aν}
n (z)| = O

(√
log n

nγν

)
, (n →∞), (2.10.9)

where, from (2.8.17), the exponents γν , ν = 1, 6, are respectively

γ1 =
2
3
, γ2 =

4
3
, γ3 =

5
3
, γ4 =

7
3
, γ5 =

8
3
, γ6 =

10
3

. (2.10.10)

To illustrate how the above theoretical results are reflected in practice, we list below
the values nopt, of the optimum numbers of basis functions, for the BKM/MB and the
BKM/AB(ν) with ν = 1, 3 and 6, together with the corresponding error estimates Enopt.
These are taken from [136, p. 664], where (in order to reduce the effects of the instability of
the process) they were computed on an IBM Amdahl computer using programs written in
extended precision FORTRAN, i.e. a precision ε ≈ 3.1× 10−33.

BKM/MB : nopt = 13, E13 = 2.4× 10−1,

BKM/AB(1) : nopt = 27, E27 = 2.2× 10−3,

BKM/AB(3) : nopt = 45, E45 = 5.9× 10−5,

BKM/AB(6) : nopt = 45, E45 = 2.8× 10−6.

It should be observed that in the presence of singular corners it is, in general, advantageous
(in the simply-connected case) to form the augmented basis sets (as was done in Example 2.7.2
and Exercise 2.15) by introducing into the monomial set not only singular functions of the
form (2.6.12)–(2.6.13), but also rational functions reflecting the dominant pole singularities of
the mapping function in C \ Ω. For example, for the L-shaped domain under consideration,
the use of an augmented basis involving the first six functions of the set (2.10.8) and the
two rational functions that correspond to the two poles at p1 and p2 gives, on the Amdahl
computer, the “optimum” error estimate E45 = 7.8 × 10−8; see [136, p. 664]. Similarly, the
error estimate E26 = 2.2 × 10−5 was obtained on a CDC 7600 computer (i.e. with machine
precision ε ≈ 7.1 × 10−15), by using an augmented basis involving the first five functions
of the set (2.10.8) and the four rational functions that correspond to the four poles at the
four points (2.10.6); see [105, p. 181]. Although we do not have yet a complete convergence
theory concerning the use of such “mixed” augmented basis sets, a first step in this direction
is provided by a recent result in [146, Theorem 3.1].
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Example 2.10.3 ([136, Example 5.4]) Let Ω denote the doubly-connected domain bounded
internally by the circle

Γ1 := {z : |z| = a, a < 1},
and externally by the equilateral triangle Γ2 with vertices at the points −2, 1 − √

3i and
1+

√
3i. We consider the use of the ONM for approximating the conformal mapping f : Ω →

{w : 1 < |w| < M} and, because the domain has three-fold rotational symmetry about the
origin, we take as monomial basis the set

η2j−1(z) = z3j−1, η2j(z) = 1/z3j+1, j = 1, 2, 3, . . . . (2.10.11)

Since the arms of each of the three corners of the triangle Γ2 are straight lines and the
(interior) angle is in each case π/3, the mapping function f has no corner singularities.
However, the analytic extension of the auxiliary function H has singularities at the common
symmetric points associated with the circle Γ1 and each of the three sides of the triangle Γ2,
i.e. at the points

ωj−1
3 z1 ∈ Int(Γ1), ωj−1

3 z2 ∈ Ext(Γ2), j = 1, 2, 3,

where
z1 = 1−

√
1− a2, z2 = 1 +

√
1− a2,

and ω3 := exp(2πi/3); see Exercise 1.21.
Let f2n and M2n denote, respectively, the ONM approximations to the mapping function

f and the conformal modulus M that correspond to the use of the monomial set (2.10.11)
with j = 1, 2, . . . , n. Also, let φ1 and φ2 denote the conformal mappings φ1 : Int(Γ1) → D1

(i.e. φ1(z) = z/a) and φ2 : Ext(Γ2) → {w : |w| > 1}, and set

ρ1 = |φ1(z1)| = z1

a
, ρ2 = |φ2(z2)| and ρ = min(1/ρ1, ρ2).

Then, because the basis set (2.10.11) reflects the three-fold rotational symmetry of Ω, Theo-
rems 2.8.6 and 2.8.8 give that

max
z∈Ω

|f(z)− f2n(z)| = O(R−3n) and M2n −M = O(R−6n), ∀ R, 1 < R < ρ.

The values of the convergence index ρ, for the three cases a = 0.3, 0.5 and 0.8, are listed
below, together with the corresponding ONM/MB values of nopt and the associated error
estimates Enopt. All these were taken from [136, pp. 667–668], where they were computed on
a CDC 7600 computer (i.e. with machine precision ε ≈ 7.1 × 10−15). It should be observed
that: (i) in each case ρ = ρ2, and (ii) since the mapping function φ2 is not known exactly,
in each case, the value of ρ2 was computed using the BKM/AB approximation to φ2; see
Example 2.7.3.
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a = 0.3 : ρ = 1.486, nopt = 26, E26 = 2.2× 10−8,

a = 0.5 : ρ = 1.436, nopt = 28, E28 = 3.9× 10−8,

a = 0.8 : ρ = 1.290, nopt = 25, E25 = 2.1× 10−6.

2.11 Multiply-connected domains

Let Ω be a finite N -connected domain (N ≥ 2) with boundary

∂Ω =
N⋃

j=1

Γj ,

where Γj , j = 1, 2, . . . , N , are closed piecewise analytic Jordan curves without cusps such that:
(i) Γj , j = 1, 2, . . . , N − 1, are in the interior of ΓN , and (ii) the closures of Ωj := Int(Γj),
j = 1, 2, . . . , N − 1, are mutually disjoint. That is,

Ω := Int(ΓN ) \
N−1⋃

j=1

Ωj , where Ωj := Int(Γj), j = 1, . . . , N − 1. (2.11.1)

There are several standard conformal mappings associated with such multiply-connected
domains. The best known of these correspond to the following five canonical domains (see
e.g. [13, Chap. VI], [44, pp. 241–251], [116, Chap. VII] and [149]):

• The slit circular annulus S{A} : This consists of a circular annulus

A(r1, rN ) := {w : r1 < |w| < rN}, (2.11.2)

slit along N − 2 arcs of circles

|w| = rj , j = 2, . . . , N − 1, where r1 < rj < rN , j = 2, . . . , N − 1. (2.11.3)

Let Ω be the N -connected domain (2.11.1) and assume that the origin 0 lies in the interior
of the curve Γ1, i.e. 0 ∈ Ω1 := Int(Γ1). Also, let f denote the conformal mapping

f : Ω → S{A}, (2.11.4)

of Ω onto the slit annulus S{A}, so that the outer boundary curve ΓN and the boundary curve
Γ1 (which encloses the origin) correspond respectively to the outer and inner circles bounding
the annulus A(r1, rn). This choice of f can be fixed by imposing a normalizing condition of
the form

f(ζ) = ζ, ζ ∈ ΓN , (2.11.5)
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so that rN = |ζ|. The above condition also fixes the values of the other radii rj , j =
1, . . . , N − 1, but these are not known a priori. In fact, the N − 1 ratios

M{j} := rN/rj , j = 1, . . . , N − 1, (2.11.6)

are known as the “radial moduli” of Ω.
In the special case N = 2 (i.e. in the case where Ω is the doubly-connected domain

Int(Γ2) ∪ Int(Γ1) and the associated canonical domain becomes the annulus A(r1, r2)), the
mapping problem reduces to the mapping of doubly-connected domains considered in Sections
1.3 and 2.5. As we have already seen, in this case, the single radial modulus M{1} = r2/r1

(i.e. the conformal modulus of Ω) determines completely the conformal equivalence class
of the doubly-connected domain. Similarly, when N > 2, the N − 1 radial moduli M{j},
j = 2, . . . , N , together with 2N − 5 “angular moduli”, i.e. the 2N − 5 angles that determine
the lengths and positions of the arcs (2.11.3), determine completely the conformal equivalence
class of the N -connected domain Ω.

• The slit disc S{D} : This consists of the unit disc

D1 := {w : |w| < 1}, (2.11.7)

slit along N − 1 arcs of circles

|w| = rj , j = 1, . . . , N − 1, where rj < 1, j = 1, . . . , N − 1. (2.11.8)

For the conformal mapping
f : Ω → S{D}, (2.11.9)

we now assume that 0 ∈ Ω (rather than 0 ∈ Int(Γ1)) and seek to determine f so that the
outer boundary component ΓN goes to the unit circle |w| = 1. This can be achieved by
imposing the normalizing condition

f(0) = 0 and f ′(0) > 0. (2.11.10)

The radial moduli of Ω are, in this case,

M{j} := 1/rj , j = 1, . . . , N − 1, (2.11.11)

where rj , j = 1, . . . , N−1, are the unknown radii of the arcs (2.11.8). The special case N = 1
leads to the standard conformal mapping (2.4.1)–(2.4.2) for simply-connected domains.

• The circular slit domain S{C} : This consists of the entire plane (including the point at
infinity) slit along N concentric arcs of circles

|w| = rj , j = 1, . . . , N. (2.11.12)
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For the conformal mapping
f : Ω → S{C}, (2.11.13)

we assume that 0 ∈ Ω and seek to determine f so that

f(0) = 0 and lim
z→ζ

f(z) = ∞, (2.11.14)

where ζ 6= 0 is some fixed (but otherwise arbitrary) point in Ω. In this case f can be fixed
by requiring that its residue at z = ζ is equal to 1, i.e. that near z = ζ

f(z) =
1

z − ζ
+ c0 + c1(z − ζ) + · · · . (2.11.15)

• The radial slit domain S{R} : This consists of the entire plane slit along N segments of
rays

arg w = θj , j = 1, . . . , N, (2.11.16)

emanating from the origin.
For the conformal mapping

f : Ω → S{C}, (2.11.17)

we assume again that 0 ∈ Ω and seek to determine f so that

f(0) = 0 and lim
z→ζ

f(z) = ∞, (2.11.18)

where ζ 6= 0 is some fixed point in Ω. Again f can be fixed by requiring that its residue at
z = ζ is equal to 1, i.e. that near z = ζ

f(z) =
1

z − ζ
+ c0 + c1(z − ζ) + · · · . (2.11.19)

• The parallel slit domain S{P} : This consists of the entire plane slit along N parallel
straight line segments subtending an angle θ to the positive real axis.

For the conformal mapping
f : Ω → S{P}, (2.11.20)

and seek to determine f so that
lim
z→ζ

f(z) = ∞, (2.11.21)

where ζ is some fixed point in Ω. Here, again, f can be fixed by requiring that its residue at
z = ζ is equal to 1, i.e. that near z = ζ

f(z) =
1

z − ζ
+ c0 + c1(z − ζ) + · · · . (2.11.22)

We make the following remarks in connection to the use of the ONM for the approximation
of the five conformal mappings that correspond to the canonical domains S{A}, S{D}, S{C},
S{R} and S{P}:
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Remark 2.11.1 Let Ω be an N -connected domain of the form (2.11.1) and let αj ∈ Int(Γj),
j = 1, . . . , N−1, be N−1 points in the interiors of the boundary curves Γj , j = 1, . . . , N−1.
Then, the set

zk, k = 0, 1, . . . , (z − αj)−k, j = 1, 2, . . . , N − 1, k = 2, 3, . . . , (2.11.23)

forms a complete set of the space L2
s(Ω) defined by (2.5.4). (In the case of the mapping

Ω → S{A}, 0 ∈ Int(Γ1) and we may take α1 = 0.)

Remark 2.11.2 Generalized versions of the ONM of § 2.5.1 can also be used for approx-
imating each of the five conformal mappings described above. These generalizations are
particularly simple in the four cases that correspond to the canonical domains S{A}, S{D},
S{C} and S{R}. In fact, in each of the two cases f : Ω → S{A} and f : Ω → S{D}, the ONM
approximation to the mapping function f is obtained after first approximating the auxiliary
function H, which (as in the case of doubly-connected domains) is defined by (2.5.5)–(2.5.6).
Also, in each of these two cases: (i) the inner products are determined by using the formula
(2.5.8) without modification, and (ii) the formulas needed for the determination of the radial
moduli ((2.11.6) or (2.11.11)) are obtained by modifying, in an obvious manner, the deriva-
tion that led to formula (2.5.13) for the conformal modulus of a doubly-connected domain.
In the other two cases, Ω → S{C} and Ω → S{R}, the required modifications are more sub-
stantial, and also involve the modification of the auxiliary function H. The details of all the
required modifications are left as exercises; see Exercises 2.19–2.22.

Remark 2.11.3 The numerical implementation of the ONM for the two cases that corre-
spond to the slit annulus S{A} and the slit disc S{D} (i.e. for the mappings (2.11.4)–(2.11.5)
and (2.11.9)–(2.11.10)) is studied in [94], [95] and [120]. In particular, these three references
include details on the use of augmented basis sets (formed by introducing appropriate sin-
gular functions into the set (2.11.23)) for treating the corner singularities of the mapping
function.

2.12 Additional bibliographical remarks

Sections 2.2–2.4: The theory of the space L2(Ω), needed for the development of the
Bergman kernel and the Ritz methods, as well as the basic theoretical details of the two
methods are covered extensively in the literature; see e.g. [13], [27], [44], [51], [75], [112],
[116] and [166]. In particular, the numerical conformal mapping book of Gaier [44] contains
a unified and complete treatment of all the relevant theory, together with studies of various
numerical aspects of the two numerical methods, including the results of several early numer-
ical experiments involving polynomial approximations. In addition, in his more recent book
on complex approximation [51], Gaier devoted almost one entire chapter (Chapter I) on the
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classical theory of the space L2(Ω) and gave a full report of the theoretical and computational
developments of the subject up to 1980, the year of publication of the original German edition
of the book [48].

Section 2.5: The two methods of this section are not as well-known as those of Section 2.4,
although they can both be deduced easily from the theory contained in [13, Ch. VI], [44,
Kap. 5] and [116, Ch. VII]. The basic details of the VM are given in [44, Kap. V, § 5.3] (and
also in [124, § 2,3]), and (as far as we are aware) the ONM was first studied in detail in [124].

Sections 2.6–2.7: The material of these sections is based on the numerical techniques de-
veloped and the results of numerical experiments obtained in a series of papers [105], [122],
[123], [124], [135], [136] and [137]. In particular, Levin et al [105] were the first to propose
the use (in connection with the BKM) of augmented basis sets for overcoming the difficulties
associated with the pole and corner singularities of the mapping function. The results of
earlier numerical experiments (based on the use of monomial basis sets) can be found in [44,
Kap. III, § 3], in connection with the application of both the BKM and the RM, and in [20]
in connection with the application of the BKM.

Sections 2.8–2.10: In addition to the references cited in § 2.8.1 and 2.8.2, two other im-
portant earlier references that deal with the convergence of Bieberbach polynomials in the
presence of singular corners are [98] and [155]. Also, apart from [136, § 2–4], another (earlier)
reference that deals with the stability properties of the RM with monomial basis is the paper
by S̆vecova [156].

Section 2.11: The formulas of Exercises 2.19–2.22, needed for the application of the ONM
to the conformal mappings of multiply-connected domains described in this section, can be
deduced easily from the theory contained in [13, Chap. VI], [44, pp. 241–251] and [116,
Chap. VII].

2.13 Exercises

2.1 By considering the Taylor series expansion of a function u ∈ L2(Ω) in the closed disc
|z − z0| ≤ %, 0 < % < d, give an alternative proof of Lemma 2.2.3.

2.2 The differential operators ∂/∂z and ∂/∂z are defined by

∂

∂z
:=

1
2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
:=

1
2

(
∂

∂x
+ i

∂

∂y

)
, z + x + iy.

Prove the following:

(i) If F is analytic in a domain Ω, then for all z ∈ Ω,

∂F

∂z
(z) = F ′(z),

∂F

∂z
(z) = 0 and

∂F

∂z
(z) = F

′(z),
∂F

∂z
(z) = 0.
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(ii) If Ω is a connected domain with piecewise smooth boundary and F (z) = p(x, y)+iq(x, y),
where p and q are continuously differentiable in Ω and continuous in Ω := Ω ∪ ∂Ω, then

∫∫

Ω

∂F

∂z
(z)dxdy = − 1

2i

∫

∂Ω
F (z)dz and

∫∫

Ω

∂F

∂z
(z)dxdy =

1
2i

∫

∂Ω
F (z)dz.

(Hint: Make use of Green’s formula, which states that if two real functions p(x, y) and q(x, y)
are continuously differentiable in Ω and continuous in Ω, then

∫∫

Ω

{
∂p

∂x
(x, y) +

∂q

∂y
(x, y)

}
dxdy =

∫

∂Ω
{p(x, y)dy − q(x, y)dx}. )

2.3 By making use of the results of Exercise 2.2, show that if Ω is a connected domain with
piecewise smooth boundary and the functions u and v are analytic in Ω and continuous in
Ω := Ω ∪ ∂Ω, then

(u, v′) :=
∫∫

Ω
u(z)v′(z)dm =

1
2i

∫

∂Ω
u(z)v(z)dz.

2.4 Show that the polynomials

un(z) :=

√
n + 1

π
zn, n = 0, 1, . . . ,

form a complete orthonormal system for L2(D1), where D1 := {z : |z| < 1}. (Hint:
To prove completeness: (i) observe that any u ∈ L2(D1) can be represented by a power
series

∑∞
k=0 akz

k which converges uniformly in |z| ≤ %, for any % < 1, and (ii) show that
(u, un) =

√
π/(n + 1)an.)

2.5 Show that if K(·, ζ) is the Bergman kernel function of a domain Ω with respect to a
point ζ ∈ Ω, then

||K(·, ζ)||2 = K(ζ, ζ).

Show also that the relation
K(z1, z2) = K(z2, z1),

holds for any z1, z2 ∈ Ω.

2.6 Let Ω be a bounded simply-connected domain and let Rζ(Ω) and K(·, ζ) denote, respec-
tively, the conformal radius and the Bergman kernel function of Ω with respect to ζ, where
ζ is some fixed point in Ω. Show the following:

(i)
Rζ(Ω) = (πK(ζ, ζ))−1/2 .

(ii) If g denotes the mapping

g : Ω → Dr := {w : |w| < r}, r := Rζ(Ω),



106 CHAPTER 2. ORTHONORMALIZATION METHODS

normalized by the conditions
g(ζ) = 0, g′(ζ) = 1,

then
g′(z) =

1
K(ζ, ζ)

K(z, ζ), i.e. g(z) =
1

K(ζ, ζ)

∫ z

t=ζ
K(t, ζ)dt.

2.7 Find the Bergman kernel function K(z, ζ) of the unit disc D1 := {z : |z| < 1} with
respect to a fixed point ζ ∈ D1.

2.8 With the notations of § 2.4.1, let Kn(·, 0) be the nth BKM approximation (2.4.8) to the
Bergman kernel function K(·, 0). Show that

||K(·, 0)−Kn(·, 0)||2 = K(0, 0)−Kn(0, 0).

2.9 With the notations of Remark 2.4.1, show that the set {η∗j }, j = 1, 2, . . ., generated by
(2.4.11) is an orthonormal system for H.

2.10 Let γ be an analytic Jordan arc not passing through 0. Derive the integration by parts
formulas: ∫

γ
µ′(z) log |z|dz = [µ(z) log |z|]γ −

∫

γ
µ(z)Re

(
dz

z

)
,

and ∫

γ
µ′(z) arg zdz = [µ(z) arg z]γ −

∫

γ
µ(z)Im

(
dz

z

)
.

2.11 With the notations of Section 2.5, prove that

(u,H) = (u,Hn), ∀ u ∈ Λn ;

see (2.5.24).

2.12 With the notations of Section 2.5, show that under the conditions (on the boundary
components Γ1, Γ2 of Ω and the function u ∈ L2

s(Ω)) stated in Remark 2.5.1,

(H, u) =
i

2

∫

∂Ω

1
z
v(z)dz,

where v′ = u.

2.13 Let u0 and u0,n denote, respectively, the minimal functions (2.5.15) and (2.5.25). Show
that

||u0,n − u0|| = inf
u∈L{1}n

||u− u0||,

where L{c}n is given by (2.5.23).
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2.14 Show that if dj and κj , j = 1, 2, . . . , N , are the constants in (2.6.28) and (2.6.29), then

d1d2 · · · dN = 1 and κ1 + κ2 + · · ·+ κN + 1 = 0.

2.15 Consider the conformal mappings: (i) f : Ω → D1, where Ω is the pentagon illustrated
in Figure 2.5, (ii) φ : ΩE → {w : |w| > 1}, where ΩE is the exterior region illustrated in Figure
2.6 (i.e. ΩE := C \ Ω and Ω is the rectangle (2.7.1)), and (iii) f : Ω → {w : 1 < |w| < M},
where Ω is the doubly connected domain Ω := {z : |z| < 1} ∩ compl({(x, y) : |x| ≤ 0.5, |y| ≤
0.5}) (i.e. Ω is the unit disc with a square hole of side length 1). The above three mappings
are to be approximated by using, respectively, the BKM or RM for (i) and (ii) and the
ONM or VM for (iii). Give a suitable basis set for use in each case, and indicate any special
parametric representations of the boundary that are needed for performing the integrations
accurately.

2.16 Consider the use of the ONM for approximating the conformal mapping of the doubly-
connected domain of Exercise 1.20. What do you think will happen if the augmented basis
set

1
z − 1/3

− 1
z
,

1
z − 3

, 1,
1
z2

, z, · · · ,

(that reflects the singular behavior of the auxiliary function H at the common symmetric
points with respect to the two boundary circles) is used?

2.17 Let Γ be a closed Jordan curve and denote by φ the conformal mapping φ : Ext(Γ) →
{w : |w| > 1}, normalized by the conditions φ(∞) = ∞ and φ′(∞) > 0. Also, let ΓR denote
the level curves

ΓR := {z : |φ(z)| = R}, R > 1.

Prove the Bernstein Lemma, which states that if P is a polynomial of degree n and |P (z)| ≤ 1
for z ∈ Γ, then |P (z)| ≤ Rn for z ∈ ΓR (and hence also for z ∈ Int(ΓR)).

2.18 Let f be the mapping function of Example 2.10.1. Starting from (2.10.3) show that
the dominant singularities of f are the two simple poles at the points (2.10.4), while the next
two nearest poles occur at the points (2.10.5).

2.19 Let Ω be an N -connected (N ≥ 2) domain of the type (2.11.1), described in Section
2.11, and let f denote either the conformal mapping (2.11.4)–(2.11.5) (of Ω onto a slit annulus
S{A} of the form (2.11.2)–(2.11.3)) or the conformal mapping (2.11.9)–(2.11.10) (of Ω onto a
slit disc S{D} of the form (2.11.7)–(2.11.8)). Also, let

A(z) := log f(z)− log z and H(z) := A′(z) =
f ′(z)
f(z)

− 1
z
.
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·
A(−0.5,−1.5)

·
B(0.5,−1.5)
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·0

Ω

· C

Figure 2.5

·0

·C4

·A(a, 0)

·C1·B(0, 1)·C2

·C3

Ω

ΩE

Figure 2.6
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Prove that the following results hold for either of the two choices of f :

(i) For any function u ∈ L2
s(Ω) that satisfies the conditions (ii) of Remark 2.5.1,

(u,H) = i

∫

∂Ω
u(z) log |z|dz.

(ii) If αj ∈ Int(Γj), j = 1, . . . , N −1, are N −1 points in the interiors of the boundary curves
Γj , j = 1, . . . , N − 1, and M{j} denote the radial moduli (2.11.6) or (2.11.11), then

2π log M{j} =
1
2i

∫

∂Ω

1
z − αj

{A(z) + 2 log |z|}dz, j = 1, . . . , N − 1.

2.20 Let Ω, f , H and u be as in Exercise 2.19, and let v′ = u. Show that for the conformal
mapping f : Ω → S{A},

(H, u) =
i

2

∫

∂Ω

1
z
v(z)dz,

while for the conformal mapping f : Ω → S{D},

(H, u) = πv(0) +
i

2

∫

∂Ω

1
z
v(z)dz.

2.21 Let Ω be an N -connected (N ≥ 2) domain of the type (2.11.1), let f denote the
conformal mapping (2.11.13)–(2.11.15) (of Ω onto a circular slit domain S{C}), and set

A(z) := log f(z)− log z + log(z − ζ) and H(z) := A′(z) =
f ′(z)
f(z)

− 1
z

+
1

z − ζ
.

Prove the following:
(i) For any function u ∈ L2

s(Ω) that satisfies the conditions (ii) of Remark 2.5.1,

(u,H) = i

∫

∂Ω
u(z){log |z| − log |z − ζ|}dz.

and

(H, u) = π(v(0)− v(ζ)) +
i

2

∫

∂Ω

{
1
z
− 1

z − ζ

}
v(z)dz,

where v′ = u.

(ii) If αj ∈ Int(Γj), j = 1, . . . , N −1, are N −1 points in the interiors of the boundary curves
Γj , j = 1, . . . , N − 1, and rj , j = 1, . . . , N , are the radii of the arcs (2.11.12), then

2π log
(

rN

rj

)
=

1
2i

∫

∂Ω

1
z − αj

{A(z) + 2(log |z| − log |z − ζ|)}dz, j = 1, . . . , N − 1.
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2.22 Let Ω be an N -connected (N ≥ 2) domain of the type (2.11.1), let f denote the
conformal mapping (2.11.17)–(2.11.19) (of Ω onto a radial slit domain S{R}), and (as in
Exercise 2.21) set

A(z) := log f(z)− log z + log(z − ζ) and H(z) := A′(z) =
f ′(z)
f(z)

− 1
z

+
1

z − ζ
.

Prove the following:

(i) For any function u ∈ L2
s(Ω) that satisfies the conditions (ii) of Remark 2.5.1,

(u,H) =
∫

∂Ω
u(z){arg z − arg(z − ζ)}dz,

and

(H, u) = −π(v(0)− v(ζ)) +
i

2

∫

∂Ω

{
1
z
− 1

z − ζ

}
v(z)dz,

where v′ = u.

(ii) If αj ∈ Int(Γj), j = 1, . . . , N −1, are N −1 points in the interiors of the boundary curves
Γj , j = 1, . . . , N − 1, and the Γj , j = 1, . . . , N , go respectively to the rays (2.11.16), then

θN − θj =
1
4π

∫

∂Ω

1
z − αj

{A(z)− 2i[arg z − arg(z − ζ)]}dz, j = 1, . . . , N − 1.



Chapter 3

Conformal modules of

quadrilaterals

3.1 Basic definitions and properties

Let Ω be a simply-connected Jordan domain and consider a system consisting of Ω and four
distinct points z1, z2, z3, z4, in counterclockwise order on its boundary ∂Ω. In function
theory, such a system is called a quadrilateral Q and is denoted by displaying the defining
domain and the four boundary points in their correct order. This leads to our first definition.

Definition 3.1.1 A system consisting of a Jordan domain Ω and four distinct points z1,
z2,z3, z4, in counterclockwise order on its boundary ∂Ω is called a quadrilateral and is denoted
by

Q := {Ω; z1, z2, z3, z4}.

We give next the definition of conformal equivalence, in connection with the conformal
mapping of quadrilaterals.

Definition 3.1.2 Two quadrilaterals

Q := {Ω; z1, z2, z3, z4} and Q′ := {Ω′; z1
′, z2

′, z3
′, z4

′}

are said to be conformally equivalent if there exists a conformal mapping of Ω onto Ω′ that
takes the four boundary points z1, z2, z3, z4 of Q, respectively, onto the four boundary points
z1
′, z2

′, z3
′, z4

′ of Q′.

111
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Figure 3.1

With reference to Definition 3.1.2, it is important to note that (since Ω and Ω′ are Jor-
dan domains) any conformal mapping Ω → Ω′ extends one-one continuously to ∂Ω in both
directions; see Theorem 1.2.2. It is also important to note that not all quadrilaterals are con-
formally equivalent. This follows immediately from the Riemann mapping theorem (Theorem
1.2.1) and, in particular, from Theorem 1.2.2 which asserts that although any two Jordan
domains Ω and Ω′ can be mapped conformally onto each other, no more than three points on
∂Ω can be made to correspond to three preassigned points on ∂Ω′. This also shows that all
trilaterals (i.e. systems consisting of a Jordan domain and three specified boundary points)
are conformally equivalent.

Our next task is to define an appropriate domain functional for identifying the conformal
equivalence class of a given quadrilateral Q := {Ω; z1, z2, z3, z4}.

Let RH denote a rectangle, of base 1 and height H, of the form

RH := {(ξ, η) : 0 < ξ < 1, 0 < η < H}, (3.1.1)

and consider the problem of determining a conformal mapping F that maps Ω onto RH

and takes the four points z1, z2, z3, z4, respectively, onto the four vertices 0, 1, 1 + iH,
iH, of the rectangle; see Figure 3.1. Then, clearly, the height H of the rectangle cannot be
predetermined: The conformal mapping F exists, but only for a certain unique value of H

which is itself an unknown of the problem of determining the mapping F : Ω → RH . This
observation leads to the following definition.
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Definition 3.1.3 Let RH be a rectangle of the form (3.1.1). Then, the conformal module
m(Q), of a quadrilateral Q := {Ω; z1, z2, z3, z4}, is the unique value of H for which Q is
conformally equivalent to the rectangular quadrilateral

{RH ; 0, 1, 1 + iH, iH}.

The following are simple consequences of Definition 3.1.3:

(i) Let a, c ∈ R and let R denote a rectangle of the form

R := {(ξ, η) : a < ξ < b, c < η < d}.

If Q := {Ω; z1, z2, z3, z4}, then m(Q) can be defined, more generally, as the unique
value of the aspect ratio (d − c)/(b − a) of R for which Q is conformally equivalent to
the rectangular quadrilateral

{R; a + ic, b + ic, b + id, a + id}.

(ii) The conformal module m(Q) of a quadrilateral Q := {Ω; z1, z2, z3, z4} is conformally
invariant. That is, if f is a conformal mapping of Ω onto a Jordan domain Ω′ and

Q′ := {Ω′; f(z1), f(z2), f(z3), f(z4)},

then m(Q) = m(Q′).

(iii) Two quadrilaterals Q and Q′ are conformally equivalent if and only if m(Q) = m(Q′).
In other words the conformal module of a quadrilateral Q determines completely the
conformal equivalence class of Q.

Let Q := {Ω; z1, z2, z3, z4}. Then, in what follows (in this and all subsequent sections)
F : Ω → Rm(Q) will always denote the conformal mapping of Ω onto the rectangle Rm(Q) that
maps the four points z1, z2, z3, z4 ∈ ∂Ω, respectively, onto the four vertices 0, 1, 1 + im(Q),
im(Q) of Rm(Q).

Theorem 3.1.1 If

Q := {Ω; z1, z2, z3, z4} and Q′ := {Ω; z3, z4, z1, z2},

then m(Q) = m(Q′).

Proof Let F : Ω → Rm(Q) and g : z → (1 + im(Q)) − z. The theorem follows because the
composite conformal mapping g ◦ F maps Ω onto Rm(Q), and takes the points z3, z4, z1, z2,
respectively, onto the vertices 0, 1, 1 + im(Q), im(Q), of Rm(Q).
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Theorem 3.1.2 If Q := {Ω; z1, z2, z3, z4} and Q′ := {Ω; z2, z3, z4, z1}, then

m(Q′) =
1

m(Q)
.

Proof Let F : Ω → Rm(Q) and g : z → i(1 − z)/m(Q). The theorem follows because the
conformal mapping g ◦ F maps Ω onto the rectangle R{1/m(Q)}, and takes the points z2, z3,
z4, z1, respectively, onto the vertices 0, 1, 1 + i/m(Q), i/m(Q), of R{1/m(Q)}.

Definition 3.1.4 The quadrilateral Q′ := {Ω; z2, z3, z4, z1}, is said to be the conjugate (or
reciprocal) quadrilateral of Q := {Ω; z1, z2, z3, z4}.

Definition 3.1.5 A quadrilateral Q := {Ω; z1, z2, z3, z4} is said to be symmetric if: (i) the
domain Ω is symmetric with respect to the straight line l joining the points z1 and z3, and
(ii) the points z2 and z4 are symmetric with respect to l.

Theorem 3.1.3 If Q := {Ω; z1, z2, z3, z4} is a symmetric quadrilateral, then

m(Q) = 1.

Proof With reference to Definition 3.1.5, let l be the line of symmetry of Ω, i.e. the line
joining the points z1 and z3. Then, l divides Ω into two sub-domains Ω1 and Ω2, where Ω2

is the mirror image in l of Ω1.
Let T1 denote the triangle that has vertices at the points −1, 1, i. Then, by Theorem

1.2.2, there exists a conformal mapping f : Ω1 → T1, such that f(z1) = −1, f(z3) = 1 and
f(z4) = i ; see Figure 3.2.

Next, let T2 denote the triangle with vertices at the points −1, −i and 1, i.e. T2 is the
mirror image of T1 in the real axis. Then, by the Schwarz reflection principle (see Theorem
1.4.1), f can be continued analytically across l to map conformally Ω onto the square S,
formed by T1 and T2, so that f(z2) = −i; see Figure 2.2. Thus, Q := {Ω; z1, z2, z3, z4}
is conformally equivalent to the quadrilateral Q′ := {S; −1,−i, 1, i}, and the result follows
because, clearly, m(Q′) = 1.

We conclude this section by noting that the conformal module m(Q) is a theoretically
important domain functional that plays a significant role in geometric function theory; see
e.g. [4, p. 52], [6, p. 18], [7, p. 362], [103, p. 15] and also the recent survey article by Kühnau
[97]. At the same time, as we shall see below, the module is closely related to certain physical
constants that occur in engineering applications, notably in connection with the measurement
of resistance values of integrated circuit networks. From the function theoretic point of view,
this practical significance of m(Q) was first recognized by Dieter Gaier, who in a series of
papers (starting with [45] in 1972) highlighted its importance and introduced its study to
modern numerical conformal mapping.
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3.2 Physical interpretation

With the notations introduced in the previous section, let Q := {Ω; z1, z2, z3, z4} and assume
that the boundary ∂Ω of Ω is piecewise analytic. Next, assume that Ω represents a thin
plate of homogeneous electrically conducting material of specific resistance 1, and suppose
that constant voltages V1 and V2 are applied, respectively, on the boundary segments (z1, z2)
and (z3, z4), while the remainder of ∂Ω is insulated. Finally, let I denote the current passing
through the plate, and consider the problem of determining the resistance

r :=
V2 − V1

I
(3.2.1)

of the conductor.
The above problem may, of course, be solved by determining the solution of the Lapalcian

mixed boundary value problem

∆U = 0, in Ω,

U = V1, on (z1, z2),
U = V2, on (z3, z4),
∂U/∂n = 0, on (z2, z3) ∪ (z4, z1),

(3.2.2)

where ∆ is the Laplacian operator ∆ := ∂2/∂x2 + ∂2/∂y2, and ∂/∂n denotes differentiation
in the direction of the outward normal to ∂Ω. Once U is found, r may be determined from
(3.2.1), after first computing I as a line integral of ∂U/∂n along any line running from (z4, z1)
to (z2, z3). We may take, for example,

I =
∫

γ

∂U

∂n
ds, with γ := (z1, z2). (3.2.3)
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Although the boundary value problem (3.2.2) appears to be rather simple, its solution
by standard numerical techniques may present serious difficulties due to the geometry of Ω
and/or the presence of boundary singularities. In particular, serious singularities will occur
if ∂Ω contains re-entrant corners (i.e. corners with interior angles greater than π), or if one
or more of the points zj , j = 1, 2, 3, 4, of Q do not coincide with corners of ∂Ω; see e.g.
[66] and [67]. (For example, if any of the points zj lies on a smooth part of ∂Ω, then the
first derivatives of U will become unbounded at that point.) By contrast, if m(Q) and the
conformal mapping F : Ω → Rm(Q) are available, then the solution of (3.2.2) can be obtained
trivially from the solution of the transformed problem in Rm(Q). More specifically, because
the Laplace equation and the boundary conditions of (3.2.2) are conformally invariant, the
transplanted potential Û in Rm(Q) satisfies the boundary value problem:

∆Û = 0, in Rm(Q),

Û = V1, on 0 ≤ ξ ≤ 1, η = 0,

Û = V2, on 0 ≤ ξ ≤ 1, η = m(Q),
∂Û/∂ξ = 0, on ξ = 0 and ξ = 1, 0 < η < m(Q);

(3.2.4)

see Figure 3.3. Thus, if w := ξ + iη ∈ Rm(Q) is the image under the conformal mapping F of
a point z := x + iy ∈ Ω, then (by inspection)

U(x, y) = Û(ξ, η) =
1

m(Q)
(V2 − V1)η + V1. (3.2.5)

That is, the solution of (3.2.2) at any point z ∈ Ω can be written down immediately, once the
imaginary co-ordinate of the image point w = F (z) is found. Furthermore, since the integral
(3.2.3) is conformally invariant (see Exercise 1.4 (iii)), we have that

I =
∫ 1

0

∂Û

∂η
dξ =

1
m(Q)

(V2 − V1), (3.2.6)

and hence, from (3.2.1), that
r = m(Q).

In other words, the resistance of the conductor is given by the conformal module of the
quadrilateral Q := {Ω; z1, z2, z3, z4}. This characterization of m(Q) provides the link that
connects the problem of computing conformal modules with that of measuring resistances of
electrical networks. We state the corresponding result as a theorem, and also present some
other closely related results and definitions.

Theorem 3.2.1 Let Q := {Ω; z1, z2, z3, z4} and assume that the boundary ∂Ω is piecewise
analytic. Next, assume that Ω represents a thin plate of homogeneous electrically conducting
material of specific resistance 1 and suppose that constant voltages are applied to the boundary
segments (z1, z2) and (z3, z4), while the remainder of ∂Ω is insulated. Then the conformal
module m(Q) of Q gives the resistance of the conductor.
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∆Û = 0
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Theorem 3.2.2 With the notations of Theorem 3.2.1, if the constant voltages on (z1, z2)
and (z3, z4) are respectively V1 = 0 and V2 = 1, then the total current I passing through the
conductor is

I = m(Q′),

where Q′ := {Ω; z2, z3, z4, z1} is the conjugate quadrilateral of Q := {Ω; z1, z2, z3, z4}.

Proof This is a trivial consequence of (3.2.6) and Theorem 3.1.2.

Definition 3.2.1 (Harmonic measure) Let Ω be a Jordan domain and let γ be a segment of
∂Ω. Then, the harmonic function v that solves the Dirichlet problem

∆v = 0, in Ω,

v = 1, on γ,

v = 0, on ∂Ω \ γ,

(3.2.7)

is said to be the harmonic measure of γ with respect to Ω.

Definition 3.2.2 Let Ω be a Jordan domain with rectifiable boundary ∂Ω, and let Q :=
{Ω; z1, z2, z3, z4}. Then, the capacitance C between the arcs γ1 := (z1, z2) and γ2 := (z3, z4)
of Q is defined as the charge on γ1, when γ2 is at unit potential and ∂Ω\γ2 is at zero potential.
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It follows that

C = − 1
4π

I, where I =
∫

γ1

∂v

∂n
ds, (3.2.8)

and v is the harmonic measure of γ2 with respect to Ω. Also, since I is conformally invariant,
so is C.

The following theorem, which is due to Gaier [47], establishes a relation between C and
the conformal module of Q.

Theorem 3.2.3 Let Q := {Ω; z1, z2, z3, z4}, where Ω is a Jordan domain with rectifiable
boundary ∂Ω, and let C be the capacitance between the arcs γ1 := (z1, z2) and γ2 := (z3, z4).
Then C is related to the conformal module m(Q) by means of

C =
2
π2

∞∑

n=1

1
(2n− 1) sinh[(2n− 1)πm(Q)]

. (3.2.9)

Proof See Exercise 3.2.

3.3 Further properties

The main results of this section are Theorem 3.3.3, which gives a variational characterization
for m(Q), and Theorems 3.3.4–3.3.8 which give various comparison results and bounds for
the conformal modules of quadrilaterals. For the development of the associated theory we
need some preliminary results. These concern the Dirichlet integral of a real valued function
u(x, y) that we met already in Exercise 1.5 (ii).

Definition 3.3.1 (Dirichlet integral) Let Ω be a Jordan domain, and let u be a real-valued
function which is continuous in Ω and belongs in the Sobolev space W1(Ω), i.e. u ∈ C(Ω) ∩
W1(Ω). Then, the functional

DΩ[u] :=
∫ ∫

Ω
|grad u|2dxdy =

∫ ∫

Ω

{(
∂u

∂x

)2

+
(

∂u

∂y

)2
}

dxdy, (3.3.1)

is called the Dirichlet integral of u with respect to Ω.

Theorem 3.3.1 The Dirichlet integral is conformally invariant.

Proof (See Exercise 1.5 (ii)) Let f be a conformal mapping of Ω onto a Jordan domain Ω̂,
and let û be the transplant, under f , of a function u ∈ C(Ω) ∩ W1(Ω). If w = f(z), with
z = x + iy and w = ξ + iη, then

|grad u| = |grad û| · |f ′(z)| and dxdy =
1

|f ′(z)|2 dξdη.
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Therefore,

DΩ[u] =
∫ ∫

Ω
|grad u|2dxdy =

∫ ∫
bΩ
|grad û|2dξdη = DbΩ[û].

The next theorem, which is stated without proof, contains a celebrated result (the so-called
“Dirichlet principle”) which plays a very central role in the theories of harmonic boundary
value problems and conformal mapping. Its proof can be found, for example, in [25, p. 11];
see also [78, §17.1] for a brief discussion of the history associated with the theorem.

Theorem 3.3.2 (Dirichlet Principle) Let Ω be a Jordan domain, and denote by K the class
of real valued functions in C(Ω) ∩W1(Ω) that satisfy the same boundary condition u = g on
∂Ω, i.e.

K := {u : u ∈ C(Ω) ∩W1(Ω) and u = g on ∂Ω}. (3.3.2)

Then, the solution of the Laplacian problem

∆v = 0, in Ω,

v = g, on ∂Ω,
(3.3.3)

minimizes uniquely the Dirichlet integral DΩ[u] over all u ∈ K, i.e.

DΩ[v] = min
u∈K

DΩ[u].

Theorem 3.3.3 (Variational property) Let Q := {Ω; z1, z2, z3, z4}, and let K be the class
of real valued functions u which are continuous in Ω, attain the boundary values u = 0 and
u = 1 on the boundary segments (z1, z2) and (z3, z4) respectively, and are in the Sobolev space
W1(Ω). That is

K := {u : u ∈ C(Ω) ∩W1(Ω) and u = 0 on (z1, z2), u = 1 on (z3, z4)}. (3.3.4)

Also, let U0 be the solution of the Laplacian problem (3.2.2) when the boundary values on
(z1, z2) and (z3, z4) are V1 = 0 and V2 = 1. Then

1
m(Q)

= min
u∈K

DΩ[u] = DΩ[U0]. (3.3.5)

Proof From the Dirichlet principle (Theorem 3.3.2), we know that DΩ[u] is minimized over
all u ∈ K by a function which is also harmonic in Ω. Let v be such a function and let v̂

be its transplant under the conformal mapping F : Ω → Rm(Q). That is, v̂ satisfies the
Laplace equation in the rectangle Rm(Q) and attains the boundary values v̂ = 0 and v̂ = 1,
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respectively, on the sides 0 < ξ < 1, η = 0 and 0 < ξ < 1, η = m(Q), of the rectangle. Then,
for 0 < ξ < 1,

1 = {v̂(ξ,m)− v̂(ξ, 0)}2 =
{∫ m

0
v̂η(ξ, η)dη

}2

≤
∫ m

0
dη

∫ m

0
(v̂η(ξ, η))2dη,

i.e.
1 ≤ m

∫ m

0
(v̂η(ξ, η))2dη.

(In the above we used the abbreviations m := m(Q) and v̂η := ∂v̂/∂η.) Hence,

1 ≤ m

∫ 1

0

∫ m

0
(v̂η(ξ, η))2dηdξ = m

∫ ∫

Rm

(v̂η(ξ, η))2dξdη ≤ mDRm [v̂].

Thus, because the Dirichlet integral is conformally invariant, we have that

DΩ[v] = DRm [v̂] ≥ 1
m

.

The required result follows because, from (3.2.5),

U0 = m−1 Im F,

and therefore

DΩ[U0] = DRm

[ η

m

]
=

∫ 1

0

∫ m

0

1
m2

dξdη =
1
m

.

Theorem 3.3.4 Let Q := {Ω; z1, z2, z3, z4}, let ẑ1 be an interior point of the boundary
segment (z4, z1), and let Q̂ := {Ω; ẑ1, z2, z3, z4}; see Figure 3.4. Then

m(Q) > m(Q̂).

Proof Let K be the class (3.3.4), and let

K̂ := {u : u ∈ C(Ω) ∩W1(Ω) and u = 0 on (ẑ1, z2), u = 1 on (z3, z4)}.

Then, clearly, K̂ ⊂ K. In particular, the unique harmonic function that minimizes DΩ[u]
over all u ∈ K̂ also belongs in K, and differs from the function that minimizes the integral
over all u ∈ K. Therefore, from Theorem 3.3.3,

1
m(Q)

= min
u∈K

DΩ[u] < min
u∈ bK

DΩ[u] =
1

m(Q̂)
.
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z4

Ω

z2

ẑ1

Figure 3.4

Theorem 3.3.5 Let Q := {Ω; z1, z2, z3, z4} and Q̂ := {Ω̂; z1, z2, z3, z4} be two quadrilaterals
that have the two boundary segments (z2, z3) and (z4, z1) in common, but are such that Ω ⊂ Ω̂;
see Figure 3.5. Then

m(Q) < m(Q̂).

Proof Let K be the class

K := {u : u ∈ C(Ω) ∩W1(Ω) and u = 0 on γ1, u = 1 on γ2},

where γ1 and γ2 are the arcs of ∂Ω that join, respectively, the points z1 with z2 and z3 with
z4, and let

K̂ := {u : u ∈ C(Ω̂) ∩W1(Ω̂) and u = 0 on γ̂1, u = 1 on γ̂2},
where now γ̂1 and γ̂2 are the arcs of ∂Ω̂ that join, respectively, the points z1 with z2 and
z3 with z4; see Figure 3.5. Then, any function u ∈ K can be extended to a function in K̂,
by defining it to be 0 or 1 on Ω̂/Ω. On the other hand, not every function u ∈ K̂ can be
restricted to a function belonging in K. Thus, K ⊂ K̂ and, by an argument similar to that
used in the proof of Theorem 3.3.4,

1

m(Q̂)
= min

u∈ bK
DbΩ[u] < min

u∈K
DΩ[u] =

1
m(Q)

.

The next theorem plays a very central role in the development of the theory of the domain
decomposition method that we shall study in subsequent chapters. We shall first prove the
theorem from first principles (by employing the method used in [75, pp. 437–438]), and shall
leave as an exercise (Exercise 3.3) an alternative and more elegant proof, based on the use of
the so-called inequality of Rengel given in Theorem 3.3.7 below.
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Theorem 3.3.6 (Additivity property) Let Q := {Ω; z1, z2, z3, z4}, let a and b be, respec-
tively, interior points of the arcs (z2, z3) and (z4, z1) and, by means of a cross-cut γ from a

to b, decompose Ω into two disjoint Jordan domains Ω1 and Ω2 as illustrated in Figure 3.6.
If Q1 := {Ω1; z1, z2, a, b} and Q2 := {Ω2; b, a, z3, z4}, then

m(Q) ≥ m(Q1) + m(Q2). (3.3.6)

Furthermore, equality occurs in (3.3.6) if and only if the crosscut γ is an equipotential of the
harmonic problem (3.2.2).

Proof Let K be the class (3.3.4) and let

K1 := {u : u ∈ C(Ω1) ∩W1(Ω1) and u = 0 on (z1, z2), u = 1 on (a, b)},

and
K2 := {u : u ∈ C(Ω2) ∩W1(Ω2) and u = 0 on (b, a), u = 1 on (z3, z4)}.

Also, let u1 ∈ K1 and u2 ∈ K2, and let ũ be defined by

ũ(x, y) =

{
αu1(x, y), (x, y) ∈ Ω1,

α + (1− α)u2(x, y), (x, y) ∈ Ω2,
(3.3.7)

where α is an arbitrary real parameter. Then ũ ∈ K, but not all u ∈ K can be represented
in the form (3.3.7). Let K̃ be the subclass of K that consists of all functions of the form
(3.3.7). Then,

{m(Q)}−1 = min
u∈K

DΩ[u] ≤ min
u∈ eK

DΩ[u],

where for all u ∈ K̃,
DΩ[u] = α2DΩ1 [u1] + (1− α)2DΩ2 [u2],
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with u1 ∈ K1 and u2 ∈ K2. Thus, for any α ∈ R,

{m(Q)}−1 ≤ α2 min
u∈K1

DΩ1 [u] + (1− α)2 min
u∈K2

DΩ2 [u],

or
{m(Q)}−1 ≤ α2{m(Q1)}−1 + (1− α)2{m(Q2)}−1 =: χ(α). (3.3.8)

We consider next the expression χ(α) in the right hand side of (3.3.8), and by elementary
calculus we find that its minimum (with respect to α) occurs when

α =
m(Q1)

m(Q1) + m(Q2)
.

Hence,

min
α∈R

χ(α) =
1

m(Q1) + m(Q2)
.

Therefore, from (3.3.8),
{m(Q)}−1 ≤ {m(Q1) + m(Q2)}−1,

or
m(Q) ≥ m(Q1) + m(Q2).

As for the last part, it is trivially obvious that if (under the conformal mapping F : Ω →
Rm(Q)) the image γ′ of the cross-cut γ is a straight line parallel to the real axis (i.e. if γ is
an equipotential of the harmonic problem (3.2.2)), then equality occurs in (3.3.6). However,
in order to prove the converse (i.e. equality in (3.3.6) ⇒ γ′ is a straight line parallel to the
real axis) we need to make use of Theorem 3.3.7 which is stated below; see Exercise 3.3.

The proofs of the next two theorems involve deeper function theoretic concepts that are
beyond the scope of the present lecture notes. We note, however, the following: (i) the
underlying theory (the so-called theory of “extremal length”) is covered in detail in [4, Ch.
4], [103, Ch. I, §4] and the recent monograph by Garnett and Marshall [60, Ch. IV], and (ii)
the same theory can be used to deduce various important properties of conformal modules,
including the additivity property of Theorem 3.3.6; see Exercise 3.3. In this connection,
it is also important to note that (in function theoretic terms) the additivity property is
often referred to as the “composition law for extremal distances of curve families” or as the
“superadditivity property of modules”; see [4, §4.4] and [103, Ch. I, §4.6].
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Theorem 3.3.7 (Rengel’s inequality) Let Q := {Ω; z1, z2, z3, z4}, let A be the area of Ω and
denote by l1 and l2, respectively, the lengths of the shortest paths in Ω between the boundary
segments: (i) (z1, z2) and (z3, z4), and (ii) (z2, z3) and (z4, z1). Then

l21
A
≤ m(Q) ≤ A

l22
. (3.3.9)

Furthermore, equality occurs on both sides of (3.3.9) if and only if Ω is a rectangle and the
points z1, z2, z3, z4 are its vertices.

Proof See [4, p. 54] and [103, p. 22].

Theorem 3.3.8 Let Q := {Ω; z1, z2, z3, z4} be of the form illustrated in Figure 3.7, where:
(i) the defining domain Ω is bounded by the straight lines Re z = 0 and Re z = 1 and two
Jordan arcs γ1 and γ2, and (ii) the points z1, z2, z3, z4 are the points where the two arcs meet
the straight lines. Then

h ≤ m(Q) ≤ h + 1, (3.3.10)

where h is the distance between the arcs γ1 and γ2.

The theorem is a special case of a more general result due to Hayman [72]. It is worth noting
that (for the special case under consideration) the lower bound in (3.3.10) can be deduced
by elementary means. This can be achieved by: (i) decomposing Ω into three subdomains
by means of two straight line crosscuts parallel to the real axis and at a distance ε > 0,
respectively, from the boundary arcs γ1 and γ2, and (ii) noting that the middle component
of the decomposition is a rectangular quadrilateral with module h − 2ε. Then, by making
use of the additivity property (3.3.6), we find that m(Q) ≥ h− 2ε and, by letting ε → 0, we
obtain the required bound.
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Corollary 3.3.1 If in Figure 3.7 one of the two arcs γ1 or γ2 is a straight line parallel to
the real axis, then

h ≤ m(Q) ≤ h +
1
2

. (3.3.11)

Proof Let Q be as in Figure 3.8 and denote by Q̂ the symmetric quadrilateral obtained by
reflecting Q in γ1. Then, by symmetry, m(Q̂) = 2m(Q) and the required result follows by
applying the inequality of Theorem 3.3.8 to the quadrilateral Q̂.

The next corollary is a direct consequence of the results of Theorems 3.3.6 and 3.3.8; see
also [58, Theorem 4].

Corollary 3.3.2 Let Q be a quadrilateral of the form illustrated in Figure 3.8. Then, m(Q)−
h ia a non-negative increasing function of h.

Proof. From (3.3.11) (or, more generally, from (3.3.10)) we always have that m(Q)−h ≥ 0.
To see that m(Q) − h is monotonically increasing, write Qh for Q so that Qh+h′ is the
quadrilateral obtained by adding a rectangle of base 1 and height h′ to the bottom end of Q.
Then, the additivity property (3.3.6) implies that m(Qh+h′) ≥ m(Qh) + h′. Therefore,

m(Qh+h′)− (h + h′) ≥ m(Qh)− h.
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We conclude the section with the following two remarks:

Remark 3.3.1 Several other interesting conformal module results are contained [76] and
[77], where the modules of various nontrivial quadrilaterals and the harmonic measures of
several configurations are determined by elementary means. The methods employed are
based entirely on the judicious use of the reflection principle (Theorem 1.4.1), in conjunction
with some of the properties studied in Section 3.1. In particular, the following are shown in
connection with the nodules of L-shaped quadrilaterals:

Let Ω be the L-shaped domain (1.6.1), and let zj , j = 1, . . . , 8, be the points (1.6.2) that
lie on ∂Ω; see Figure 1.4. Then, in [76] it is shown that

m({Ω; z1, z3, z5, z6}) =
√

3, (3.3.12)

while in [77] the conformal equivalence classes of various quadrilaterals that have the L-shape
Ω as the defining domain are studied. For example, it is shown that

m({Ω; z1, z3, z5, z6}) = m({Ω; z5, z6, z7, z8}), (3.3.13)

and
m({Ω; z8, z3, z5, z6}) = m({Ω; z5, z6, z7, z1}) ; (3.3.14)

see [77, pp. 219, 224].

Remark 3.3.2 As in Theorem 1.3.2, let Γ1 and Γ2 be two closed Jordan curves, such that Γ2

is in the interior of Γ1, and denote by Ω the doubly-connected domain Ω := Int(Γ1)∩Ext(Γ2).
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Also, let M := M(Ω) be the conformal modulus of Ω, and let K be the class of real valued
functions

K := {u : u ∈ C(Ω) ∩W1(Ω) and u = 1 on Γ1, u = 0 on Γ2}. (3.3.15)

Then, corresponding to the variational property (3.3.5) (for the module of a quadrilateral),
we have the following property for the conformal modulus of a doubly-connected domain:

2π

log M
= min

u∈K
DΩ[u] = DΩ[U0], (3.3.16)

where U0 is the harmonic measure of Γ1 in Ω, i.e. U0 is the solution of the Laplacian problem

∆U0 = 0, in Ω,

U0 = 1, on Γ1,

U0 = 0, on Γ2 ;
(3.3.17)

see e.g. [14], [50], [55, §2.1] and [117]. (Note that U0 = log |f(z)|/ log M , where f is a
conformal mapping of Ω onto the annulus {w : 1 < |w| < M}.)

3.4 The conventional method

Let Q := {Ω; z1, z2, z3, z4} and let f : Ω → D1 be a conformal mapping of Ω onto the unit
disc D1 := {ζ : |ζ| < 1}. Then, the conformal mapping F : Ω → Rm(Q), of Ω onto the
rectangle Rm(Q), can be expressed as

F = S ◦ f, (3.4.1)

where S : D1 → Rm(Q) is a simple Schwarz-Christoffel trasformation that maps the unit
disc onto the rectangle Rm(Q) so that the points f(zj) ∈ ∂D1, j = 1, 2, 3, 4, are mapped
respectively onto the four vertices 0, 1, 1 + im(Q), im(Q), of the rectangle. In fact, as can
be concluded easily from our discussion in Remark 1.5.16, S is known exactly in terms of
an inverse Jacobian elliptic sine. Furthermore, if this approach is used, then the conformal
module m(Q) is given, quite simply, by the ratio of two complete elliptic integrals of the first
kind, whose moduli depend only on the images f(zj) of the four specified points on the unit
circle.

The above technique, of using the unit disc D1 as the intermediate mapping domain, may
be regarded as the conventional method for determining the conformal module m(Q) and the
associated conformal mapping F , because as was indicated in Sections 1.2 and 1.5: (i) D1 is
the standard canonical domain for the mapping of simply-connected regions, and (ii) from
the computational point of view, the problems of approximating the mapping f : Ω → D1

and its inverse f [−1] : D1 → Ω are by far the most extensively studied numerical conformal
mapping problems.
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For reasons that will become apparent later, it is convenient to express the Schwarz-
Christoffel mapping S in composite form as

S = S3 ◦ S2 ◦ S1, (3.4.2)

where S1, S2, S3 are the three elementary conformal mappings described below; see Figure
3.9:

(i) Let ζj := f(zj), j = 1, 2, 3, 4, and let

S1(ζ) :=
ζ − ζ0

1− ζ0ζ
, (3.4.3)

where the point ζ0 ∈ D1 is chosen so that

S1(ζ1) + S1(ζ3) = 0 and S1(ζ2) + S1(ζ4) = 0.

Then, the bilinear transformation ζ → S1(ζ) maps the unit disc D1 onto itself and arranges
the points ζ̂j := S1(ζj), j = 1, 2, 3, 4, on the unit circle, so that ζ̂1 and ζ̂2 are diametrically
opposite to ζ̂3 and ζ̂4 respectively; see Exercise 1.12.

(ii) Set
θ1 := arg ζ̂1, θ2 := arg ζ̂2, θ := θ2 − θ1, and k := tan2(θ/4), (3.4.4)

and let

S2(ζ̂) := − i√
k
·
{

ζ̂ − ei[
θ1+θ2

2
]

ζ̂ + ei[
θ1+θ2

2
]

}
. (3.4.5)
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(Note that 0 < k < 1, since 0 < θ < π.) Then, the bilinear transformation ζ̂ → S2(ζ̂) maps
the unit disc onto the upper half-plane H+ := {w : Im w > 0}, so that

ζ̂1 → w1 = −1, ζ̂2 → w2 = 1, ζ̂3 → w3 = 1/k > 1, ζ̂4 → w4 = −1/k.

(iii) Let

S3(w) :=
1
2

{
1 +

1
K(k)

sn−1(w, k)
}

, (3.4.6)

where sn(·, k) and K(k) denote respectively the Jacobian elliptic sine and the complete elliptic
integral of the first kind each with modulus k, i.e.

sn−1(w, k) =
∫ w

0
{(1− ω2)(1− k2ω2)}− 1

2 dω , (3.4.7)

and

K(k) =
∫ 1

0
{(1− x2)(1− k2x2)}− 1

2 dx. (3.4.8)

Then, the transformation w → S3(w) maps the upper half-plane H+ onto the rectangle
Rm(Q), where

m(Q) =
1
2
· K(k′)

K(k)
, and k′ := (1− k2)

1
2 , (3.4.9)

so that

w1 → ŵ1 = 0, w2 → ŵ2 = 1, w3 → ŵ3 = 1 + im(Q), w4 → ŵ4 = im(Q);

see Remark 1.5.16.
It is clear from the above that once the conformal mapping f : Ω → D1 is determined,

then the main computational requirements for determining the Schwarz-Christoffel mapping
S, by means of the composition (3.4.2), are the calculation of the two complete integrals
in (3.4.9) and of the inverse elliptic sine in (3.4.6). As for the latter, it is easy to see that
the calculation of sn−1(w, k) involves (for each w ∈ H+) the computation of two incomplete
elliptic integrals of the first kind. This can be shown as follows:

Let w′ = sn−1(w, k), so that w = sn(w′, k), and set w = x + iy and w′ = ξ + iη. Then,

|sn2(w′, k)| = {(x2 − y2)2 + 4x2y2} 1
2 =: A,

|cn2(w′, k)| = |1− sn2(w′, k)| = {(1− x2 + y2)2 + 4x2y2} 1
2 =: B,

}
(3.4.10)

where cn is the Jacobian elliptic cosine defined by (1.5.24). Hence, by using the expressions
for the absolute values of elliptic functions (see e.g. [18, p. 41, Eqs 37, 38]),

A =
1− cn(2ξ, k) cn(2η, k′)

dn(2η, k′) + dn(2ξ, k) cn(2η, k′)
, (3.4.11)
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and

B =
dn(2ξ, k) + cn(2ξ, k) dn(2η, k′)
dn(2η, k′) + dn(2ξ, k) cn(2η, k′)

, (3.4.12)

where (as in (3.4.9)) k′ is the complementary modulus k′ := (1−k2)
1
2 and dn is the Jacobian

elliptic function defined by (1.5.25). Next, from (3.4.11) and (3.4.12),

B −A dn(2ξ, k) = cn(2ξ, k),

and hence
(1−A2k2) cn2(2ξ, k)− 2B cn(2ξ, k) + B2 −A2 + k2A2 = 0. (3.4.13)

Equation (3.4.13) is a quadratic in cn(2ξ, k) with solutions

cn(2ξ, k) =
B ±A{B2k2 + (1−A2k2)(1− k2)} 1

2

1−A2k2
, (3.4.14)

and one of these is extraneous. To determine which, we note that sn−1(1, k) = K(k). This
means that if x = 1 and y = 0, then ξ = K(k) and η = 0. Further, it follows from (3.4.10)
that if x = 1 and y = 0, then A = 1 and B = 0. Therefore (since cn(2K(k), k) = −1), with
these values of A and B the right hand side of (3.4.14) must give the value −1. This shows
that the appropriate solution of (3.4.13) is the one that corresponds to the negative square
root of (3.4.14). We have thus shown that for t := x + iy ∈ H+,

ξ := Re {sn−1(w, k)} =
1
2
F(ϑ \ α), (3.4.15)

where

F(ϑ \ α) :=
∫ ϑ

0
(1− sin2 α sin2 θ)−

1
2 dθ (3.4.16)

is the incomplete elliptic integral of the first kind with amplitude

ϑ = cos−1

{
B −A{B2k2 + (1−A2k2)(1− k2)} 1

2

1−A2k2

}
(3.4.17)

and modular angle α = sin−1 k, and where the A and B are given by (3.4.10); see e.g. [2,
§17].

To determine η := Im {sn−1(w, k)} we start with the relation

1−B cn(2η, k′) = A dn(2η, k′),

which also follows from (3.4.11) and (3.4.12). Then, an analysis similar to the one that led
to (3.4.15) gives that

η := Im {sn−1(w, k)} =
1
2
F(ϕ \ α), (3.4.18)

where

ϕ = cos−1

{
B −A{k′2 + (B2 −A2k′2)(1− k′2)} 1

2

B2 −A2k′2

}
. (3.4.19)
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Remark 3.4.1 There are several efficient methods and associated numerical software for
computing elliptic functions and integrals. Appropriate subroutines for such computations
can be found, for example, in the NAG Library [115]. It should also be noted that the Schwarz-
Christoffel package SCPACK (see Remark 1.5.11) contains a subroutine (the subroutine wsc)
for computing the inverse elliptic sine needed for determining the conformal mapping of the
unit disc D1 onto the conformally equivalent rectangle Rm(Q); see (3.4.6).

3.5 The crowding phenomenon

Let Q := {Ω; z1, z2, z3, z4}. Then, the discussion of Section 3.4 shows that (at least in the-
ory) the problems of determining the conformal module m(Q) and the associated conformal
mapping F : Ω → Rm(Q) may be regarded as solved once a suitable approximation to the con-
formal mapping f : Ω → D1, from Ω onto the unit disc, is found. In particular, if f is known
exactly then, in theory, the conventional method (i.e the composition (3.4.1)) gives the exact
value of m(Q) and the exact conformal mapping F . In practice, however, the conventional
method suffers from a serious numerical drawback which, as far as we are aware, was first
observed by Gaier in [45, §1.1]. The difficulty is caused by the fact that if the quadrilateral
Q is “long” (and consequently m(Q) is “large”), then in Figure 3.9 either the two points ζ1

and ζ2 or the two pints ζ3 and ζ4 (or indeed both pairs of points) lie very close to each other
on the unit circle. This can be explained, by using elementary properties of elliptic integrals,
as follows:

With reference to Figure 3.9, let φ be the smaller of the two arcs φ1 := (ζ1, ζ2) and
φ2 := (ζ3, ζ4), i.e.

φ := min(φ1, φ2), (3.5.1)

and recall that the transformation S1 : D1 → D1, given by (3.4.3), is chosen so that the
images ζ̂j := S1(ζj), j = 1, 2, are diametrically opposite to the images ζ̂j := S1(ζj), j = 3, 4,
respectively. This means that

θ ≥ φ, (3.5.2)

where θ is the length of the arcs (ζ̂1, ζ̂2) and (ζ̂3, ζ̂4). Next, observe that

K(k′)
K(k)

= 2m(Q), where k = tan2(θ/4), i.e. θ = 4 tan−1
√

k, (3.5.3)

and note that if k is “small”, then K(k′)/K(k) is “large” and conversely; see (3.4.4), (3.4.9)
and [2, p. 592]. Finally, note that if k is “small” (e.g. if k < 0.2), then

K(k′)
K(k)

≈ 2
π

log
4
k

, (3.5.4)

or, more precisely,
K(k′)
K(k)

=
2
π

log
4
k
− 1

2π
k2 − 13

64π
k4 +O(k6) ; (3.5.5)
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see e.g. [18, Ch.II, §6] and [58, p. 456]. Thus, from (3.5.3), if K(k′)/K(k) or, equivalently,
m(Q) is large (e.g. if m(Q) > 1), then

k ≈ 4 exp(−πm(Q)),

and hence

θ ≈ 8 exp
(
−1

2
πm(Q)

)
. (3.5.6)

In fact, a more careful analysis (see [18, p. 22, Eq. (24)]) shows that the approximation in
the right hand side of (3.5.6) is an upper bound for θ. We have, therefore, shown that if
m(Q) is large, then the length φ (of the smaller of the two arcs (ζ1, ζ2) and (ζ3, ζ4)) satisfies
the inequality

φ ≤ θ < 8 exp
(
−1

2
πm(Q)

)
. (3.5.7)

For example,

m(Q) = 4 ⇒ φ < 1.5× 10−2,

m(Q) = 8 ⇒ φ < 2.8× 10−5,

m(Q) = 12 ⇒ φ < 5.3× 10−8,

m(Q) = 24 ⇒ φ < 3.4× 10−16,

m(Q) = 48 ⇒ φ < 1.5× 10−32.

(3.5.8)

The crowding of points on the unit circle (which is characterized by (3.5.7)) may be
regarded as a form of ill-conditioning, in the sense that a procedure based on the use of
(3.4.1) may fail to produce meaningful approximations to the conformal module m(Q) and
the conformal mapping F : Ω → Rm(Q), even if an accurate approximation to the mapping
f : Ω → D1 is available. More specifically, serious numerical difficulties will ensue (i.e.
significant loss of accuracy or, even, complete breakdown of the process) when φ is small by
comparison to the precision of the computer or the accuracy of the approximation to f . In
particular, the process will break down completely if (due to the crowding) the computer fails
to recognize the points ζj := f(zj), j = 1, 2, 3, 4, in the correct order on ∂D1.

We make the following remarks in connection with the above:

Remark 3.5.1 From the crowding point of view, the best situation occurs when the mapping
f is such that the points ζj = f(zj), j = 1, 2, are diametrically opposite to the points
ζj = f(zj), j = 3, 4, respectively. In this case φ = θ in (3.5.7).

Remark 3.5.2 Let φ′ be the smaller of the two arcs (z2, z3) and (z4, z1). Then, it is easy to
see that for “small” m(Q),

φ′ < 8 exp
(
−1

2
· π

m(Q)

)
. (3.5.9)

This follows by considering the conjugate quadrilateral Q′ := {Ω; z3, z4, z1, z2}, and applying
the analysis that led to (3.5.7) to the module m(Q′) = 1/m(Q); see Theorem 3.1.2. In other
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words, we should anticipate crowding difficulties in cases where m(Q) is either “large” or
“small”, i.e. in cases where either Q or Q′ is “long”.

Remark 3.5.3 The crowding of points on the unit circle is caused by the conformal mapping
f : Ω → D1. For this reason, any standard procedure based on the use of (3.4.1) is subject to
serious numerical difficulties in cases where m(Q) is either “large” or “small”. Furthermore,
the situation cannot be improved by altering the formulation (3.4.2) of S. In fact, the use of
other standard formulations for S may lead to much more severe crowding. For example, let
ζj = f(zj), j = 1, 2, 3, 4, and let S be expressed in the well-known form (see e.g. [18, p. 57]
and [125, p. 353]),

S = Ŝ2 ◦ Ŝ1, (3.5.10)

where:

(i)

Ŝ1(ζ) :=
(

ζ4 − ζ2

ζ1 − ζ2

)
·
(

ζ1 − ζ

ζ4 − ζ

)
,

so that the bilinear transformation ζ → Ŝ1(ζ) maps D1 onto H+ := {t : Im t > 0}, and
takes the points ζj , j = 1, 2, 3, 4, respectively onto the points

t1 = 0, t2 = 1, t3 = c, t4 = ∞,

where c = Ŝ1(ζ3) is the cross-ratio

c := {ζ4, ζ1, ζ2, ζ3} =
(

ζ4 − ζ2

ζ1 − ζ2

)
·
(

ζ1 − ζ3

ζ4 − ζ3

)
> 1 ;

see (1.6.5).

(ii)

Ŝ2(t) :=
1

K(k)
sn−1(

√
t, k), with k = c−

1
2 ,

so that the transformation t → Ŝ2(t) maps the upper half-plane H+ onto Rm(Q), where

m(Q) =
K(k′)
K(k)

, k′ := (1− k2)
1
2 .

Now, let d denote the distance between the points t2 and t3, i.e. d := c− 1. Then, it is easy
to show from the above that, for “small” m(Q),

d ≈ 16 exp
(
− π

m(Q)

)
.

This means (cf. (3.5.9)) that if the formulation (3.5.10) is used, then the crowding on the
real axis Im t = 0 can be much more severe than on the unit circle |ζ| = 1.
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Remark 3.5.4 As might be expected, all our remarks concerning crowding also apply to the
use of the composition

F [−1] = f [−1] ◦ S[−1], (3.5.11)

for computing approximations to the inverse conformal mapping F [−1] : Rm(Q) → Ω. Thus,
the crowding phenomenon is a serious numerical drawback of procedures based on the use
of both (3.4.1) and (3.5.11). However, such procedures deserve strong consideration for the
following reasons:

(i) As was already remarked, the problems of determining the conformal mappings f : Ω →
D1 and f [−1] : D1 → Ω are very well studied and, as a result, there are several efficient
methods for computing approximations to f and f [−1].

(ii) Crowding difficulties can be anticipated by using the quantity

Cm =

{
8 exp

(−1
2πm(Q)

)
, if m(Q) is “large”,

8 exp
(−1

2π[m(Q)]−1
)
, if m(Q) is “small”,

(3.5.12)

as a measure; see (3.5.7) and (3.5.9). (Although the conformal module is not known a
priory, a reliable indication of the crowding can be obtained by using a crude estimate
of m(Q) in (3.5.12). It is often possible to determine such crude estimates, by making
use of the properties of m(Q) given in Sections 3.1 and 3.3.)

(iii) Unless Cm is small by comparison to the precision of the computer or the accuracy
of the available approximation to f (or f [−1]), the use of the conventional method
(i.e. of (3.4.1) or (3.5.11)) will not present any crowding difficulties. For example, if
m(Q) ∈ [0.4, 2.5], then (3.5.12) gives Cm > 0.157. Therefore, for such values of m(Q)
there will not be any crowding difficulties, unless the approximation to f (or f [−1]) is
very inaccurate.

Various examples illustrating the use of the conventional method for the solution of nontrivial
problems can be found in [119, §4], [139], [163] and [175]. We note, in particular, that the
conventional method leads to the exact solution of the so-called “Motz problem” [114]. This
is a harmonic mixed boundary value problem of the form (3.2.2), which is often used as a test
problem for comparing the performances of numerical methods for elliptic boundary value
problems in the presence of boundary singularities; see e.g. [175], [144], [106], [107] and, in
particular, the discussion contained in [119, §4, Ex. 1].

Remark 3.5.5 The following question arises naturally, when computing approximations to
m(Q) and F : Ω → Rm(Q) by means of the conventional method: “Given the measure of
crowding Cm, and an estimate

Ef := max
z∈∂Ω

∣∣∣|f̃(z)| − 1
∣∣∣ , (3.5.13)
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of the maximum error in modulus in the approximation f̃ to the mapping f : Ω → D1, what
can be said about the accuracy of the computed approximations m̃(Q) to m(Q) and F̃ to F?”
As far as we are aware, there is not as yet a satisfactory answer to this question, although
an important first step in this direction has been made by Grinshpan and Saff [64], [65], who
considered the closely related problem of estimating supz∈∂Ω | arg f̃(z) − arg f(z)| from an
estimate of Ef . However, the following rule of thumb appears to work well in practice; see
[38, §2.6], [39, p. 188] and also the numerical results of Example 3.6.3 below:

Rule of thumb: If Ef ∼ 10−d1 and Cm ∼ 10−d2, where d1 > d2, then

Em := |m(Q)− m̃(Q)| ∼ 10−d1+d2 and EF := max
z∈Ω

|F (z)− F̃ (z)| ∼ 10−d1+d2 . (3.5.14)

3.6 Examples

In the first two examples of this section we give exact formulas for the modules of certain
L-shaped and trapezoidal quadrilaterals, while in the third we present numerical results
illustrating the damaging effect that the crowding of points has on the performance of the
conventional method.

Example 3.6.1 Let Ω be the L-shaped domain (1.6.1), of Example 1.6.1, and let zj , j =
1, . . . , 8, be the points (1.6.2) that lie on ∂Ω; see Figure 1.4. Also, as in (1.6.3), let ζj = f(zj),
j = 1, . . . , 8, where f : Ω → D1 is a conformal mapping of Ω onto the unit disc D1. Then,
although f is not known exactly, it is possible to give exact formulas (in terms of elliptic
integrals) for the modules of a class of quadrilaterals that have Ω as the defining domain.
This was done by Gaier in [45, §4.1], by using symmetry arguments in conjunction with the
conventional method expressed in the form (3.4.1), (3.5.10). (Note that in [45] Gaier takes
the conformal module of a quadrilateral Q to be the reciprocal of what we define here as
m(Q).)

Let α1, α2, α3, α4 ∈ ∂D1 be the images, under the conformal mapping f , of any
four distinct points a1, a2, a3, a4 that lie in counterclockwise order on ∂Ω, and let Q :=
{Ω; a1, a2, a3, a4}. Then, we know from Remark 3.5.3 that

m(Q) =
K(k′)
K(k)

, with k = c−
1
2 and k′ = (1− k2)

1
2 , (3.6.1)

where c is the cross-ratio c := {α4, α1, α2, α3}. Next, recall our discussion in Example 1.6.1
and observe that: (i) cross-ratios remain invariant under bilinear transformations, and (ii)
the points ζ1, . . . , ζ8 ∈ ∂D1 can be mapped by means of a bilinear transformation onto the
points (1.6.6). It follows that if the four points a1, a2, a3, a4 come from the set of points
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z1, . . . , z8, then the cross-ratio c := {α4, α1, α2, α3} can be calculated exactly. Thus, in such
a case, formula (3.6.1) gives the exact value of m({Ω; a1, a2, a3, a4}). For example, we have
the following:

(i) If Q := {Ω; z1, z3, z5, z6}, then

c = {ζ6, ζ1, ζ3, ζ5} = {3, 1−
√

3, 1, 1 +
√

3} = 4(2 +
√

3),

and hence

k2 =
1
c

=
1
4
(2−

√
3) = sin2(

π

12
) and m(Q) =

K(k′)
K(k)

=
√

3;

see also Remark 3.3.1.

(ii) If Q := {Ω; z1, z3, z5, z7}, then

c = {ζ7, ζ1, ζ3, ζ5} = {∞, 1−
√

3, 1, 1 +
√

3} = 2,

and hence

k =
1

c
1
2

=
1√
2

and m(Q) =
K(k′)
K(k)

= 1.

This could have been concluded at once from Theorem 3.1.3, because the conjugate quadri-
lateral Q′ := {Ω; z3, z5, z7, z1} is symmetric.

Example 3.6.2 Let Tl := {Ωl; z1, z2, z3, z4} be a quadrilateral of the form illustrated in
Figure 2.10, where:

(i) Ωl is a trapezium bounded by the real and imaginary axes and the lines x = 1 and
y = x + l − 1, with l > 1, i.e.

Ωl := {(x, y) : 0 < x < 1, 0 < y < x + l − 1}, l > 1. (3.6.2)

(ii) The points z1, z2, z3, z4, are the corners of Ωl, i.e.

z1 = 0, z2 = 1, z3 = 1 + il, z4 = i(l − 1). (3.6.3)
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0 1

z1

z4

z2

z3

1 + il

Tl

i(l − 1)

Figure 3.10

Here again m(Tl) can be expressed, for any l > 1, in terms of elliptic integrals. The
corresponding formulas are derived in [18, pp. 99–104], by means of a method based on the
application of the conventional method and the judicious use of identities and properties of
elliptic functions. The process for calculating m(Tl) involves the following two steps (where,
as before, we use the notations K(κ) for the complete elliptic integral of the first kind with
modulus κ, and κ′ for the complementary modulus κ′ := (1− κ2)

1
2 ):

(i) Determine λ from the relation
K(λ)
K(λ′)

= 2l − 1. (3.6.4)

(ii) Calculate m(Tl) by means of

m(Tl) =
K(k)
K(k′)

, with k =
(

λ− λ′

λ + λ′

)2

=
1− 2λλ′

1 + 2λλ′
. (3.6.5)

The parameter λ in (3.6.4), needed for determining the moduli of the two elliptic integrals in
(3.6.5), can be expressed in terms of theta functions as indicated in [78, §13.5]. That is, with

q = e−(2l−1)π, (3.6.6)

λ =
ϑ2

2(0, q)
ϑ2

3(0, q)
, (3.6.7)
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where the theta functions ϑ2 and ϑ3 are defined respectively by the rapidly converging series

ϑ2(z, q) = 2
∞∑

n=0

q
1
4
(2n+1)2 cos(2n + 1)z, (3.6.8)

and

ϑ3(z, q) = 1 + 2
∞∑

n=1

qn2
cos 2nz. (3.6.9)

Alternatively, λ can be determined from (3.6.4) iteratively by using, for example, the iterative
process described in [2, Ex. 6, p. 602].

In Table 3.1 we list (to twelve decimal places) the exact values of m(Tl), for l = 2.0, 2.5,
3.0, 4.0, 5.0. These were obtained from (3.6.5) using the subroutine S21BBF of the NAG
Library [115] for the computation of the complete elliptic integrals, after first determining
the parameter λ by means of (3.6.6)–(3.6.9). We note the following in connection with these
values:

(i) We recall (see (3.4.8)) that K(0) = π/2 and K(1) = ∞ and note (see (3.6.4)) that if l

is “large”, then λ′ is small and (as a result) the parameter k in (3.6.5) is close to unity.
In fact, by applying to (3.6.4)–(3.6.5) an argument similar to that used for deriving
(3.5.6), it is easy to show that for l > 1,

k = 1− 16 exp
(
−π

2
(2l − 1)

)
+O (exp(−2πl)) .

(For example, if l = 6, then k ≈ 1− 5.01× 10−7.) Because of this, the determination of
m(Tl), by the direct use of any standard numerical software for computing the elliptic
integrals in (3.6.5), may lead to inaccurate values for large l. In fact, this occurred here
when we attempted to determine m(Tl), for l ≥ 6, by means of subroutine S21BBF; see
below.

(ii) The values of m(Tl) listed in Table 3.1 indicate that m(T2.5), m(T3.0), m(T4.0) and
m(T5.0), are given respectively, to three, five, six and eight decimal places, by m(T2.0)+
0.5, m(T2.5) + 0.5, m(T3.0) + 1.0, and m(T4.0) + 1.0. A closer inspection suggests that
for “large” l,

m(Tl+c)− {m(Tl) + c} ∼ exp{−2π(l − 1)}, c > 0. (3.6.10)

In fact, (3.6.10) is an example of a much more general result of the theory of the domain
decomposition method that we shall study in Section 3.8, where it will be shown in
particular that, for any c > 0, the value of m(T5+c) can be obtained to eleven decimal
places by simply adding c to the value of m(T5). For example, by adding 1, 2, 4 and 5,
respectively, to the value of m(T5) given in Table 3.1, we find that m(T6), m(T7), m(T9)
and m(T10) are given, to eleven decimal places, by

m(T6) = 5.279 364 399 85, m(T7) = 6.279 364 399 85,
m(T9) = 8.279 364 399 85, m(T10) = 9.279 364 399 85.

(3.6.11)
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By contrast, the calculation of the modules from the exact formulas (3.6.5)–(3.6.9), in
the manner described above, leads to the following considerably less accurate values for
m(T6), m(T7), m(T9) and m(T10):

m(T6) ≈ 5.279 364 399 81, m(T7) ≈ 6.279 364 400 87,
m(T9) ≈ 8.279 363 757 21, m(T10) ≈ 9.279 378 553 03.

(3.6.12)

l m(Tl)

2.0 1.279 261 571 171
2.5 1.779 359 959 478
3.0 2.279 364 207 968
4.0 3.279 364 399 489
5.0 4.279 364 399 847

Table 3.1

Example 3.6.3 Let Tl := {Ωl; z1, z2, z3, z4}, where (as in the previous example) Ωl and z1,
z2, z3, z4 are respectively the trapezium (3.6.2) and the points (3.6.3). Here, in order to
illustrate some of the remarks made in Section 3.5, we compute m(Tl) for various values of
l by: (i) using the conventional method in the composite form described by (3.4.1)–(3.4.6),
and (ii) approximating the conformal mapping fl : Ωl → D1 by means of the Bergman
kernel method. For the actual computations we use: (i) the Bergman kernel method Fortran
package BKMPACK of Warby [168], for approximating the mapping fl : Ωl → D1 (see
Example 2.7.6), and (ii) the subroutine S21BBF of the NAG Library [115], for determining
the complete elliptic integrals in (3.4.9). The numerical results corresponding to the values
l = 2.0, 2.5, 4.0, 6.0, 7.0, 10.0 are listed in Table 3.2, were the symbols Efl

, Cml
, m̃(Tl) and

Eml
have the following meanings:

• Efl
: BKMPACK estimate of the maximum error in modulus in the BKM approximation

to the mapping fl : Ωl → D1.

• Cml
: Measure of crowding (3.5.12), corresponding to the module m(Tl).

• m̃(Tl): Approximation to m(Tl), computed by using the conventional method as de-
scribed above.
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• Eml
: Absolute error in the approximation m̃(Tl), i.e. Eml

:= |m(Tl) − m̃(Tl)|, where
the exact values of m(Tl) are given for l = 2.0, 2.5 and 4.0 in Table 2.1 and for l = 6.0,
7.0 and 10.0 in (3.6.11).

l Efl
Cml

m̃(Ql) Eml

2.0 1.8× 10−7 1.1 1.279 261 349 2.2× 10−7

2.5 3.3× 10−7 4.9× 10−1 1.779 359 754 2.1× 10−7

4.0 5.0× 10−8 4.6× 10−2 3.279 364 822 4.3× 10−7

6.0 1.4× 10−7 2.0× 10−3 5.279 296 025 6.8× 10−5

7.0 3.6× 10−7 4.2× 10−4 6.288 114 604 8.7× 10−3

10.0 6.0× 10−6 3.7× 10−6 Method fails −−

Table 3.2

We note the following in connection with the results listed in Table 3.2:

(i) For l = 2.0, 2.5, 4.0, the measure of crowding Cml
is appreciably larger than Efl

. Thus,
for these values of l, there is no serious crowding and, as a result, the conventional
method gives accurate approximations to m(Ql).

(ii) Although the value Cml
corresponding to l = 6 indicates a noticeable amount of crowd-

ing, the conventional method still gives an acceptable approximation to m(Q6). This
occurs because the error Ef6 , in the approximation to f6, is substantially smaller than
Cm6 . We note, however, that the computed approximation to the module has been
contaminated by the effects of crowding and, as a result, Em6 is considerably larger
than Ef6 .

(iii) When l = 7, the crowding is substantial. Thus, although Ef7 = 3.3× 10−7, the conven-
tional method can merely manage an approximation to m(Q7) which is correct to only
two decimal places.

(iv) When l = 10, the value of Cml
is smaller than Efl

. The crowding in this case is
severe and, not surprisingly, the computer fails to recognize the images of the points zj ,
j = 1, 2, 3, 4 on the unit disc in the correct order. As a result the method breaks down
completely.
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3.7 Numerical methods

The crowding phenomenon that we discussed in Section 3.5 makes it necessary to seek to
develop alternative numerical techniques (that are not based on the conventional method)
for computing approximations to the conformal module m(Q) of a quadrilateral Q. In this
section we discuss briefly various such techniques, starting with a finite-element method which
was proposed by Gaier in [45]. Our discussion of this finite-element method is based closely
on that of [121, pp. 34–35]; see also [119, pp. 71–73].

3.7.1 A finite-element method

Let Q := {Ω; z1, z2, z3, z4} and recall the variational property of Theorem 3.3.3. Also, let
Q′ := {Ω; z2, z3, z4, z1} be the conjugate quadrilateral to Q, and let

K ′ := {u : u ∈ C(Ω) ∩W1(Ω) and u = 0 on (z2, z3), u = 1 on (z4, z1)}. (3.7.1)

Then, by applying the variational property to Q′ and recalling the result of Theorem 3.1.2,
we have that

1
m(Q′)

= m(Q) = min
u∈K′

DΩ[u] = DΩ[U ′], (3.7.2)

where U ′ is the solution of the Laplacian problem

∆U ′ = 0, in Ω,

U ′ = 0, on (z2, z3),
U ′ = 1, on (z4, z1),
∂U ′/∂n = 0, on (z1, z2) ∪ (z3, z4).

(3.7.3)

Next, let
µ = min{DΩ[u] : u ∈ K̂} and µ′ = min{DΩ[u] : u ∈ K̂ ′},

where K̂ and K̂ ′ are respectively subsets of the set K given by (3.3.4), and the set K ′ given
by (3.7.1). Then, it follows at once from (3.3.5) and (3.7.2) that

µ−1 ≤ m(Q) ≤ µ′. (3.7.4)

The above form the basis of a numerical method due to Gaier [45], for computing approxi-
mations to m(Q) in cases where Ω is a polygonal domain. More specifically, the method of [45]
determines upper and lower bounds to m(Q), of the form (3.7.4), by computing finite-element
solutions to the Laplacian problem (3.2.2), with V1 = 0 and V2 = 1, and the Laplacian prob-
lem (3.7.3). The discretization used involves: (i) partitioning the polygonal region Ω into
triangular (or rectangular) elements, so that each of the specified points zj , j = 1, 2, 3, 4, of
Q coincides with a node of subdivision, and (ii) taking K̂ and K̂ ′ to be finite-dimensional
spaces of linear (or bilinear) functions.
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The method has been analyzed fully, particularly by Weisel in [173]), and estimates of
the rates of convergence are given in both [45] and [173]; see also [50, pp.69-70]. However,
as was remarked in Section 3.2, in any nontrivial application of the method, the Laplacian
problems (3.2.2) and (3.7.3) contain boundary singularities which are particularly serious if
the polygon ∂Ω contains re-entrant corners, or if one or more of the points zj , j = 1, 2, 3, 4,
of Q do not coincide with corners of ∂Ω. (It is easy to show that the first derivatives of
the solutions of both (3.2.2) and (3.7.3) become unbounded at such points.) The damaging
effects of these singularities can, in fact, be predicted from the general convergence theory
of finite-element methods for elliptic boundary value problems, which has been developed in
more recent years; see e.g. [66], [67]. As might be expected, the error estimates of [45] and
[173] reflect this theory and indicate that the speed of convergence is, in general, very slow.
More specifically, let πα and πβ denote respectively the largest interior angle of ∂Ω and the
largest interior angle at the four specified points z1, z2, z3, z4 of Q. Also, let mh(Q) denote
the approximation to m(Q) corresponding to the use of bilinear elements on a regular square
mesh, of size h, covering Ω. Then, it is shown in [173] that

0 ≤ mh(Q)−m(Q) ≤ O(hs), where s = min
(

2
α

,
1
β

)
. (3.7.5)

As an example, let Ω be the L-shaped domain (1.6.1), let zj ∈ ∂Ω, j = 1, . . . , 8, be the points
(1.6.2), and let Q := {Ω; z1, z3, z5, z6}; see Figure 1.4. Then, in this case, α = 3/2, β = 1/2
and therefore, in (3.7.5), s = 4/3. The convergence will, in fact, be noticeably slower if one
or more of the four specified boundary points of Q do not coincide with one of the corners of
Ω. For example, if Q := {Ω; z8, z4, z6, z7}, then α = 3/2 but, because of the point z4, β = 2.
Thus, in this case s = 1/2 in (3.7.5). The resulting slower convergence of the numerical
process is reflected clearly in the numerical results given in [45, p. 191].

The above remarks about boundary singularities and the convergence of the finite-element
method also apply, more generally, to any numerical process which is based on determining
m(Q), after first solving by a standard finite-difference, finite-element or boundary-element
method, the Laplacian problem (3.2.2). That is, convergence will be slow, unless the boundary
singularities are treated by means of one of the special techniques that are available for this
purpose. (For example, by introducing appropriate singular elements, or by refining the mesh
in the neighborhood of each singularity.)

We end this discussion by recalling the variational property of Remark 3.3.2 and noting
that there is a corresponding variational method, due to Opfer [117], for computing lower
bounds to the conformal moduli M of doubly-connected domains. We also note that, in the
case of symmetric doubly-connected domains, the method of Gaier [45] can be used to bound
M both from above and below. This follows easily from our discussion (in Section 1.3) on
the equivalence that exists between the conformal mappings of symmetric doubly-connected
domains and of quadrilaterals of the type illustrated in Figure 1.3; see also [45, §3.3] and [50,
p. 67].
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3.7.2 A modified Schwarz-Christoffel method

This is a method due to Howell and Trefethen [87] for computing approximations to m(Q)
and to the conformal mapping F [−1] : Rm(Q) → Ω, in cases where the domain Ω is a polygon.
The method is designed to avoid the crowding difficulties, associated with the use of the
conventional method, by using an infinite strip (rather than the unit disc or the upper-half
plane) as the intermediate canonical domain. As is indicated in [87, p. 930], the basis of the
algorithm is a formula, similar to (1.5.13), which has been used earlier in [28], [153], [41], [42]
and [43], for generating orthogonal curvilinear grids for the solution of internal flow problems.

As in Section 1.5.2, let the defining polygonal domain Ω have vertices (in counter-clockwise
order) at the points w1, w2 . . . , wn, and let α1π, α2π, . . . , αnπ, be the corresponding interior
angles of the vertices. Then, the method of [87] is based on expressing F [−1] : Rm(Q) → Ω in
the composite form

F [−1] = f ◦ g,

where: (i) g denotes the conformal mapping of Rm(Q) onto the infinite strip

S := {z : 0 < Im z < 1},
and (ii) f : S → Ω is a “modified Schwarz-Christoffel transformation” that maps the infinite
strip S onto the polygon Ω. Of the above, the conformal mapping g : Rm(Q) → S is known
exactly in terms of m(Q) and the logarithm of a Jacobian elliptic sine; see [87, p. 941] and [35,
p. 49]. As for the mapping f : S → Ω, the modified Schwarz-Christoffel formula needed for
this purpose comes, essentially, by replacing the product

∏n
k=1(1− ζ/zk)αk−1 in the standard

Schwarz-Christoffel formula (1.5.13) by
n∏

k=1

(
sinh

π

2
(ζ − zk)

)αk−1
,

where zk, k = 1, 2, . . . , n, are the pre-images, on Im z = 0 and Im z = 1, of the vertices wk,
k = 1, 2, . . . , n.

For a full description of the method and a detailed discussion of various computational
matters (such as the solution of the associated parameter problem and the evaluation of the
Schwarz-Christoffel integrals), we refer the reader to [87] and [35, §4.2–4.3]. Regarding nu-
merical software, we note that a procedure for the implementation of the method is contained
in the MATLAB SC Toolbox of Driscol [34]; see Remark 1.5.12. We also note that several
impressive examples, involving the mapping of highly elongated quadrilaterals, are given in
both [87] and [35]. We shall make frequent use of some of the results of these examples (for
comparison purposes) in Section 3.8.

3.7.3 Cross-ratios and Delaunay triangulation (CRDT)

In addition to the modified Schwarz-Christoffel method outlined in the previous section, there
is another more recent method for overcoming the crowding difficulties associated with the
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use of the Schwarz-Christoffel method for the mapping of elongated polygonal quadrilaterals.
This is the so-called “cross ratios and Delaunay triangulation (CRDT)” method of Driscoll
and Vavasis [36]. In fact, the method of [36] addresses a more general problem associated
with the use of the Schwarz-Christoffel method for approximating a conformal mapping from
the unit disc onto a polygonal domain Ω. This has to do with the crowding of the pre-vertices
of Ω on the unit circle, in cases where Ω is elongated in one or more directions.

The CRDT algorithm involves the following:

(i) Splitting some of the sides of Ω, by following a set of specified rules. Here, by “splitting a
side” we mean replacing it by two or more smaller sides whose union is the original side.
In other words, the splitting is done by introducing a number of additional auxiliary
vertices whose angles are π. (Note that this operation does not affect the Schawrz-
Christoffel formula (1.5.13), since a vertex wk whose interior angle is π has exponent
αk equal to 1.)

(ii) Constructing a Delaunay triangulation of Ω, i.e. a division of Ω into n − 2 triangles
whose vertices are vertices of Ω. Here n stands for the total number of sides of Ω,
including the auxiliary sides that are introduced at the splitting step of the algorithm.

(iii) Using as variables of the Schwarz-Christoffel process certain cross-ratios (see (1.6.5)) of
the pre-vertices (including those of the auxiliary vertices) of Ω, rather than the side-
length parameters used in the conventional Schwarz-Christoffel approach.

A full description of the CRDT algorithm can be found in the original paper of Driscoll and
Vavasis [36] and also in [35, §3.4–3.5]. Here, we merely make the following three additional
brief remarks about the purpose of steps (i)–(iii) of the algorithm:

• The splitting of the sides of Ω is done so that the triangles that result from the trian-
gulation in step (ii) are not too slender.

• The algorithm uses the property that the cross-ratios of points on a circle are invariant
under bilinear transformations, in order to determine conformally equivalent arrange-
ments of the pre-vertices of Ω, so that the resulting conformal mappings are locally
accurate (i.e. are not affected by crowding) within different regions of Ω.

• The triangles of the Delaunay triangulation of Ω have sides that include segments that
lie in Ω. If we call each such side a “diagonal”, then: (a) each diagonal is a common
side for two triangles, and (b) the union of these two triangles is a quadrilateral. With
reference to this, the splitting of the sides of Ω is performed so that the pre-vertices of
the quadrilaterals that result from the triangulation are not too crowded on the unit
circle.
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Finally, regarding numerical software, the MATLAB SC Toolbox of Driscoll [34] (see Remark
1.5.12) contains a subroutine (the subroutine crrectmap) for computing, by means of the
CRDT algorithm, the conformal modules and corresponding conformal mappings of elongated
polygonal quadrilaterals.

3.7.4 Methods for “special” quadrilaterals

Let {Ω; z1, z2, z3, z4} be a quadrilateral having one of the two special forms illustrated in
Figure 1.3, and recall the results of Section 1.3 and Exercise 1.15 that establish, in each case,
the relation between: (a) the conformal mapping F : Ω → Rm(Q), and (b) the conformal
mapping f : Ω̂ → A(q, 1) of an associated symmetric doubly-connected domain Ω̂ onto an
annulus A(q, 1) of the form (1.3.9). (With the notations used in Section 1.3, H := m(Q) and
M := 1/q is the conformal modulus of Ω̂.) It follows that for quadrilaterals having one of these
two special forms, the conformal mapping F (or the inverse mapping F [−1] : Rm(Q) → Ω)
and the conformal module m(Q) can be determined by computing the conformal mapping
f : Ω → A(q, 1) (or the inverse mapping f [−1] : A(q, 1) → Ω̂) and the conformal modulus
M = 1/q of the doubly-connected domain Ω̂. The above approach (of using a circular annulus
as the intermediate canonical domain) is of interest, because it avoids the crowding difficulties
associated with the use of the conventional method. This approach has been studied in the
following:

(i) In [125], in connection with the use of the ONM for approximating the conformal map-
ping f : Ω → A(q, 1).

(ii) In [59], in connection with the use of the so-called method of Garrick [61] for approxi-
mating (by means of an iterative process) the conformal mapping f [−1] : A(q, 1) → Ω̂.

With reference to our remark in (ii) above, for quadrilaterals having the form illustrated in
Figure 1.3 (b), the resulting Garrick–method algorithm for approximating m(Q) and F [−1] :
Rm(Q) → Ω is equivalent to a Fourier series method which was proposed, but not analyzed,
by Challis and Burley [22]; see [59, §5], [119, §3.4] and also the remarks made by Gaier in his
review of [22] (Review 30006, Zentralblatt fürMathematik, 485, 1983) and by Gutknecht
in [68, pp. 73–74].

3.7.5 The use of Laplacian solvers

In this section we discuss briefly three methods which are characterized by the fact that they
all employ numerical solvers for Laplacian boundary value problems, in order to compute
the modules of quadrilaterals. The first of these is due to Seidl and Klose [151] and applies
to a special class of quadrilaterals Q := {Ω; z1, z2, z3, z4}, where: (i) the defining domain
Ω is bounded by four Jordan arcs that meet each other at right angles (such domains are
called by Seidl and Klose “towel-shaped”), and (ii) the points z1, z2, z3, z4 are the four right
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angled corners where the four boundary arcs intersect. In other words, the quadrilaterals
considered in [151] are of the form illustrated in Figure 1.3, except that now all four sides of
Q are allowed to be curved.

As for the computational details, the method of [151] involves the use of an iterative
algorithm for solving by finite differences a coupled pair of Laplacian boundary value prob-
lems, for the real and imaginary parts of the mapping function F [−1] : Rm(Q) → Ω and the
conformal module m(Q). The algorithm starts with an initial guess for m(Q) and, at each
iterative step, involves the following::

(i) Solving each of the Laplacian problems in the rectangle Rem (where m̃ stands for the
current approximation to m(Q)), by means of one of the standard elliptic solvers that
are available for this purpose.

(ii) Updating the value of m̃ by adjusting the boundary conditions of the Laplacian prob-
lems, using a nonlinear equation solver.

The method of [151] has been developed, primarily, as a conformal transformation proce-
dure for generating orthogonal curvilinear grids for the finite-difference solution of partial
differential equations, rather than as a method for computing approximations to conformal
modules. Because of this, in the numerical examples presented in the paper, the emphasis
is on comparing the computational efficiencies of the various Laplace solvers used for solving
the discretized Laplacian problems (e.g. the successive point over-relaxation (SOR), the suc-
cessive line over-relaxation (SLOR) and the multigrid), and not on estimating the accuracy
of the resulting conformal module approximations.

Remarks similar to the above also apply to a numerical method which comes about
from a more general conformal transformation procedure for grit generation due to Lin and
Chandler-Wilde [110]. For the computation of conformal modules, the method used in [110,
pp. 821–823] involves the following:

(i) Computing, by means of a boundary-element method (see e.g. [19]) the solution U0 of
the harmonic mixed boundary value problem (3.2.2) with V1 = 0 and V2 = 1. (Note
that the boundary-element method yields approximations to both U0 and its normal
derivative ∂U0/∂n on the boundary of the defining domain Ω.)

(ii) Computing an approximation to m(Q) by applying numerical quadrature to the formula

m(Q) = 1/

∫

(z1,z2)

∂U0

∂n
ds;

see (3.2.1) and (3.2.3).

The third method, which is due to Betsakos, Samuelsson and Vuorinen [14], can be used
for computing both the conformal modules of quadrilaterals and the conformal moduli of
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doubly-connected domains. The main ingredient of this method is an adaptive finite-element
method (AFEM) (due to the second author) for solving Laplacian boundary value problems
in n-connected (n ≥ 1) domains. In particular, the AFEM algorithm has the ability of
estimating (by using a posteriori inequalities) the error of the approximation, and (if the
termination criterion is not met) of refining the finite element subdivision. In this way it can
overcome difficulties associated, for example, with the presence of boundary singularities of
the type discussed in Sections 3.2 and 3.7.1.

Let DΩ[u] denote the Dirichlet integral (3.3.1), and recall the variational property (3.3.5).
Then, in the case of a quadrilateral Q := {Ω; z1, z2, z3, z4}, the method of [14] involves
computing the conformal module m(Q) from

1
m(Q)

= DΩ[U0], (3.7.6)

after first computing by means of the AFEM an approximation to the solution U0 of the
Laplacian problem (3.2.2) with V1 = 0 and V2 = 1. Similarly, for a doubly-connected domain
Ω := Int(Γ1)∩Ext(Γ2), the method involves computing the conformal modulus M := M(Ω)∗

from (3.3.16), i.e. from
2π

log M
= DΩ[U0], (3.7.7)

after first computing by means of the AFEM an approximation to the solution U0 of the
Laplacian problem (3.3.17). (With reference to (3.7.7), the quantity 2π/ log M is the so-
called “capacity of the condenser” that has the shape of the doubly-connected domain Ω.)
It should be noted that the emphasis of [14] is on the computation of conformal moduli of
doubly-connected domains. In fact, most of the numerical examples presented in the paper
refer to such applications of the AFEM. It is, however, clear that the AFEM can also be used
for computing (via (3.7.6)) the modules of quadrilaterals, and one such example is also given
in [14, pp. 239–240].

As for the numerical results listed in [14, §5.1], Betsakos et al compare their AFEM
approximations to M with approximations obtained in [124] and [135], by means of the ONM.
In particular, if (as in Example 2.7.5) Ω is a square of side length 2 and a circular hole of radius
0.4, then the AFEM and the ONM/MB give, respectively, the following approximations to
M := M(Ω):

M ≈ 2.696 724 4, and M ≈ 2.696 724 431 230;

see [14, Table 3] and Example 2.7.5. Of the above, the second approximation (i.e. the one
that corresponds to the ONM/MB) is expected to be correct to all the figures shown; see
Example 2.7.5. Similarly, if (as in Exercise 2.15(iii)) Ω is the unit disc with a square hole of

∗The definition of the conformal modulus of a doubly-connected domain Ω adopted in [14] differs from our

definition of M := M(Ω) given in Section 1.3, Definition 1.3.1. More precisely, Betsakos et al [14] take the

modulus of Ω as log M , rather than M .
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side length 1, then the AFEM and ONM/AB to M are respectively,

M ≈ 1.691 564 9, and M ≈ 1.691 564 902 59;

see [14, Table 2] and Exercise 2.15(iii). In this case, the ONM/AB approximation to M is
expected to be correct to at least eight decimal places.

3.8 A domain decomposition method

The present and the next two sections are devoted to the study of a domain decomposition
method for computing approximations to the conformal module m(Q) and the associated
conformal mapping F : Ω → Rm(Q), in cases where the quadrilateral Q := {Ω; z1, z2, z3, z4}
is “long”. In general, by “domain decomposition method” (or, in abbreviated form, “DDM”)
we mean a method which is based on the following three steps:

(i) Decomposing the original quadrilateral Q, by means of appropriate crosscuts lj , j =
1, 2, . . . , into two or more component quadrilaterals Qj , j = 1, 2, . . . . (For example,
the component quadrilaterals of the decomposition illustrated in Figure 3.1 are

Q1 := {Ω1; z1, z2, a, d}, Q2 := {Ω2; d, a, b, c} and Q3 := {Ω3; c, b, z3, z4}.)

(ii) Approximating the conformal module m(Q) of the original quadrilateral by the sum∑
j m(Qj) of the conformal modules of the component quadrilaterals Qj .

(iii) Approximating the conformal mapping F : Ω → Rm(Q) by the conformal mappings
Fj : Ωj →Rj (of the sub-domains Ωj defining the component quadrilaterals), where

R1 := Rm(Q1) = {(ξ, η) : 0 < ξ < 1, 0 < η < m(Q1)},

and, for j = 2, 3, . . .,

Rj := {(ξ, η) : 0 < ξ < 1,

j−1∑

k=1

m(Qk) < η <

j∑

k=1

m(Qk)}.

From the practical point of view, the reasons for wishing to use such a process are as follows:

(i) To overcome the crowding difficulties associated with the problem of computing the
conformal mappings of long quadrilaterals, i.e. the difficulties associated with the con-
ventional approach of seeking to determine m(Q) and F : Ω → Rm(Q) by going via the
unit disc or the half plane; see Section 3.5.

(ii) To take advantage of the fact that in many applications (for example in applications
involving the measurement of resistances of integrated circuit networks) a complicated
original quadrilateral Q can be decomposed into very simple components.
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As for the motivation for considering such a process, this comes from the additivity property
of Theorem 3.3.6, which says that

m(Q) ≥
∑

j

m(Qj),

and that equality occurs only when each crosscut lj is an equipotential of the associated
harmonic boundary value problem (3.2.2) or, equivalently, when the image of each lj under
the conformal mapping F : Ω → Rm(Q) is a straight line parallel to the real axis. It is,
therefore, reasonable to expect that if the crosscuts lj are “near” equipotentials, then

m(Q) ≈
∑

j

m(Qj) and F (z) ≈ Fj(z), for z ∈ Ωj .

It follows from the above that the theory of the DDM concerns: (a) the determination
of appropriate crosscuts of subdivision, i.e. crosscuts that are “near” equipotentials of the
associated harmonic problem (3.2.2), and (b) the derivation of error estimates for the resulting
DDM approximations to the conformal module m(Q) and the associated conformal mapping
F : Ω → Rm(Q) (or the inverse mapping F [−1] : Rm(Q) → Ω).

The DDM was introduced in [129] and [130], for the purpose of computing the conformal
modules and associated conformal mappings F [−1] : Rm(Q) → Ω of quadrilaterals that have
the special form illustrated in Figures 1.3(b) and 3.7, where: (a) the defining domain Ω is
bounded by two parallel straight lines (which, without loss of generality, can be taken to be
the lines Re z = 0 and Re z = 1) and two Jordan arcs γ1 and γ2, and (b) the points z1, z2,
z3, z4, are the four corners where the two straight lines meet the two arcs. For the same class
of quadrilaterals, the method was also studied by Gaier and Hayman [57], [58], in connection
with the computation of conformal modules, and by Laugesen [101], in connection with the
determination of the full conformal mappings F : Ω → Rm(Q) and F [−1] : Rm(Q) → Ω.

Of the five references cited above, in the two original DDM papers ([129], [130]) the error
estimates for the approximations to m(Q) and F [−1] were derived using arguments based
on the theory of the Garrick method (see § 3.7.4 and Section 3.11), by assuming that the
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two boundary arcs γ1 and γ2 in Figure 1.3(b) satisfy certain smoothness conditions. By
contrast, the error estimates for the DDM approximation to m(Q), in [57], [58], and for
the mapping F , in [101], were derived using deeper function theoretic arguments, without
imposing any conditions on the arcs γ1 and γ2 (other than requiring that they are Jordan
arcs). Mainly because of this, the results of the last three references provided the necessary
tools for extending the DDM theory to more general quadrilaterals than those having the
form illustrated in Figure 1.3(b). This was done subsequently in [131], in connection with
the computation of conformal modules, and in [40] in connection with the determination of
the conformal mapping F : Ω → Rm(Q). Here, in the next two sections, we shall restrict
our attention to the theory and application of the DDM for the computation of conformal
modules. For the corresponding DDM details associated with the full conformal mappings,
those interested will have to consult the original references [101] and [40].

In what follows, we shall adopt the following notations, for presenting the DDM results:

• Ω and Q := {Ω; z1, z2, z3, z4} will denote, respectively, the original domain and corre-
sponding quadrilateral.

• Ω1, Ω2, . . ., and Q1, Q2, . . ., will denote, respectively, the “principal” sub-domains and
corresponding component quadrilaterals of the decomposition under consideration.

• The additional sub-domains and associated quadrilaterals that arise when the decom-
position of Q involves more than one crosscuts will be denoted by using (in an obvious
manner) a multi-subscript notation.

For example, the five component quadrilaterals of the decomposition illustrated in Figure
3.11 are:

Q1 := {Ω1; z1, z2, a, d}, Q2 := {Ω2; d, a, b, c}, Q3 := {Ω3; c, b, z3, z4, },
Q1,2 := {Ω1,2; z1, z2, b, c} and Q2,3 := {Ω2,3; d, a, z3, z4},

}
(3.8.1)

where Ω1,2 := Ω1 ∪ Ω2 and Ω2,3 := Ω2 ∪ Ω3.

3.9 Domain decomposition for special quadrilaterals

We consider quadrilaterals Q := {Ω; z1, z2, z3, z4} of the special form illustrated in Figure
1.3(b), where: (i) the defining domain Ω is bounded by two parallel straight lines λ1 and
λ2 and two Jordan arcs γ1 and γ2, and (ii) the points z1, z2, z3 and z4 are the four corners
where the arcs γ1, γ2 meet the straight lines λ1, λ2. For this special class of quadrilaterals,
it is intuitively clear that if Q is “long” and l is a straight line perpendicular to λ1, λ2 and
far from the arcs γ1, γ2, then l will be nearly an equipotential of the associated harmonic
problem (3.2.2), i.e. the image of l under the conformal mapping F : Ω → Rm(Q) will be
nearly a straight line parallel to the real axis. It is, therefore, natural to seek to consider
decompositions of the form illustrated in Figure 3.12.
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The purpose of this section is to present the main estimates for the DDM error

Em := m(Q)− {m(Q1) + m(Q2)}, (3.9.1)

that can be concluded from the results of Gaier and Hayman [57], [58]. As was previously
remarked, the method of analysis used in both [57] and [58] is based on subtle function
theoretic arguments (in particular, on properties of univalent functions) and involves the
derivation of several important intermediate results concerning: (i) the moduli of the doubly-
connected domains Ω̂, Ω̂1 and Ω̂2 associated with the quadrilaterals Q, Q1 and Q2; see §
3.7.4, and (ii) the exponential radii (see Definition 1.2.3) of the two boundary arcs γ1 and
γ2. This function theoretic approach is of special significance, because (in contrast to the
Garrick method approach used in the original DDM papers [129], [130]) it leads to computable
estimates for the DDM error without imposing any conditions on the two boundary arcs γ1

and γ2, other than requiring that they are Jordan arcs.
We consider decompositions of the form illustrated in Figure 3.12, but now (in or-

der to conform with the notations used in [57] and [58]) we take the quadrilateral Q :=
{Ω; z1, z2, z3, z4} and its decomposition to be as illustrated in Figure 3.13, where:

(i) The defining domain Ω is bounded by two segments of the lines Im z = 0 and Im z = 1
and two Jordan arcs γ1 and γ2 that lie (apart from their end points) entirely within the
strip {z : 0 < Im z < 1}.

(ii) The points z1, z2, z3, z4 are the four points where the arcs γ1, γ2 meet the lines Im z = 0
and Im z = 1.

(iii) The crosscut l of subdivision is a straight line parallel to the imaginary axis.
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The lemma given below contains several important results that connect the conformal
modules m(Q), m(Q1) and m(Q2) with the exponential radii of the boundary arcs γ1 and γ2.
As will be seen later, these results play a very decisive role in the development of the DDM
theory.

Lemma 3.9.1 With reference to Figure 3.13, let h1 and h2 denote, respectively, the distances
of the crosscut l from the arcs γ1 and γ2. Also let γ1 denote the reflection of γ1 in the
imaginary axis and let r1 and r2 be, respectively, the exponential radii of the arcs γ1 and γ2.
Finally, let

R := r1r2e
π(h1+h2).

Then:

(i)
∣∣∣∣m(Q)−

(
h1 + h2 +

1
π

(log r1 + log r2)
)∣∣∣∣ ≤ 8.37

π

1
R

(3.9.2)

≤ 8.5
π

e−πm(Q), (3.9.3)

provided that R ≥ e2π.

(ii) For j = 1 and j = 2, the expression m(Qj)−hj− (1/π) log rj is a non-positive increasing
function of hj, and

− 1
2
× 0.381e−2πhj ≤ m(Qj)− hj − 1

π
log rj ≤ 0, j = 1, 2, (3.9.4)

provided that hj ≥ 1. Also,

− 8.37
2π

e−2πm(Qj) ≤ m(Qj)− hj − 1
π

log rj ≤ 0, j = 1, 2, (3.9.5)

provided that m(Qj) ≥ 1.
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Remark 3.9.1 The results of Lemma 3.9.1 are modified versions of results given in [57] and
[58]. For a good understanding of their derivation, the interested reader will have to consult
the above two references and study the underlying theory which is developed there. Here
we follow [134, p. 114], and merely indicate the modifications that need to be made in the
original proofs (given in [57] and [58]) in order to obtain the modified results of Lemma 3.9.1.
The details are as follows:

(i) The two inequalities (3.9.2) and (3.9.5) can be derived by following the proof of Theorem
4 in [57, pp. 830–832] and using, in the right-hand side of [57, Equation (4.1)], the result
of [57, Theorem 2] (rather than that of [57, Theorem 3], as was done in [57]).

(ii) Inequality (3.9.3) follows at once from (3.9.2) and the assumption that R ≥ e2π, by
observing that Theorems 1 and 2 of [57] imply that

1
R

< e−πm(Q)

(
1 +

8
R

+
163
R2

)
.

(iii) The monotonicity of m(Qj) − hj − (1/π) log rj , j = 1, 2, is a direct consequence of
the monotonicity property of Corollary 3.3.2. As for the non-positivity of the two
expressions, this can be established by using (3.9.2) as follows: Consider the component
quadrilateral Q1 and reflect Ω1 across the crosscut l to obtain a quadrilateral Q of the
form illustrated in Figure 3.4, and a corresponding decomposition for which m(Q2) =
m(Q1), h2 = h1 and r2 = r1. Therefore, by (3.9.2),

−8.37
π

e−2πh1 ≤ 2m(Q1)− 2h1 − 2
π

log r1 ≤ 8.37
π

e−2πh1 .

This shows that the limit (as h1 → ∞) of the monotonically increasing expression
m(Q) − h1 is, at most, (1/π) log r1. Thus, m(Q1) − h1 − (1/π) log r1 ≤ 0. (Naturally,
this also implies the non-positivity of the expression corresponding to j = 2.)

(iv) Inequality (3.9.4) follows from the two estimates (1.15) and (1.16) in [57, Theorem 4]
and the monotonicity property of Corollary 3.3.2.

It is of interest to note that (3.9.2)–(3.9.3) can also be expressed in the form
∣∣∣∣m(Q)−

(
h1 + h2 +

1
π

(log r1 + log r2)
)∣∣∣∣ ≤ 0.381e−π(h1+h2), (3.9.6)

provided that h1+h2 ≥ 2. This is a direct consequence of the estimate (1.14) of [57, Theorem
4]; see also [131, p. 218].

We also need the following lemma whose proof is, again, beyond the scope of the present
lecture notes:
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Lemma 3.9.2 Let Q be of the form illustrated in Figure 3.13, but assume now that one of
the two boundary arcs (the arc γ1, say) is a straight line λ parallel to the imaginary axis.
Also, let r be the exponential radius of the arc γ := γ2, and let h denote the distance between
λ and γ. Then, for all m(Q) > 0,

− 4
π

e−2πm(Q) < m(Q)− h− 1
π

log r ≤ 0, (3.9.7)

where the constant 4/π, in the left-hand side of (3.9.7), cannot be replaced by a smaller
number.

Remark 3.9.2 Let Q be as in Lemma 3.9.2. Since r ≤ 4 (see Remark 1.2.3), the right
inequality of (3.9.7) implies that

m(Q) ≤ h +
1
π

log 4.

This improves the right inequality of (3.3.11).

We are now in a position to state and prove two theorems that contain our main estimates
for the DDM error (3.9.1).

Theorem 3.9.1 The following estimates hold for the decomposition illustrated in Figure
3.13:

(i)
0 ≤ m(Q)− {m(Q1) + m(Q2)} < 0.762e−2πh∗ , (3.9.8)

provided that h∗ := min(h1, h2) ≥ 1.

(ii)
0 ≤ m(Q)− {m(Q1) + m(Q2)} < 5.26e−2πm∗

, (3.9.9)

provided that m∗ := min{m(Q1),m(Q2)} ≥ 1.

Proof. (i) Since h∗ ≥ 1, (3.9.6) and (3.9.4) imply, respectively, that

−0.381e−2πh∗ ≤ m(Q)−
(

h1 + h2 +
1
π

(log r1 + log r2)
)
≤ 0.381e−2πh∗ ,

and
0 ≤ hj +

1
π

log rj −m(Qj) ≤ 1
2
× 0.381e−2πh∗ , j = 1, 2.

These, together with the additivity property (3.3.6), lead immediately to the required result.

(ii) From Lemma 3.9.2 we have that

− 4
π

e−2πm(Qj) ≤ m(Qj)− hj − 1
π

log rj ≤ 0, j = 1, 2. (3.9.10)
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Also, since m∗ ≥ 1, (3.9.4) implies that

2 ≤ m(Q1) + m(Q2) ≤ h1 +
1
π

log r1 + h2 +
1
π

log r2 =
1
π

log R.

Hence, R ≥ e2π. Therefore, from (3.9.3),

8.5
π

e−2πm∗ ≤ m(Q)−
(

h1 + h2 +
1
π

(log r1 + log r2)
)
≤ 8.5

π
e−2πm∗

,

and this, in conjunction with (3.9.10) and the additivity property (3.3.6), gives that

0 ≤ m(Q)− {m(Q1) + m(Q2)} ≤ 16.5
π

e−2πm∗
< 5.26e−2πm∗

.

Theorem 3.9.2 If in Figure 3.13 the boundary arc γ1 is a straight line parallel to the imag-
inary axis (so that m(Q1) = h1), i.e. if the decomposition is of the form illustrated in Figure
3.14, then:

(i)

0 ≤ m(Q)− {h1 + m(Q2)} ≤ 1
2
× 0.381e−2πh2 , (3.9.11)

provided that h2 ≥ 1.

(ii)

0 ≤ m(Q)− {h1 + m(Q2)} ≤ 4
π

e−2πm(Q2), (3.9.12)

for all m(Q2) > 0. In (3.9.12), the constant 4/π cannot be replaced by a smaller number.

Proof. (i) Because of the form of Q, (3.9.4) implies that

−1
2
× 0.381e−2π(h1+h2) ≤ m(Q)− h1 − h2 − 1

π
log r2 ≤ 0.

This, in conjunction with the corresponding estimate for m(Q2) (i.e. (3.9.4) with j=2) and
the additivity property (3.3.6) leads, at once, to the required result.

(ii) Lemma 3.9.2 gives the sharp estimates

− 4
π

e−2πm(Q) < m(Q)− h1 − h2 − 1
π

log r2 ≤ 0,

and
0 ≤ h2 +

1
π

log r2 −m(Q2) <
4
π

e−2πm(Q2),

and these, in conjunction with the additivity property (3.3.6), lead to the required result.
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The final theorem of this section concerns the decomposition of a rectangular quadrilat-
eral. As will be seen in Section 3.10, this theorem plays a very central role in the development
of the DDM theory for general quadrilaterals.

Let RH be the rectangle

RH := {z : 0 < Re z < 1, 0 < Im z < H},

and by means of two non-intersecting Jordan arcs l1 and l2 decompose RH into three sub-
domains Ω1, Ω2 and Ω3, as illustrated in Figure 3.15. Also, let Q2, Q1,2 and Q2,3 be the
quadrilaterals

Q2 := {Ω2; a, b, c, d}, Q1,2 := {Ω1,2; 0, 1, c, d} and Q2,3 := {Ω2,3; a, b, 1 + iH, iH},

where, as was indicated in Section 3.8,

Ω1,2 := Ω1 ∪ Ω2 and Ω2,3 := Ω2 ∪ Ω3.

Then, we have the following:

Theorem 3.9.3 With reference to Figure 3.15 and the notations introduced above,

|H − {m(Q1,2) + m(Q2,3)−m(Q2)}| ≤ 2.71e−πm(Q2), (3.9.13)

provided that m(Q2) ≥ 3. If, in addition, the crosscut l1 is a straight line parallel to the real
axis, then

− 4
π

e−2πm(Q2) ≤ H − {m(Q1,2) + m(Q2,3)−m(Q2)} ≤ 0, (3.9.14)

provided that m(Q2) ≥ 1.

Proof. Let l1 be the reflection of the arc l1 in the real axis and let r1 and r2 be, respectively,
the exponential radii of the arcs l1 and l2; see Remark 1.2.2. Also, let h1 be the distance of l1
from the side (z3, z4) of RH , h2 the distance of l2 from the side (z1, z2), and h1,2 the distance
between l1 and l2. Then, for the quadrilateral Q2, (3.9.3) gives

−8.5
π

e−πm(Q2) ≤ m(Q2)− h1,2 − 1
π

(log r1 + log r2) ≤ 8.5
π

e−πm(Q2).
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(The above holds because, in this case, the assumption m(Q2) ≥ 3 and Hayman’s inequality
(3.3.11) imply that R := r1r2e

πh2 ≥ e2π.) Similarly, for the quadrilaterals Q1,2 and Q2,3,
(3.9.7) gives respectively

− 4
π

e−2πm(Q1,2) < m(Q1,2)− h2 − 1
π

log r2 ≤ 0,

and
− 4

π
e−2πm(Q2,3) < m(Q2,3)− h1 − 1

π
log r1 ≤ 0.

Hence, by combining the above three inequalities and observing that h1 + h2 − h1,2 = H, we
find that

−E1 ≤ H − {m(Q1,2 + m(Q2,3)−m(Q2)} ≤ E2,

where
E1 =

8.5
π

e−πm(Q2) ≤ 2.71e−πm(Q2),

and

E2 =
8.5
π

e−πm(Q2) +
4
π

(e−2πm(Q1,2) + e−2πm(Q2,3))

≤ 1
π

(8.5 + 8e−3π)e−πm(Q2) ≤ 2.71e−πm(Q2).

If l1 is a straight line parallel to the real axis and m(Q2) > 0, then (3.9.12) gives the
following inequality for the decomposition of Q1,2:

0 ≤ m(Q1,2)− {h1 + m(Q2)} ≤ 4
π

e−2πm(Q2).

The required result (3.9.14) follows because, in this case,

h1 = H − h1 = H −m(Q2,3). (3.9.15)

Remark 3.9.3 With reference to (3.9.12), it is of interest to note that the slightly inferior
estimate

0 ≤ m(Q)− {h1 + m(Q2)} ≤ 8.37
2π

e−2πm(Q2) <
4.19
π

e−2πm(Q2),

can be derived directly from the results of Lemma 3.9.1, by assuming that m(Q2) > 1. This
can be achieved, quite simply, by using (3.9.5) (instead of (3.9.4)) in the proof that led to
(3.9.11). Similarly, with reference to (3.9.9), the inferior estimate

0 ≤ m(Q)− {m(Q1) + m(Q2)} ≤ 16.87
π

e−2πm∗
< 5.37e−2πm∗

,

can be derived (under the assumption m∗ ≥ 1.5) directly from the results of Lemma 3.9.1,
by using (3.9.3) and (3.9.5).
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Remark 3.9.4 The result of Theorem 3.9.1 shows that

Em := m(Q)− {m(Q1) + m(Q2)} = O(e−2πm∗
), m∗ →∞, ,

where m∗ := min{m(Q1),m(Q2)}. Furthermore, it is shown by means of an example in [58,
Theorem 3] that this order is sharp.

Remark 3.9.5 We note the following in connection with the two estimates of Theorem 3.9.2:
Apart from the trivial case where γ2 is a straight line parallel to the imaginary axis (so that
m(Q2) = h2), we have that

m(Q2) = h2 + η,

where 0 < η ≤ (log 4)/π = 0.4412 . . . ; see Remark 3.9.2. Therefore, the condition m(Q2) > 0
needed for (3.9.12) is less restrictive than the corresponding condition h2 ≥ 1 needed for
(3.9.11). On the other hand, (3.9.12) gives a sharper bound for the DDM error only if

η >
1
2π

log
{

8
0.381π

}
= 0.302 341 48 · · · ;

see [133, p. 273]. Thus, it is not always advantageous to use (3.9.12) (rather than (3.9.11))
for estimating the DDM error of special decompositions of the form illustrated in Figure
3.14. As might be expected, a similar remark applies in connection with the use of (3.9.8)
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and (3.9.9), for estimating the DDM error of decompositions of the form illustrated in Figure
3.13. However, as will become apparent in the next section, estimates of the form (3.9.9) and
(3.9.12) (i.e. estimates in terms of m(Q1) and m(Q2), rather than h1 and h2) play a central
role in the further development of the DDM theory, and are needed for extending this theory
to more general decompositions.

Remark 3.9.6 Let Q := {Ω; z1, z2, z3, z4} be a quadrilateral of the form illustrated in
Figure 3.13 and let Γ1 and Γ2 denote the two symmetric curves that consist, respectively,
of the images (under the transformation z → eπz) of the two boundary arcs γ1 and γ2

together with their reflections in the real axis. (Note that, in the terminology of Exercise
1.15, Int(Γ2) ∩ Ext(Γ1) is the symmetric doubly-connected domain Ω̂ associated with Q.)
Also, let

σ := cap(Γ1) and % := R0 (Int(Γ2))

be, respectively, the capacity of the curve Γ1 and the conformal radius of the domain Int(Γ2)
with respect to the origin 0. Then, with the notations of Lemma 3.9.1, c and R are related
to the exponential radii r1 and r2 of the arcs γ1 and γ2 by means of

r1 = e−πh1σ−1 and r2 = e−πh2%;

see Definitions 1.2.1, 1.2.2 and 1.2.3. Therefore, from (3.9.6) we have that
∣∣∣∣m(Q)− 1

π
(log %− log σ)

∣∣∣∣ ≤ 0.381e−π(h1+h2), (3.9.16)

provided that h1 +h2 ≥ 2. In other words, the conformal module of a “long” quadrilateral Q

of the form illustrated in Figure 3.13 can be approximated, in terms of the conformal radius
% of the simply-connected domain Int(Γ2) and the capacity σ of the curve Γ1, by means of

m(Q) ≈ 1
π

(log %− log σ). (3.9.17)

Further, it follows from (3.9.16) that the approximation (3.9.17) is of order O(e−π(h1+h2)),
i.e. of order O(e−πm(Q)).

Remark 3.9.7 The theory of the present section can also be used for computing DDM ap-
proximations to the conformal moduli of symmetric doubly-connected domains. This follows
from our discussion, in Section 1.3, on the equivalence that exists between the conformal
mappings of symmetric doubly-connected domains and special quadrilaterals. An example
of such an application can be found in [14, pp. 239–240], where the DDM is used (in con-
junction with the adaptive finite-element method (AFEM) discussed in § 3.7.5) in order to
approximate the conformal modulus of a “thin” doubly-connected domain.

We end the section with the following example, which provides theoretical justification
for the experimental observation (3.6.10) made in Example 3.6.2.
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Example 3.9.1 Let Tl := {Ωl; z1, z2, z3, z4} be the quadrilateral of Example 3.6.2, where
Ωl and zj , j = 1, 2, 3, 4 are, respectively, the trapezium

Ωl := {(x, y) : 0 < x < 1, 0 < y < x + l − 1}, l > 1.

and the points
z1 = 0, z2 = 1, z3 = 1 + il, z4 = i(l − 1);

see Figure 3.10. Then, for l ≥ 2 and any c > 0, (3.9.11) gives that

m(Tl+c)− {m(Tl) + c} ≤ 1
2
× 0.381e−2π(l−1). (3.9.18)

This proves the experimental observation (3.6.10) made in Example 3.6.2 and shows, in
particular, that:

m(T2+c)− {m(T2) + c} < 3.56× 10−4,

m(T3+c)− {m(T3) + c} < 6.65× 10−7,

m(T4+c)− {m(T4) + c} < 1.25× 10−9,

m(T5+c)− {m(T5) + c} < 2.32× 10−12.





(3.9.19)

In other words, for any c > 0, the values of m(T2+c), m(T3+c), m(T4+c) and m(T5+c) can be
determined to, at least, three, five, eight and eleven decimal places by adding, respectively, c

to the values of m(T2), m(T3), m(T4) and m(T5).
We note the following in connection with the above:

• With reference to Remark 3.9.5, it is easy to check (see Table 3.1) that, for the purposes
of this example, (3.9.11) gives smaller bounds than (3.9.12).

• As will become apparent in the next section, Estimate (3.9.18) is of more general
interest, because in many practical applications the boundaries of the quadrilaterals
under consideration consist entirely of straight lines inclined at angles of 90◦ and 45◦.

3.10 Domain decomposition for general quadrilaterals

We begin with two lemmas that concern the general decomposition illustrated in Figure 3.11,
where by means of two Jordan arcs l1 and l2 the original quadrilateral Q := {Ω; z1, z2, z3, z4}
has been decomposed into the quadrilaterals (3.8.1).

Lemma 3.10.1 Consider the decomposition of the quadrilateral Q := {Ω; z1, z2, z3, z4} il-
lustrated in Figure 3.11, and assume that the crosscut l2 is an equipotential of the harmonic
problem associated with Q2,3 (i.e. assume that the image of l2, under the conformal mapping
Ω2,3 → Rm(Q2,3), is a straight line parallel to the real axis). Then

0 ≤ m(Q1,2)− {m(Q1) + m(Q2}| ≤ m(Q)− {m(Q1) + m(Q2,3)}. (3.10.1)
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Proof. The additivity property (3.3.6) implies that

m(Q) ≥ m(Q1,2) + m(Q3).

Thus,
m(Q1,2) + m(Q3)− {m(Q1) + m(Q2,3)} ≤ m(Q)− {m(Q1) + m(Q2,3)},

and the required result follows because the hypothesis about l2 implies that m(Q2,3) =
m(Q2) + m(Q3).

The next lemma is a trivial consequence of the results of Theorem 3.9.3. As will become
apparent later, the results of this lemma play a very central role in the development of the
DDM theory.

Lemma 3.10.2 For the decomposition illustrated in Figure 3.11:

(i)
|m(Q)− {m(Q1,2) + m(Q2,3)−m(Q2)}| ≤ 2.71e−πm(Q2), (3.10.2)

provided that m(Q2) ≥ 3.

(ii) If, in addition, the crosscut l1 is an equipotential of the harmonic problem associated with
Q, then

− 4
π

e−2πm(Q2) ≤ m(Q)− {m(Q1,2) + m(Q2,3)−m(Q2)} ≤ 0, (3.10.3)

provided that m(Q2) ≥ 1.

Proof. Let l
′
1 and l

′
2 be the images of the crosscuts l1 and l2 under the conformal mapping

F : Ω → Rm(Q), and observe that in part (ii) of the lemma l
′
1 is a straight line parallel to

the real axis. The lemma follows by recalling the conformal invariance property of conformal
modules, and applying Theorem 3.9.3 to the decomposition (defined by l

′
1 and l

′
2) of the

rectangular quadrilateral {Rm(Q); 0, 1, 1 + im(Q), im(Q)}.
Our first theorem is for decompositions of quadrilaterals Q := {Ω; z1, z2, z3, z4}, where

the defining domain Ω involves some symmetry at one of its ends.

Theorem 3.10.1 Consider a quadrilateral Q := {Ω; z1, z2, z3, z4} of the form illustrated in
Figure 3.16, and assume that the defining domain Ω can be decomposed by a straight-line
crosscut l into Ω1 and Ω2, so that Ω2 is the reflection in l of some sub-domain of Ω1. Then,
for the decomposition defined by l,

0 ≤ m(Q)− {m(Q1) + m(Q2)} ≤ 4
π

e−2πm(Q2), (3.10.4)

provided that m(Q2) ≥ 1.
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Proof. Reflect Ω1 in l and let Ω3 be the additional domain such that Ω2 ∪ Ω3 is the
reflection in l of Ω1. Next, consider the decomposition of the resulting quadrilateral Q′ :=
{Ω′; z1, z2, z

′
2, z

′
1}, where Ω′ := Ω1 ∪Ω2 ∪Ω3 and z′1, z

′
2 are the reflections in l of z1, z2. Then,

because l is a line of symmetry, its image under the conformal mapping Ω′ → Rm(Q′) will be
a straight line parallel to the real axis. Therefore, the application of Estimate (3.10.3) to the
decomposition of Q′ gives that

− 4
π

e−2πm(Q2) ≤ m(Q′)− {m(Q1,2) + m(Q2,3)−m(Q2)} ≤ 0,

provided m(Q2) ≥ 1. The desired result follows because

m(Q′) = 2m(Q1), m(Q1,2) = m(Q) and m(Q2,3) = m(Q1).

The next theorem is for decompositions, where the defining domain involves some sym-
metry away from the ends of the quadrilateral under consideration.

Theorem 3.10.2 Consider a quadrilateral Q := {Ω; z1, z2, z3, z4} of the form illustrated
in Figure 3.17, and assume that the defining domain Ω can be decomposed by means of a
straight-line crosscut l and two other crosscuts l1 and l2 into four sub-domains Ω1, Ω2, Ω3

and Ω4, so that Ω3 is the reflection in l of Ω2. Then, for the decomposition of Q defined by l,

0 ≤ m(Q)− {m(Q1,2) + m(Q3,4)} ≤ 5.26e−2πm(Q2), (3.10.5)

provided that m(Q2) ≥ 1.5.

Proof. The application of Estimate (3.10.2) to the decomposition of Q defined by the
crosscuts l1 and l2 gives that

|m(Q)− {m(Q1,2,3) + m(Q2,3,4)−m(Q2,3)}| ≤ 2.71e−πm(Q2,3),
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or (since, by symmetry, m(Q2,3) = 2m(Q2)),

|m(Q)− {m(Q1,2,3) + m(Q2,3,4)− 2m(Q2)}| ≤ 2.71e−2πm(Q2), (3.10.6)

provided that m(Q2,3) ≥ 3, or m(Q2) ≥ 1.5. Further, the application of Estimate (3.10.4) to
the decompositions of Q1,2,3 and Q2,3,4 that are defined by the crosscut l gives that

0 ≤ m(Q1,2,3)− {m(Q1,2) + m(Q3)}| ≤ 4
π

e−2πm(Q3), (3.10.7)

and
0 ≤ m(Q2,3,4)− {m(Q2) + m(Q3,4)}| ≤ 4

π
e−2πm(Q2), (3.10.8)

provided that m(Q2) = m(Q3) ≥ 1. Since m(Q) ≥ m(Q1,2) + m(Q3,4), the desired result
follows immediately from (3.10.6)–(3.10.8) by making use of the symmetry relations m(Q2) =
m(Q3) and m(Q2,3) = m(Q2) + m(Q3).

Remark 3.10.1 Of the estimates contained in Lemmas 3.10.1, 3.10.2 and Theorems 3.10.1–
3.10.2, Estimates (3.10.1), (3.10.3) and (3.10.4) are given in [133], and Estimates (3.10.2) and
(3.10.5) in [134]. All these estimates are improved versions of results given earlier in [131]
and [132].

Remark 3.10.2 The results of of Theorems 3.10.1–3.10.2 extend the DDM theory of Section
3.9, and provide the means for computing DDM approximations to the conformal modules of
a much wider class of quadrilaterals than the class of special quadrilaterals considered there.
Several examples, illustrating the wide area of applicability of this more general DDM theory
and the remarkable efficacy of the associated domain decomposition method, can be found in
[131]–[133]. In such applications, the crosscuts of subdivision (that define the decomposition
of the quadrilateral Q under consideration) are chosen by making careful use of any symmetry
of Q so that: (i) the computation of the modules of the resulting component quadrilaterals is
as simple as possible, and (ii) the accuracy of the resulting DDM approximation is as high as
possible. With reference to (ii), it is clear from the theory that for best DDM accuracy the
smallest of the modules of the component quadrilaterals must be as large as possible. (That
is, the “shortest” of the components must be as “long” as possible.) On the other hand, if
the determination of the modules of some of the component quadrilaterals requires the use
of standard numerical techniques (based on the conventional method), then these modules
must be sufficiently small so that their computation is not affected adversely by crowding
difficulties. We illustrate some of the above remarks by presenting two examples which have
been considered previously in [133, pp. 276–277] and [132, Example 3.5] respectively.
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Figure 3.17

Example 3.10.1 Let Q := {Ω; z1, z2, z3, z4} be the spiral quadrilateral illustrated in Figure
3.18, where: (i) the width of each strip of the spiral Ω is 1, and (ii) the lengths of the “outer”
segments of ∂Ω (in clockwise order, starting from the right hand side) are respectively 18,
19, 18, 16, 15, 13, 12, 10, 9, 7, 6, 4 and 3. The mapping of the above quadrilateral was first
considered by Howell and Trefethen [87], in connection with the use of the modified Schwarz-
Christoffel method outlined in § 3.7.2. Their computed approximation to m(Q) (which is
given without an error estimate in [87, p. 943]) is

m(Q) ≈ 132.704 54. (3.10.9)

Here we consider the decomposition of Q illustrated in Figure 3.18 and approximate the
conformal module m(Q) by

m̃(Q) =
13∑

j=1

m(Qj).

We note the following regarding the modules of the component quadrilaterals Qj , j =
1, 2, . . . , 13:

Let Tl be the trapezoidal quadrilateral of Figure 3.10, which we considered in Examples
3.6.2, 3.6.3 and 3.9.1 . Then, clearly, m(Q1) = m(T18) and m(Q13) = m(T3). Also, because of
the symmetry of the other component quadrilaterals, m(Q2) = 2m(T9.5), m(Q3) = 2m(T9),
. . ., m(Q11) = 2m(T3), m(Q12) = 2m(T2). This means that the modules of all the component
quadrilaterals can be written down, correct to at least eight decimal places, by using the exact
values of m(T2), m(T3), m(T3.5) and m(T4) in conjunction with the formula

m(T4+c) ≈ m(T4) + c, c > 0;
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see Examples 3.6.2 and 3.9.1. In view of the above, we find by trivial calculation that m̃(Q)
is given to eight decimal places by

m̃(Q) =
13∑

j=1

m(Qj) = 132.704 539 35. (3.10.10)

. ..

.

Ω2

Ω1Ω5Ω13 Ω9

Ω11Ω7Ω3

Ω12

Ω8

Ω4

Ω10

Ω6

z1z2

z3 z4

Figure 3.18

As for the DDM error in the approximation (3.10.10), the repeated application of Estimate
(3.10.4) of Theorem 3.10.1 gives:

0 ≤ m(Q)− {m(Q1,2,...,12) + m(Q13)} ≤ 4
π

e−2πm(Q13),

0 ≤ m(Q1,2,...,12)− {m(Q1,2,...,11) + m(Q12)} ≤ 4
π

e−2πm(Q12),

0 ≤ m(Q1,2,...,11)− {m(Q1,2,...,10) + m(Q11)} ≤ 4
π

e−2πm(Q11),

e.t.c. until

0 ≤ m(Q1,2,3)− {m(Q1,2) + m(Q3)} ≤ 4
π

e−2πm(Q3),

0 ≤ m(Q1,2)− {m(Q1) + m(Q2)} ≤ 4
π

e−2πm(Q1).
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Therefore
0 ≤ m(Q)− m̃(Q) ≤ E, (3.10.11)

where

E =
4
π
{e−2πm(Q1) +

13∑

j=3

e−2πm(Qj)} ≤ 9.24× 10−7. (3.10.12)

Thus, from (3.10.10)–(3.10.12), we can conclude that

132.704 539 3 < m(Q) < 132.704 540 3. (3.10.13)

In particular, the above estimate shows that the approximation (3.10.9) of Howell and Tre-
fethen [87] is, in fact, correct to all the figures given. More importantly, however, the example
illustrates the capability of the DDM to produce (often with very little computational effort)
approximations of high accuracy to the conformal modules of complicated quadrilaterals.

Example 3.10.2 Consider the decomposition of the quadrilateral Q := {Ω; z1, z2, z3, z4},
illustrated in Figure 3.19, where the circular spiral Ω is defined as follows:

• Ω1,2,3 is the upper half of the annulus {z : 4 < |z| < 5},

• Ω4,5,6 is the lower half of {z : 3 < |z + 1| < 4},

• Ω7,8 is the upper half of {z : 2 < |z| < 3},

• Ω9,10 is the lower half of {z : 1 < |z + 1| < 2}.

It should be noted that, in the figure, the three crosscuts that separate respectively the
sub-domains Ω3 from Ω4, Ω6 from Ω7 and Ω8 from Ω9 are needed only for the DDM error
estimation analysis. That is, the DDM approximation to m(Q) is taken to be

m̃(Q) = m(Q1) + m(Q2) + m(Q3,4) + m(Q5) + m(Q6,7) + m(Q8,9) + m(Q10).

As for the modules of the component quadrilaterals, it follows easily from the discussion
at the end of Section 1.3 that:
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m(Q1) = 2m(Q2) = 2m(Q3) =
0.5π

log 5− log 4
= 7.039 398 260,

m(Q4) = m(Q5)/2 = m(Q6) =
0.25π

log 4− log 3
= 2.730 090 745,

m(Q7) = m(Q8) =
0.5π

log 3− log 2
= 3.874 060 419,

m(Q9) = m(Q10) =
0.5π

log 2
= 2.266 180 071.

(The above follow by noting that, with the notations used in (1.3.10)–(1.3.13),

m{Sq; ζ1, ζ2, ζ3, ζ4} = H and m{Sq; ζ2, ζ3, ζ4, ζ1} = 1/H. )

The modules of Q3,4, Q6,7 and Q8,9, which are also needed for the determination of m̃(Q),
are computed by means of the conventional method in conjunction with the use of the double
precision version of the conformal mapping package CONFPACK; see Remark 1.5.6. The
resulting approximations are

m(Q3,4) ≈ 6.249 844 465, m(Q6,7) ≈ 6.604 332 694, m(Q8,9) ≈ 6.141 317 210. (3.10.14)

These are expected to be correct to eight decimal places, because the CONFPACK error
estimates for the conformal mappings Ω4,5 → D1, Ω6,7 → D1 and Ω8,9 → D1 are, respectively,

1.6× 10−13, 1.3× 10−13, 1.7× 10−13,
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while the corresponding measures of crowding are

4.4× 10−4, 2.5× 10−4, 5.2× 10−4;

see Remark 3.5.5. We expect, therefore, that m̃(Q) is given correct to eight decimal places
by

m̃(Q) = 37.280 953 32. (3.10.15)

The DDM error in m̃(Q) can be estimated by applying Theorems 3.10.1 and 3.10.2 to Q

and the component quadrilaterals as follows:

0 ≤ m(Q)− {m(Q1) + m(Q2,...,10)} ≤ 4
π

e−2πm(Q1),

0 ≤ m(Q2,...,10)− {m(Q2) + m(Q3,...,10)} ≤ 4
π

e−2πm(Q2),

0 ≤ m(Q3,...,10)− {m(Q3,4) + m(Q5,...,10)} ≤ 5.26e−2πm(Q4),

0 ≤ m(Q5,...,10)− {m(Q5) + m(Q6,...,10)} ≤ 5.26e−2πm(Q6),

0 ≤ m(Q6,...,10)− {m(Q6,7)) + m(Q8,9,10)} ≤ 5.26e−2πm(Q7),

0 ≤ m(Q8,9,10)− {m(Q8,9) + m(Q10)} ≤ 4
π

e−2πm(Q10).

Thus,

0 ≤ m(Q)− m̃(Q) ≤ E, (3.10.16)

where

E =
4
π
{e−2πm(Q1) + e−2πm(Q2) + e−2πm(Q10)}

+ 5.26{e−2πm(Q4) + e−2πm(Q6) + e−2πm(Q7)} ≤ 1.21× 10−6. (3.10.17)

Therefore, from (3.10.15)–(3.10.17),

37.280 953 3 < m(Q) < 37.280 954 6. (3.10.18)

The above improves considerably an earlier DDM estimate obtained in [132, Example 3.5],
by using a different decomposition of Q and applying (for the error analysis) earlier inferior
versions of Theorems 3.10.1 and 3.10.2. However, the improvement is mainly due to the
use of the double precision version of CONFPACK (in place of the single precision version
used in [132]) which, because of its higher accuracy, allows us to choose longer component
quadrilaterals.
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3.11 Additional bibliographical remarks

The material of Chapter 3 is based closely on the detailed treatment of the subject contained
in a monograph by N.S. Stylianopoulos and the author. The tentative title of this monograph
(which is currently under preparation) is “Numerical Conformal Mapping onto a Rectangle”.

Sections 3.1–3.3: For the material of these sections see also [75, §16.11] and [119, §2]. Re-
garding applications, apart from the measurement of resistance values of electrical networks,
there are various other areas of application that are also intimately related to the problem
of computing conformal modules. One such area (that also comes about via the solution
of the Laplacian mixed boundary value problem (3.2.2)) is that of steady state diffusion, in
connection with the measurement of diffusion coefficients of solid materials; see e.g. [12],
[100] and [109].

Section 3.4: The procedure for computing sn−1(w, k), described in this section, is taken
from [175, §3].

Section 3.5: The crowding phenomenon is discussed, in connection with the mapping of
quadrilaterals, in [35, §2.6], [119, §3.1] and [125, §2]. It is also studied, in a more general
setting (in connection with the mapping of elongated regions), in [29], [30], [33], [36], [63],
[170], [171] and [178].

Section 3.7:

• § 3.7.1: The discussion of the finite-element method is based closely on the description
given in [121, pp. 34–35]; see also [119, pp. 71–73].

• § 3.7.4: The method of Garrick is the extension to the doubly-connected case of the
much better known (and much more extensively studied) method of Theodorsen [160];
see [44, pp. 64–105]. The method dates back to 1936. It was originally proposed by
I.E. Garrick [61] (in connection with an aeronautical application) and was subsequently
placed on a more rigorous mathematical setting by A.M. Ostrowski, D. Gaier and
others; see [118], [44, Kap. V, §3], [59, §2-4], [70], [75, §17.4], and [90].

Sections 3.8–3.10:

• Of the four estimates given in Theorems 3.9.1 and 3.9.2, Estimates (3.9.8) and (3.9.9)
are modified versions of Estimate (1.22) in [57, Theorem 6], while (3.9.11) is a slightly
improved version of Estimate (1.10) in [58, Theorem 5]. As for the sharp estimate
(3.9.12), this is given (under the assumption that m(Q2) ≥ 1) as a “note added in
proof” in [58, p. 467]. A detailed proof of (3.9.12) can be found in the monograph cited
at the beginning of this section.
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• The two results of Theorem 3.9.3 are given, respectively, in [134, Theorem 2.5] and [133,
Remark 4]. The corresponding estimates (3.9.13) and (3.9.14) are sharper versions of
estimates given earlier in [131, Theorems 3.1, 3.2].

3.12 Exercises

3.1 Let Ω be the isosceles right-angled triangle that has vertices at the points 0, 2 and 2i.
Show that m{Ω; 1, 2, 2i, i} = 2.

3.2 With the notations of Theorem 3.2.3, let v be the harmonic measure of γ2 with respect
to Ω, and let v̂ be the transplant of v under the conformal mapping F : Ω → Rm(Q). By
using the method of separation of variables, find v̂ and hence derive (3.2.9).

3.3 Give an alternative proof of Theorem 3.3.6, by making use of Rengel’s inequality (3.3.9)
of Theorem 3.3.7.

3.4 Let Ω be the L-shaped domain of Example 1.6.1 and zj ∈ ∂Ω, j = 1, 2, . . . , 7, the points
(1.6.2); see Figure 1.4.

(i) Show that m{Ω; z1, z3, z5, z7} = 1.

(ii) By making use of the values of m(Tl) given in Table 3.1, find the value of m{Ω; z5, z6, z8, z1}.

3.5 Let Tl denote the trapezoidal quadrilateral of Example 3.6.2; see Figure 2.10. Given
that the exact value of m(Tl) is, to 12 decimal places,

m(Tl) = 3.279 364 399 489,

find, as accurately as you can, approximations to the conformal modules of the following two
quadrilaterals:

(i) The quadrilateral Q := {Ω; A,B,D, E} illustrated in Figure 3.20, where AB = 1, BC = 4,
CD = 15, EF = 17 and FA = 5.

(ii) The quadrilateral Q := {Ω; G, A,B, C} illustrated in Figure 3.21, where AB = 19,
BC = 1, CD = 8, DE = 4, EF = 2 and GH = 8

A B

C D

EF

Ω

Figure 3.20
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Ω

Figure 3.21
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Chapter 4

Solutions

4.1 Exercises of Chapter 1

1.1 The result is a direct consequence of the following: Let γ be a smooth arc in Ω passing
through the point z0, and observe that if z = z(t), a ≤ t ≤ b, is a parametric representation
of γ, then w = w(t) := f [z(t)], a ≤ t ≤ b, is a parametric representation of the image γ̂ of γ

under the transformation f : Ω → Ω̂. Observe also that

w′(t) = f ′[z(t)]z′(t), (4.1.1)

and that the angle of inclination of the tangent to γ at the point z0 := z(t0) is

θ0 := arg z′(t0).

Finally observe that (since f is analytic in Ω and f ′(z) 6= 0 for z ∈ Ω) the image curve γ̂ is
also a smooth arc. Therefore, from (4.1.1), the angle of inclination of the tangent to γ̂ at the
point w0 := f(z0) is

φ0 := arg w′(t0) = arg z′(t0) + arg f ′[z(t0)] = θ0 + arg f ′(z0). (4.1.2)

In other words, the tangent to γ at z0 is rotated through the angle arg f ′(z0) by the trasfor-
mation f : Ω → Ω̂.

1.2 Let γ, γ̂, θ0 and φ0 be as in the solution of Exercise 1.1, and observe that

θ0 = lim
z→z0

arg{z − z0} and φ0 = lim
z→z0

arg {f(z)− f(z0)} , (4.1.3)

where the approach of z to z0 is along the arc γ. Observe also that, in the neighborhood of
z0, f has the Taylor seies expansion

f(z) = f(z0) +
1
m!

f (m)(z0)(z − z0)m +
1

(1 + m)!
f (m+1)(z0)(z − z0)m+1 + · · ·

= f(z0) +
1
m!

(z − z0)m

{
f (m)(z0) +

1
1 + m

f (m+1)(z0)(z − z0) + · · ·
}

.

173
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Therefore,

arg{f(z)− f(z0)} = m arg{z − z0}+ arg
{

f (m)(z0) +
1

1 + m
f (m+1)(z0)(z − z0) + · · ·

}
,

and hence (from (4.1.3))
φ0 = mθ0 + arg{f (m)(z0)}. (4.1.4)

The required result is a direct consequence of (4.1.4).

1.3 (i) By the chain rule of differentiation,

∂U

∂x
=

∂ξ

∂x

∂Û

∂ξ
+

∂η

∂x

∂Û

∂η
,

and

∂2U

∂x2
=

∂

∂x

{
∂ξ

∂x

∂Û

∂ξ
+

∂η

∂x

∂Û

∂η

}

=
∂2ξ

∂x2

∂Û

∂ξ
+

∂ξ

∂x

∂

∂x

(
∂Û

∂ξ

)
+

∂2η

∂x2

∂Û

∂η
+

∂η

∂x

∂

∂x

(
∂Û

∂η

)

=
∂2ξ

∂x2

∂Û

∂ξ
+

∂ξ

∂x

{
∂ξ

∂x

∂2Û

∂ξ2
+

∂η

∂x

∂2Û

∂ξ∂η

}
+

∂2η

∂x2

∂Û

∂η

+
∂η

∂x

{
∂ξ

∂x

∂2Û

∂ξ∂η
+

∂η

∂x

∂2Û

∂η2

}
.

Sinilarly,

∂2U

∂y2
=

∂2ξ

∂y2

∂Û

∂ξ
+

∂ξ

∂y

{
∂ξ

∂y

∂2Û

∂ξ2
+

∂η

∂y

∂2Û

∂ξ∂η

}
+

∂2η

∂y2

∂Û

∂η

+
∂η

∂y

{
∂ξ

∂y

∂2Û

∂ξ∂η
+

∂η

∂y

∂2Û

∂η2

}
.

Therefore,

∆zU =
∂Û

∂ξ
∆zξ +

∂Û

∂η
∆zη +

∂2Û

∂ξ2

{(
∂ξ

∂x

)2

+
(

∂ξ

∂y

)2
}

+
∂2Û

∂η2

{(
∂η

∂x

)2

+
(

∂η

∂y

)2
}

+
∂2Û

∂ξ∂η

{
∂ξ

∂x

∂η

∂x
+

∂ξ

∂y

∂η

∂y

}
.

Since f(z) = ξ(x, y) + iη(x, y) is analytic in Ω, the functions ξ and η satisfy the Cauchy-
Riemann equations

∂ξ

∂x
=

∂η

∂y
,

∂ξ

∂y
= −∂η

∂x
.
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Hence,

∆zξ = ∆zη = 0,
∂ξ

∂x

∂η

∂x
+

∂ξ

∂y

∂η

∂y
= 0,

and (
∂ξ

∂x

)2

+
(

∂ξ

∂y

)2

=
(

∂η

∂x

)2

+
(

∂η

∂y

)2

=
(

∂ξ

∂x

)2

+
(

∂η

∂x

)2

= |f ′(z)|2.

Therefore,
∆zU = |f ′(z)|2∆wÛ .

(ii) Since f ′(z) 6= 0, z ∈ Ω, the result is a direct consequence of (i).

1.4 (i) We have that

gradzU =
∂U

∂x
+ i

∂U

∂y
,

where (as in Exercise 1.3 (i))

∂U

∂x
=

∂ξ

∂x

∂Û

∂ξ
+

∂η

∂x

∂Û

∂η
,

∂U

∂y
=

∂ξ

∂y

∂Û

∂ξ
+

∂η

∂y

∂Û

∂η
.

Therefore,

gradzU =
(

∂ξ

∂x
+ i

∂ξ

∂y

)
∂Û

∂ξ
+

(
∂η

∂x
+ i

∂η

∂y

)
∂Û

∂η
,

or (on using the Cauchy-Riemann equations)

gradzU =
(

∂ξ

∂x
− i

∂η

∂x

) (
∂Û

∂ξ
+ i

∂Û

∂η

)
= f ′(z) gradwÛ .

(ii) This is a consequence of the angle preserving property of conformal mappings and the
properties that: (a) a level curve U(x, y) = c, through any point z ∈ Ω, is transformed to a
level curve Û(ξ, η) = c, through the transfomed point in Ω̂, and (b) gradzU is orthogonal to
U(x, y) = c and gradwÛ is orthogonal to Û(ξ, η) = c.

(iii) Let θ be the angle between the direction of the normal to U(x, y) = c and the direction
l. Then

∂U

∂l
= |gradzU | cos θ.

Further, because of the angle preserving property (see (ii) above),

∂Û

∂λ
= |gradwÛ | cos θ,

Therefore,
∂U

∂l
=
|gradzU |
|gradwÛ |

∂Û

∂λ
= |f ′(z)|∂Û

∂λ
,
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where we made use of the result of part (i).

1.5 (i) |dw| = |dξ + idη|, where

dξ =
∂ξ

∂x
dx +

∂ξ

∂y
dy and dη =

∂η

∂x
dx +

∂η

∂y
dy.

Hence, by making use of the Cauchy-Riemann equations,

|dw| =
∣∣∣∣
(

∂ξ

∂x
dx +

∂ξ

∂y
dy

)
+ i

(
∂η

∂x
dx +

∂η

∂y
dy

)∣∣∣∣

=
∣∣∣∣
(

∂ξ

∂x
+ i

∂η

∂x

)
(dx + idy)

∣∣∣∣ = |f ′(z)||dz|.

The required result follows because (see Exercise 1.4 (i)) gradzU = |f ′(z)|gradwÛ .

(ii) The Jacobian of the transformation w = f(z) = ξ(x, y) + iη(x, y) is

∂(ξ, η)
∂(x, y)

=

∣∣∣∣∣
∂ξ/∂x ∂ξ/∂y

∂η/∂x ∂η/∂y

∣∣∣∣∣ =
∂ξ

∂x

∂η

∂y
− ∂ξ

∂y

∂η

∂x
.

Hence, by making use of the Cauchy-Riemann equations,

∂(ξ, η)
∂(x, y)

=
(

∂ξ

∂x

)2

+
(

∂η

∂x

)2

= |f ′(z)|2.

Therefore,

DbΩ[Û ] :=
∫∫
bΩ
|gradwÛ |2dξdη

=
∫∫

Ω

1
|f ′(z)|2 |gradzU |2

∂(ξ, η)
∂(x, y)

dxdy

=
∫∫

Ω
|gradzU |2dxdy =: DΩ[U ].

1.6 Let z = x + iy and w = ξ + iη. Then,

x + iy =
1

ξ + iη
,

and hence
x =

ξ

ξ2 + η2
and y =

−η

ξ2 + η2
.

Next, consider the equation

a(x2 + y2) + bx + cy + d = 0, a, b, c, d ∈ R, (4.1.5)

and observe the following:
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• In the z-plane any straight line passing through the origin can be represented by an
equation of the form (4.1.5) with a = 0 and d = 0.

• In the z-plane, any straight line not passing through the origin can be represnted by
an equation of the form (4.1.5) with a = 0 and d 6= 0.

• In the z-plane, any circle passing through the origin can be represnted by an equation
of the form (4.1.5) with a 6= 0 and d = 0.

• In the z-plane, any circle not passing through the origin can be represnted by an
equation of the form (4.1.5) with a 6= 0 and d 6= 0.

• If (4.1.5) represents a circle, then this circle has center

− 1
2a

(b + ic),

and radius
1

4a2
(b2 + c2 − 4ad).

The required results follow easily from the above observations, because when w = 1/z Equa-
tion (4.1.5) becomes

d(ξ2 + η2) + bξ − cη + a = 0.

1.7 (i) If c 6= 0, then T can be written as

T (z) =
a

c
+

bc− ad

c

1
cz + d

.

Therefore, T = T3 ◦ T2 ◦ T1, where T1 is the linear transformation z → cz + d, T2 is the
inversion z → 1/z and T3 is the linear transformation z → {a + (bc− ad)z}/c.

(ii) If c = 0, then T is a linear transformation and the result is obvious. If c 6= 0, then
T = T3 ◦T2 ◦T1 and the result follows because: (a) T1 and T3 are linear transformations that
map straight lines and circles, respectively, onto straight lines and circles, and (b) T2 is an
inversion that maps straight lines and circles onto straight lines or circles.

1.8 (i) From Exercise 1.7, we know that any bilinear transformation T can be expressed as
T = T3 ◦ T2 ◦ T1, where T1 and T3 are linear transformations of the form z → αz + β and T2

is the inversion z → 1/z. Since

{T2(z1), T2(z2), T2(z3), T2(z4)} =
1/z1 − 1/z3

1/z1 − 1/z4
· 1/z2 − 1/z4

1/z2 − 1/z3

=
z3 − z1

z4 − z1
· z4 − z2

z3 − z2
= {z1, z2, z3, z4},
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and since it is trivially obvious that

{Tj(z1), Tj(z2), Tj(z3), Tj(z4)} = {z1, z2, z3, z4}, j = 1, 3,

it follows that
{T (z1), T (z2), T (z3), T (z4)} = {z1, z2, z3, z4}.

(ii) Let T (z) be the bilinear transformation taking z1, z2, z3, respectively, into 1, 0, ∞, and
let S(w) be the corresponding transformation taking w1, w2, w3, respectively, into 1, 0, ∞.
Then, the desired bilinear transformation is given in composite form by

w = S[−1](T (z)),

and this is equivalent to solving for w the equation

S(w) = T (z), or {w,w1, w2, w3} = {z, z1, z2, z3}.

(iii) Consider the bilinear transformation that takes the points z2, z3, z4 respectively into
the points 1, 0, ∞. From part (ii) we know that this transformation can be written as

{w, 1, 0,∞} = {z, z2, z3, z4}.

But {w, 1, 0,∞} = w. Therefore, {z, z2, z3, z4} is real if and only if the image of z is real, i.e.
if and only if all four points z, z2, z3, z4 lie on the pre-image of the real axis, which (because
of the result of Exercise 1.7 (ii)) must be a straight line or a circle.

1.9 Two points z and z∗ are symmetric with respect to a straight line or circle γ if every
circle or line containing the two points intersects γ orthogonally. But bilinear transforma-
tions preserve the class of circles and straight lines, and they also preserve the orthogonality
property. Hence, they preserve the symmetry condition.

1.10 Let T be a bilinear transformation that maps γ onto the real axis. Then, T (z1), T (z2),
T (z3), are real, and from Exercise 1.9 we know that z, z∗ are symmetric with respect to γ if
and only if

T (z∗) = T (z).

But, from Exercise 1.8 (ii), this occurs if and only if

{z∗, z1, z2, z3} = {T (z∗), T (z1), T (z2), T (z3)}
= {T (z), T (z1), T (z2), T (z3)}
= {T (z), T (z1), T (z2), T (z3)}
= {z, z1, z2, z3}.
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1.11 Consider the bilinear transformation z → T (z), where

T (z) = {z, c + ir, c− r, c + r}
= i · z − (c− r)

z − (c + r)
.

This transformation maps the three points c+ ir, c−r, c+r ∈ γ, respectively, into the points
1, 0, ∞ on the real axis. Hence, z → T (z) maps the whole of γ onto the real axis. Thus, by
the symmetry principle of Exercise 1.9, z∗ is symmetric to z with respect to γ if and only if

T (z∗) = T (z),

i.e. if and only if

i · z∗ − (c− r)
z∗ − (c + r)

= −i · z − (c− r)
z − (c + r)

.

Solving the above equation for z∗ yields the desired formula

z∗ = c +
r2

z − c
, or (z∗ − c)(z − c) = r2.

Observe that: (i) both z and z∗ lie on the same ray emanating from the center c of γ, and (ii)
the product of the distances of z and z∗ from c equals the square of the radius of γ. Observe
also that the formula could have been derived by applying directly the result of Exercise 1.10
with z1 = c + ir, z2 = c− r and z3 = c + r.

1.12 Note that w = T (z) is required to map the unit circle γ : |z| = 1 onto the unit circle
γ̂ : |w| = 1, and observe that the symmetric point of ζ, with respect to γ, is ζ∗ = 1/ζ. Hence,
by the symmetry principle, the point T (ζ∗) = T (1/ζ) must be symmetric (with respect to γ̂)
to the point T (ζ) = 0. But, since the origin is the center of γ̂, its symmetric point is ∞, i.e.
T (1/ζ) = ∞. Therefore, T must have a zero at ζ and a pole at 1/ζ, i.e. it must be of the
form

T (z) = λ · z − ζ

z − 1/ζ
= κ · z − ζ

1− ζz
,

where λ and κ = −λζ are constants. Further, since T (1) lies on γ̂, we have that

1 = |T (1)| = |κ| ·
∣∣∣∣
1− ζ

1− ζ

∣∣∣∣ = |κ|.

Thus, κ = eiα for some real α, and therefore

T (z) = eiα · z − ζ

1− ζz
.

Conversely, it is easy to show that any transformation of the above form maps D1 onto itself.
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1.13 Observe that a bilinear transformation

w = T (z) =
az + b

cz + d
, ad− bc 6= o,

of the real axis Im(z) = 0 onto the unit circle |w| = 1, is determined uniquely by the
requirement that three given points on Imz = 0 are mapped onto three specified points
on |w| = 1. Here we require that the points z = 0, z = 1 and z = ∞ are mapped onto
three points lying on |w| = 1. Then, the requirements |T (0)| = 1 and |T (∞)| = 1 imply,
respectively, that

|b| = |d| and |a| = |c|.
Also, since ad − bc 6= 0, the second of the above equations implies that a 6= 0 and c 6= 0.
Hence,

T (z) =
a

c
· z + b/a

z + d/c
,

or (since |a|/|c| = 1)

T (z) = eiα · z − z0

z − z1
,

where α is any real constant and z0, z1 are complex numbers which, since |b/a| = |d/c|, are
such that |z0| = |z1|. Next, the requirement that |T (1)| = 1 implies that

|1− z0| = |1− z1|, i.e. (1− z0)(1− z0) = (1− z1)(1− z1),

or, since z0z0 = z1z1,

z0 + z0 = z1 + z1, i.e. Re(z0) = Re(z1).

It follows that z1 = z0. (z1 could equal to z0, but then the mapping degenerates to T (z) =
eiα.) Therefore,

T (z) = eiα · z − z0

z − z0
,

where Im(z0) > 0, because T maps z0 to the origin, i.e. to the center of the unit disc. (As
expected, the points z0 and z0, which are symmetric with respect to the real axis, are mapped
respectively to the points 0 and ∞, which are symmetric with respect to the unit circle.)

1.14 As was already remarked, the left inequality follows immediately from the increasing
property (1.2.8). To obtain the right inequality, let Γ∗ and Γ∗ be as in Definition 1.2.3, denote
by φ the conformal mapping φ : D1 → Ω := Int(Γ∗ ∪ Γ∗), with φ(0) = 0 and φ′(0) > 0, and
set

ϕ(z) =
φ(z)
φ′(0)

=
1

re(γ)
· φ(z).

Then, since Γ := Γ∗∪Γ∗ is a Jordan curve, the Koebe theorem (in conjunction with Theorem
1.2.2) gives that

|ϕ(eiθ)| =
∣∣∣∣

1
re(γ)

· φ(eiθ)
∣∣∣∣ ≥

1
4
, θ ∈ [0, 2π].
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Hence,
re(γ) ≤ 4|φ(eiθ)|, for any θ ∈ [0, 2π],

where the 4 in the right-hand side of the inequality cannot be replaced by a smaller number.
Next, recall that the curve Γ surrounds the unit circle and meets the circle in at least one
point. This means that |φ(eiθ)| ≥ 1, θ ∈ [0, 2π], and that |φ(eiθ)| = 1 for at least one value
of θ ∈ [0, 2π]. Therefore, re(γ) ≤ 4, where the 4 cannot be replaced by a smaller number.

1.15 Let the arcs γj , j = 1, 2, have cartesian equations y = τj(x), j = 1, 2, so that

Ω := {(x, y) : 0 < x < 1, τ1(x) < y < τ2(x)},

and
z1 = iτ1(0), z2 = 1 + iτ1(1), z3 = 1 + iτ2(1), z4 = iτ2(0).

Then, the function
ψ(z) = exp(iπz),

maps conformally Ω onto the upper half of a symmetric doubly-connected domain Ω̂ of the
form (1.3.6)–(1.3.8), with n = 1 and

ρj(θ) = exp{−πτj(θ/π)}, j = 1, 2. (4.1.6)

Therefore, if M = 1/q is the conformal modulus of Ω̂, f is the conformal mapping f : Ω̂ →
A(q, 1), and

ϕ(ζ) :=
log ζ

iπ
,

then the composition
F = ϕ ◦ f ◦ ψ,

maps Ω onto a rectangle of the form (1.3.12), with

H =
log M

π
,

and takes the four corners z1, z2, z3 and z4 of Ω respectively onto the four corners of RH .

1.16 If γ1 and γ2 are not both straight lines, then for each of the four values of α the
asymptotic expansion of f at z = zc is given by (1.4.1). Therefore:

• When α = 1/2, then in (1.4.1) k ≥ 0, l = 1 and 0 ≤ m ≤ k/2. Therefore, as z → zc,

f(z)− f(zc) ∼ B0,1,0(z − zc)2 + B1,1,0(z − zc)3

+ B2,1,1(z − zc)4 log(z − zc) + B2,1,0(z − zc)4

+ B3,1,1(z − zc)5 log(z − zc) + B3,1,0(z − zc)5 + · · · ,

where B0,1,0 6= 0. ⇒ If B2,1,1 6= 0, then f (4) becomes unbounded at z = zc.
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• When α = 2/3, then in (1.4.1) k ≥ 0, 1 ≤ l ≤ 2 and 0 ≤ m ≤ k/3. Therefore, as z → zc,

f(z)− f(zc) ∼ B0,1,0(z − zc)3/2 + B1,1,0(z − zc)5/2

+ B0,2,0(z − zc)3 + B2,1,0(z − zc)7/2

+ B1,2,0(z − zc)4 + B3,1,1(z − zc)9/2 log(z − zc) + · · · ,

where B0,1,0 6= 0. ⇒ f (2) becomes unbounded at z = zc.

• When α = 1, then in (1.4.1) k ≥ 0, l = 1 and 0 ≤ m ≤ k. Therefore, as z → zc,

f(z)− f(zc) ∼ B0,1,0(z − zc) + B1,1,1(z − zc)2 log(z − zc)

+ B1,1,0(z − zc)2 + B2,1,2(z − zc)3(log(z − zc))2

+ B2,1,1(z − zc)3 log(z − zc) + B2,1,0(z − zc)3 + · · · ,

where B0,1,0 6= 0. ⇒ If B1,1,1 6= 0, then f (2) becomes unbounded at z = zc.

• When α = 3/2, then in (1.4.1) k ≥ 0, 1 ≤ l ≤ 3 and 0 ≤ m ≤ k/2. Therefore, as z → zc,

f(z)− f(zc) ∼ B0,1,0(z − zc)2/3 + B0,2,0(z − zc)4/3

+ B1,1,0(z − zc)5/3 + B0,3,0(z − zc)2

+ B2,1,1(z − zc)8/3 log(z − zc) + B2,1,0(z − zc)8/3 + · · · ,

where B0,1,0 6= 0. ⇒ f (1) becomes unbounded at z = zc.

If γ1 and γ2 are both straight lines, then for any value of α the asymptotic expansion of
f at z = zc is given by (1.4.3). Therefore, the asymptotic expansions corresponding to the
values α = 1/2, α = 2/3 and α = 3/2 are, respectvely,

f(z)− f(zc) ∼
∞∑

l=1

Bl(z − zc)2l, f(z)− f(zc) ∼
∞∑

l=1

Bl(z − zc)3l/2,

and

f(z)− f(zc) ∼
∞∑

l=1

Bl(z − zc)2l/3,

where in each case B1 6= 0. Thus, there is no singularity at z = zc when α = 1/2, while in
the other two cases the singularities at z = zc are as before, i.e. f (2) becomes unbounded
when α = 2/3, and f (1) becomes unbounded when α = 3/2.

1.17 (i) If γ is a segment of the real axis, then we may take τ(s) = s. Hence, τ(ζ) = ζ,
τ [−1](z) = z, and

I(z) = τ{τ [−1](z)} = z,

Thus, as expected, I(z) is the mirror image of z in γ.
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(ii) If γ is an arc of a circle with center c and radius r, then we may take

τ(s) = c + reis.

Hence,

τ(ζ) = c + reiζ ⇒ τ [−1](z) = −i log
{

z − c

r

}
and τ [−1](z) = i log

{
z − c

r

}
.

Thus, as expected,

I(z) = τ{τ [−1](z)} = c +
r2

(z − c)
.

1.18 Here τ(s) = a cos s + i sin s. Hence,

τ(ζ) =
1
2
{(a + 1)eiζ + (a− 1)e−iζ},

and I(0) = τ(ζ∗), where ζ∗ is a root of the equation τ(ζ) = 0, i.e. of the equation

(a + 1)e2iζ + (a− 1) = 0, or e2iζ = −
(

a− 1
a + 1

)
.

Therefore,

ζ∗ = − i

2

{
iπ + log

(
a− 1
a + 1

)}
, ζ∗ =

π

2
+

i

2
log

(
a− 1
a + 1

)
,

and

I(0) = τ(ζ∗) =
i

2

{√
a + 1
a− 1

(a + 1)−
√

a− 1
a + 1

(a− 1)

}
=

2ia√
a2 − 1

.

1.19 The two circles that form the boundary Γ of Ω and ΩE have cartesian equations

(x− 0.9)2 + y2 = 2.25 and (x + 1.6)2 + y2 = 4.

From these it follows easily that the two circles intersect at the points ±1.2i and form there
right-angled exterior corners. Thus, the mapping function f̂ does not have any corner sin-
gularities; see (1.4.2) and the discussion after (1.4.3). However, since the centers of the two
circles are at the points z1 = 0.9 and z2 = −1.6 (which lie in Int(Γ) and do not coincide
with the origin), f̂ has a simple pole singularity at each of the points 1/zj , j = 1, 2; see the
comment (ii) of the discussion after Equation (1.4.11). (In fact, the exact mapping function
is

f̂(z) =
2.5z

(1− 0.9z)(1 + 1.6z)
;

see e.g. [93, p. 48].)
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1.20 With the notations of § 1.4.2,

I1(z) =
1
z

and I2(z) = 0.3 +
(0.3)2

z − 0.3
.

Hence, the composite functions (1.4.16) are

S1(z) =
z − 0.3
0.3z

and S2(z) =
0.3

1− 0.3z
.

Therefore, the common symmetric points are the roots z1 and z2 of the equation z = S1(z)
(or equivalently the equation z = S2(z)), i.e. the roots of 3z2 − 10z + 3 = 0, i.e. z1 = 3 and
z2 = 1/3.

(i) We set

f(z) =
z − z2

z1 − z
=

1
3
· 3z − 1

3− z
,

and observe that: (a) the bilinear transformation z → f(z) takes the symmetric points z2

and z1 respectively to 0 and ∞, and (b) the point at infinity is symmetric to the center of a
circle. Therefore, by the symmetry principle, z → f(z) takes Γ2 and Γ1 onto two concentric
circles |z| = a and |z| = b and maps Ω onto a circular annulus {w : a < |w| < b}.
(ii) The conformal modulus of Ω is M = b/a, where

b = |f(1)| = 1
3

and a = |f(0)| = 1
9
.

Therefore M = 3.

(Remark: In this particular case the function (1.4.12) is

H(z) =
1

z − z2
+

1
z1 − z

− 1
z

,

i.e. H has simple poles at the common symmetric points z1 and z2.)

1.21 With γ1 = `, γ2 := {z : z = aeiθ, |θ| ≤ π/N} and the notations of § 1.4.2, we have
that

I1(z) = 2− z and I2(z) = a2/z.

Hence, the composite functions (1.4.16) are

S1(z) = 2− a2/z and S2(z) = a2/(2− z).

Therefore, the common symmetric points with respect to γ1 and γ2 are the roots z1, z2 of
the equation z = S1(z) (or the equation z = S2(z)), i.e.

z1 = 1 +
√

1− a2 and z2 = 1−
√

1− a2.
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Let
`j := `ωj−1

N , j = 1, 2, . . . , N, with ωN := exp(2πi/N).

Then, since

Γ1 =
N⋃

j=1

`j ,

there are N pairs of common symmetric points associated with the circle Γ2 and each of the
N sides of the polygon Γ1. Thus, the common symmetric points with respect to Γ1 and Γ2

are z
{j}
1 , z

{j}
2 , where

z
{j}
1 = z1ω

j−1
N and z

{j}
2 = z2ω

j−1
N , j = 1, 2, . . . , N.

1.22 Any boundary singularities that the mapping function f might have will be due to
the N corners of the outer polygonal bounadry Γ1, each of which has interior angle απ with
α := (N − 2)/N . Since, at each corner, the asymptotic expansion of f is given by (1.4.2), we
have the following:

• When N = 3 and N = 4 (and hence α = 1/3 and α = 1/2, respectively), there are no
boundary singularities.

• If N > 4, then a boundary singularity occurs at each of the N corners, in the sense
that the second derivative of f becomes unbounded there.

1.23 Take τ(s) = reis, 0 ≤ s ≤ 2π. Then,

∫

Γ
log |τ(σ)− τ(s)|ds = 2π log r +

∫ 2π

0
log |eiσ − eis|ds,

where ∫ 2π

0
log |eiσ − eis|ds =

∫ σ

0
log |eiσ − eis|ds +

∫ 2π

σ
log |eiσ − eis|ds,

or, on applying the change of variables t = s + 2π to the first integral on the right-hand side,

∫ 2π

0
log |eiσ − eis|ds =

∫ σ+2π

2π
log |eiσ − eit|dt +

∫ 2π

σ
log |eiσ − eis|ds

=
∫ σ+2π

σ
log |eiσ − eis|ds.

Also, since

|eis − eiσ|2 = 4 sin2

(
s− σ

2

)
,
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it follows that
∫ 2π

0
log |eis − eiσ|ds = 2π log 2 +

∫ σ+2π

σ
log sin

(
s− σ

2

)
ds,

or, on applying the change of variables x = (s− σ)/2 to the integral on the right-hand side,

∫ 2π

0
log |eiσ − eis|ds = 2π log 2 + 2

∫ π

0
log sinxdx

= 2π log 2 + 4
∫ π

2

0
log sinxdx

= 2π log 2 + 4× (−π

2
log 2) = 0 ;

see the remark below. Therefore,
∫

Γ
log |τ(σ)− τ(s)|ds = 2π log r,

i.e. the operator T has an eigenvalue λ = 2π log r with corresponding eigenfunction ν ≡ const.

When r = 1 (i.e. when cap(Γ) = 1), then λ becomes zero and the homogeneous equation
∫

Γ
ν(s) log |τ(s)− τ(σ)|ds = 0,

has the non-trivial solution ν ≡ const.

(Remark: To show that

I :=
∫ π

2

0
log sinxdx = −π

2
log 2,

we make use of the fact that
∫ a

0
f(x)dx =

∫ a

0
f(a− x)dx,

and conclude that

I =
∫ π

2

0
log sin

(π

2
− x

)
dx =

∫ π
2

0
log cosxdx.

Hence,

2I =
∫ π

2

0
log{sinx cosx}dx =

∫ π
2

0
log

{
1
2

sin 2x

}
dx

= −π

2
log 2 +

∫ π
2

0
log sin 2xdx = −π

2
log 2 +

1
2

∫ π

0
log sin tdt

= −π

2
log 2 + I. )
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1.24 Let w(s) := f(τ(s)). Then, the boundary correspondence function (1.5.2) is given by

θ(s) = arg w(s) =
i

2
{log w(s)− log w(s)}.

Hence, from (1.5.8) and the fact that |w(s)| = 1, the density function ν is given by

ν(s) = − 1
2π

dθ

ds
=

i

4π

(
w(s)

dw

ds
− w(s)

dw

ds

)
. (4.1.7)

Next, from (1.4.3) we know that in the neighborhood of zc

f(z)− f(zc) ∼
∞∑

l=1

Bl(z − zc)l/α, (4.1.8)

where B1 6= 0. Also, for any point z = τ(s) on (the straight line) arms of the corner, we may
take without loss of generality

z − zc =

{
s− sc, s > sc ,

(sc − s) exp iαπ, s < sc .
(4.1.9)

Set B0 := f(zc). Then, from (4.1.7)–(4.1.9), for s > sc we have that

ν(s) ∼ i

4π
{(B0 + B1(s− sc)1/α + · · · )( 1

α
B1(s− sc)−1+1/α + · · · )

− (B0 + B1(s− sc)1/α + · · · )( 1
α

B1(s− sc)−1+1/α + · · · )}.

Similarly, for s < sc,

ν(s) ∼ i

4π
{(B0 −B1(sc − s)1/α + · · · )( 1

α
B1(sc − s)−1+1/α + · · · )

− (B0 −B1(sc − s)1/α + · · · )( 1
α

B1(sc − s)−1+1/α + · · · )}.

Thus, as s → sc,

ν(s) ∼
{

a(s− sc)−1+1/α + · · · , s > sc ,

a(sc − s)−1+1/α + · · · , s < sc ,

where
a =

i

4πα
{B0B1 −B0B1} =

1
2πα

Im{B0B1} 6= 0.

Therefore, we can conclude the following:

(i) If 1 < α < 2, i.e. if the corner is re-entrant, then ν becomes unbounded at s = sc.

(ii) If 1/(N + 1) < α < 1/N , where N ≥ 1 is an integer, then ν(N) becomes unbounded at
s = sc.
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(iii) If α = 1/N , where N > 1 is an integer, then the asymptotic expansion of ν does not
involve fractional powers of s− sc, and:

• If N is odd, then ν is not singular at s = sc.

• If N is even, then ν(N−1) has a finite jump discontinuity at s = sc.

1.25 (i) Ω may be regarded as a triangle with one vertex at infinity. Therefore, if we let
z1 = −1, z2 = 1 and z3 = ∞, then (1.5.19), with n = 3 and the factor corresponding to z3

ommited, gives that

f(z) = A

∫ z

0
(ζ + 1)−

1
2 (ζ − 1)−

1
2 dζ + B

=
A

i

∫ z

0

dζ√
1− ζ2

+ B = −iA sin−1 z + B.

Hence, setting f(−1) = −1 and f(1) = 1, we have that

iπ

2
A + B = −1 and − iπ

2
A + B = 1,

i.e. A = 2i/π and B = 0. Therefore,

f(z) =
2
π

sin−1 z.

(ii) With z1 = −1, z2 = 1 and α1 = 3/2, α2 = 1/2, (1.5.19) gives that

f(z) = A

∫ z

0
(ζ + 1)

1
2 (ζ − 1)−

1
2 dζ + B

= A

∫ z

0

ζ + 1√
ζ2 − 1

dζ + B

= A

∫ z

0

ζ√
ζ2 − 1

dζ − iA

∫ z

0

1√
1− ζ2

dζ + B

= A(
√

1− z2 − i sin−1 z) + B.

Hence, setting f(−1) = 0 and f(1) = 1, we have that

π

2
A + B = 0 and − π

2
A + B = 1,

i.e. A = i/π and B = 1/2. Therefore,

f(z) =
1
π

(i
√

z2 − 1 + sin−1 z) +
1
2
.
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(iii) Let α be the interior angle of the corner of Ω̂ at the point c. Then, the conformal mapping
f̂ : H+ → Ω̂ is given by

f̂(z) = Â

∫ z

0
(ζ + 1)−

1
2 ζ−1+α(ζ − 1)

1
2 dζ + B̂.

Therefore (since as c →∞, α → 0 and Ω̂ → Ω), the conformal mapping f : H+ → Ω is given
by

f(z) = A

∫ z

0

(ζ − 1)
1
2

ζ(ζ + 1)
1
2

dζ + B = A1

∫ z

0

ζ − 1

ζ(1− ζ2)
1
2

dζ + B

= A1

∫ z

0

1

(1− ζ2)
1
2

dζ − iA1

∫ z

0

1

ζ(ζ2 − 1)
1
2

dζ + B

= A1

{
sin1 z + i sin−1

(
1
z

)}
+ B.

Hence, setting f(−1) = 0 and f(1) = 1 + i (and using the pricipal branch for sin−1) we have
that

−(1 + i)
π

2
A1 + B = 0 and (1 + i)

π

2
A1 + B = 1 + i,

i.e. A1 = 1/π and B = (1 + i)/2. Therefore,

f(z) =
1
π

{
sin−1 z + i sin−1

(
1
z

)}
+

1 + i

2
.

1.26 From (1.5.20),

f(1/k) =
∫ 1/k

0

dx

(1− x2)
1
2 (1− k2x2)

1
2

=
∫ 1

0

dx

(1− x2)
1
2 (1− k2x2)

1
2

+
∫ 1/k

1

dx

(1− x2)
1
2 (1− k2x2)

1
2

= K(k) +
∫ 1/k

1

dx

(1− x2)
1
2 (1− k2x2)

1
2

,

where, by applying the change of variables,

x = (1− k′2t2)−
1
2 with k′ := (1− k2)

1
2 ,

∫ 1/k

1

dx

(1− x2)
1
2 (1− k2x2)

1
2

= i

∫ 1

0

dt

(1− t2)
1
2 (1− k′2t2)

1
2

= iK(k′).

(The details of the computation involved in the change of variables are as follows:

dx =
k′2t

(1− k′2t2)3/2
dt,
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(1− x2)
1
2 =

(
1− 1

1− k′2t2

) 1
2

=
ik′t

(1− k′2t2)
1
2

,

(1− k2x2)
1
2 =

(
1− k2

1− k′2t2

) 1
2

= k′
(

1− t2

1− k′2t2

) 1
2

and the limits of integration x = 1 and x = 1/k become t = 0 and t = 1.) Therefore,
f(1/k) = K(k) + iK(k′).

Similarly,

f(∞) =
∫ ∞

0

dx

(1− x2)
1
2 (1− k2x2)

1
2

=
∫ 1/k

0

dx

(1− x2)
1
2 (1− k2x2)

1
2

+
∫ ∞

1/k

dx

(1− x2)
1
2 (1− k2x2)

1
2

= K(k) + iK(k′) +
∫ ∞

1/k

dx

(1− x2)
1
2 (1− k2x2)

1
2

,

where, by applying the change of variables x = 1/kt,
∫ ∞

1/k

dx

(1− x2)
1
2 (1− k2x2)

1
2

=
∫ 1

0

dt

(k2t2 − 1)
1
2 (t2 − 1)

1
2

= −
∫ 1

0

dt

(1− k2t2)
1
2 (1− t2)

1
2

= −K(k).

Therefore, f(∞) = iK(k′).

1.27 Let z = sn(w, k), so that w = sn−1(z, k). Then,

dw

dz
= (1− z2)−

1
2 (1− k2z2)−

1
2 ,

and hence

dz

dw
= {1− sn2(w, k)} 1

2 {1− k2sn2(w, k)} 1
2

= cn(w, k)dn(w, k).

Also,

d

dw
{cn(w, k)} =

d

dw
{
√

1− sn2(w, k)} =
−sn(w, k)cn(w, k)dn(w, k)√

1− sn2(w, k)
= −sn(w, k)dn(w, k)

and, similarly,

d

dw
{dn(w, k)} =

d

dw
{
√

1− k2sn2(w, k)} = −k2sn(w, k)cn(w, k).
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4.2 Exercises of Chapter 2

2.1 Let D% := {z : |z − z0| < %}, where 0 < % < d. Then, the Taylor series expansion

u(z) =
∞∑

n=0

an(z − z0)n,

converges absolutely and uniformly in D%. Therefore,

||u||2 ≥
∫∫

D%

|u(z)|2dm =
∫ %

0

∫ 2π

0
{
∞∑

n=0

anrneinθ}{
∞∑

m=0

amrme−imθ}rdrdθ

= 2π

∫ %

0

∞∑

n=0

|an|2r2n+1dr

= π

∞∑

n=0

|an|2 %2n+2

n + 1
≥ π|a0|2%2 = π%2|u(z0)|2.

The required inequality (2.2.6) is obtained from the above in the limit as % → d.

2.2 (i) Let F (z) = p(x, y) + iq(x, y). Then,

∂F

∂z
:=

1
2

(
∂

∂x
− i

∂

∂y

)
(p + iq) =

1
2
{px + iqx − ipy + qy}.

Hence, by making use of the Cauchy–Riemann equations,

∂F

∂z
:= px + iqx = F ′(z).

Similarly for the other results. That is,

∂F

∂z
:=

1
2

(
∂

∂x
+ i

∂

∂y

)
(p + iq) =

1
2
{px + iqx + ipy − qy} = 0,

e.t.c.

(ii) As in (i), let F = p + iq. Then,
∫∫

Ω

∂F

∂z
dxdy =

1
2

∫∫

Ω
(px + qy)dxdy +

i

2

∫∫

Ω
(qx − py)dxdy.

Hence, by applying Green’s formula to the two integrals on the right,
∫∫

Ω

∂F

∂z
dxdy =

1
2

∫

∂Ω
{pdy − qdx}+

i

2

∫

∂Ω
{qdy + pdx}

=
i

2

∫

∂Ω
(p + iq)(dx− idy) = − 1

2i

∫

∂Ω
F (z)dz.
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Similarly, ∫∫

Ω

∂F

∂z
dxdy =

1
2

∫∫

Ω
(px − qy)dxdy +

i

2

∫∫

Ω
(qx + py)dxdy

=
1
2

∫

∂Ω
{pdy + qdx}+

i

2

∫

∂Ω
{qdy − pdx}

= − i

2

∫

∂Ω
(p + iq)(dx + idy) =

1
2i

∫

∂Ω
F (z)dz.

2.3 Set F (z) := u(z)v(z). Then, by making use of the results of Ex. 2.2 (i),

∂F

∂z
=

∂u

∂z
v + u

∂v

∂z
= uv′.

Therefore, from the second result of Ex. 2.2 (ii),

(u, v′) :=
∫∫

Ω
u(z)v′(z)dxdy =

1
2i

∫

∂Ω
u(z)v(z)dz.

2.4 From (2.2.8) (see Exercise 2.3),

(zm, zn) =
1

2i(n + 1)

∫

|z|=1
zmzn+1dz.

Hence, with z = eiθ,

(zm, zn) =
1

2(n + 1)

∫ 2π

0
ei(m−n)θdθ =

{
π/(n + 1), if m = n,

0, if m 6= n.

This shows that the polynomials

un(z) :=

√
n + 1

π
zn, n = 0, 1, . . . ,

form an orthonormal system for L2(D1).
To show that the set {un} is complete, let u ∈ L2(D1). Then, because u is analytic in D1,

it can be represented by a power series

u(z) =
∞∑

k=0

akz
k,

which converges absolutely and uniformly in D% := {z : |z| ≤ %} for any % < 1. Therefore,
from (2.2.8),

∫∫

D%

u(z)un(z)dm =
1
2i
· 1
n + 1

·
√

n + 1
π

∞∑

k=0

∫

|z|=%
akz

kzn+1dz

=
1
2
· 1√

(n + 1)π

∞∑

k=0

ak

∫ 2π

0
%k+n+2ei(k−n)θdθ

=
√

π

n + 1
an%2n+2,
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and on letting % → 1 this gives

(u, un) =
√

π

n + 1
an.

Thus, if (u, un) = 0, for n = 0, 1, . . ., then an = 0 for all n, i.e. (u, un) = 0 for n = 0, 1, . . .,
implies that u ≡ 0. This shows that {un} forms a complete set for L2(D1).

2.5 The reproducing property (2.3.1) with u = K(·, ζ) gives

K(ζ, ζ) = (K(·, ζ),K(·, ζ)) = ||K(·, ζ)||2.

For the second part, set u = K(·, z2) and ζ = z1 in (2.3.1). This gives

K(z1, z2) = (K(·, z2),K(·, z1)) = (K(·, z1),K(·, z2)) = K(z2, z1).

2.6 From (2.3.3) we have that

f ′(ζ) = (πK(ζ, ζ))1/2,

where f is the mapping function of Theorem 2.3.3. The required results follow trivially from
this and the second relation in (2.3.3), because from Section 1.2 we know that

r := Rζ(Ω) = 1/f ′(ζ) and g′(z) = rf ′(z).

2.7 The bilinear transformation

z → z − ζ

1− ζz
=: f(z),

maps conformally D1 onto itself, so that

f(ζ) = 0 and f ′(ζ) =
1

1− |ζ|2 > 0 ;

see Exercise 1.12. Therefore, from (2.3.3),

K(z, ζ) =
1
π

f ′(ζ)f ′(z) =
1
π
· 1
(1− ζz)2

.

Alternatively, from Theorem 2.3.2 and the result of Exercise 2.4,

K(z, ζ) =
1
π

∞∑

n=0

(n + 1)ζnzn =
1
π
· 1
(1− ζz)2

.

We note that f has a simple pole (and K(·, ζ) a pole of order 2) at the symmetric point (z =
1/ζ) of ζ with respect to the unit circle. We also note that the series representation of K(·, ζ)
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converges rapidly when |ζ| is small, but the rate of convergence slows down considerably as
|ζ| → 1. In other words, the convergence of the series is slow when the pole z = 1/ζ is close
to the boundary of D1.

2.8 Kn(·, 0) is the n-th least squares (Fourier series) approximation to K(·, 0), with respect
to the orthonormal set {η∗j }. Therefore, from the theory of Fourier series (see e.g. [51, p.
24]), we know that

||K(·, 0)−Kn(·, 0)||2 = ||K(·, 0)||2 −
n∑

j=1

|(K(·, 0), η∗j )|2.

Hence, by making use of the reproducing property of K(·, 0) and the first result of Exercise
2.5,

||K(·, 0)−Kn(·, 0)||2 = K(0, 0)−
n∑

j=1

|η∗j (0)|2

= K(0, 0)−Kn(0, 0).

2.9 With the notations of Remark 2.4.1,

(η∗j , η
∗
j ) =

(
η̂j

||η̂j || ,
η̂j

||η̂j ||
)

=
1

||η̂j ||2 (η̂j , η̂j) = 1,

i.e. the η∗j are normal. To prove orthogonality, we have to show that η∗n+1 (or equivalently
η̂n+1) is orthogonal to η∗n, η∗n−1, · · · , η∗1. We do this by induction as follows:
(i)

(η̂2, η
∗
1) = (η2 − (η2, η

∗
1)η

∗
1, η

∗
1) = (η2, η

∗
1)− (η2, η

∗
1)||η∗1||2 = 0.

(ii) Assume that (η̂k, η
∗
j ) = 0, for k ≤ n and j < k. Then, for j ≤ n,

(η̂n+1, η
∗
j ) =

(
ηn+1 −

n∑

k=1

(ηn+1, η
∗
k)η

∗
k, η∗j

)

= (ηn+1, η
∗
j )−

n∑

k=1

(ηn+1, η
∗
k)(η

∗
k, η

∗
j )

= (ηn+1, η
∗
j )− (ηn+1, η

∗
j ) = 0.

2.10 Let
z = z(t) := x(t) + iy(t), 0 ≤ t ≤ 1,

be a parametric equation of γ. Then, for the first formula,
∫

γ
µ′(z) log |z|dz =

∫ 1

0
µ′(z(t)) log |z(t)|ż(t)dt

= [µ(z(t)) log |z(t)|]1t=0 −
∫ 1

0
µ(z(t))

(
d

dt
log |z(t)|

)
dt.
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The formula follows, because

log |z(t)| = 1
2

log{x2(t) + y2(t)},

and hence
d

dt
log |z(t)| = x(t)ẋ(t) + y(t)ẏ(t)

x2(t) + y2(t)
= Re

(
1
z

dz

dt

)
.

Similarly,
∫

γ
µ′(z) arg zdz =

∫ 1

0
µ′(z(t)) arg z(t)ż(t)dt

= [µ(z(t)) arg z(t)]1t=0 −
∫ 1

0
µ(z(t))

(
d

dt
arg z(t)

)
dt.

The second formula follows, because

arg z(t) = arc tan
(

y(t)
x(t)

)
,

and hence
d

dt
arg z(t) =

x(t)ẏ(t)− ẋ(t)y(t)
x2(t) + y2(t)

= Im
(

1
z

dz

dt

)
.

2.11 Every u ∈ Λn can be expressed in the form

u(z) =
n∑

j=1

αjη
∗
j (z), αj ∈ C;

see (2.4.13). Thus,

(u,H) =




n∑

j=1

αjη
∗
j , H




=
n∑

j=1

αj(η∗j ,H) =
n∑

j=1

αj(H, η∗j )

=




n∑

j=1

αjη
∗
j ,

n∑

j=1

(H, η∗j )η
∗
j


 = (u,Hn).

2.12 Using (2.5.8) and integrating by parts (see Exercise 2.10)

(u,H) = (v′,H) = i

∫

∂Ω
v′(z) log |z|dz

= i[v(z) log |z|]∂Ω − i

∫

∂Ω
v(z)Re

(
dz

z

)
,
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where the integrated part vanishes because the expression in the square brackets is single-
valued. Therefore, since

Re
(

dz

z

)
=

1
2

(
dz

z
+

dz

z

)
,

(u,H) = − i

2

∫

∂Ω

1
z
v(z)dz − i

2

∫

∂Ω

1
z
v(z)dz,

where the first integral vanishes, because v(z)/z is analytic in Ω. Thus,

(H, u) = (u,H) =
i

2

∫

∂Ω

1
z
v(z)dz.

(Note: The above formula provides an alternative method for computing by qudrature the
inner products of the function H.)

2.13 The technique is similar to that used for deriving (2.4.28). That is, we first observe
that for any u ∈ L{1}n , u0 − u ∈ L{0}. Therefore, from Theorem 2.5.3,

(u0 − u, u0) = 0, or ||u0||2 = (u, u0).

Hence, for all u ∈ L{1}n ,

||u0 − u||2 = (u0 − u, u0 − u) = −(u, u0) + ||u||2 = ||u||2 − ||u0||2.
The required result follows, because from Theorem 2.5.5 we know that u0,n minimizes the
norm || · || over all u ∈ L{1}n .

2.14 The recursive use of (2.6.28) gives that

ξN+1(ωNz) = dNξN (z),

ξN+1(ω2
Nz) = dNξN (ωNz) = dNdN−1ξN−1(z),

ξN+1(ω3
Nz) = dNdN−1ξN−1(ωnz) == dNdN−1dN−2ξN−2(z),

e.t.c. until
ξN+1(ωN

N z) = dNdN−1 · · · d1ξ1(z).

The first result follows, because ωN
N = 1 and ξN+1 = ξ1. For the second result (since

d1d2 · · · dN = 1), the definition (2.6.29) of the dj gives

1 = exp{2πs(1 + κ1 + κ2 + · · ·+ κN )}.
Therefore, κ1 + κ2 + · · ·+ κN + 1 = 0.

2.15 (i) Basis sets: The mapping function f has simple pole singularities at the mirror
images of 0 with respect to each of the sides FA, AB, BD, DE and EF of Ω, i.e. at each of
the points

p1 = (−1, 0), p2 = (0,−3), p3 = (2,−2), p4 = (3, 0) and p5 = (0, 1).
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The function f also has a branch point singularity at each of the two corners zB := B and
zCD := D, each of which has interior angle 3π/4. Therefore, the augmented basis is formed
by introducing into the monomial set zj j = 0, 1, . . ., the five rational functions

d

dz

{
z

z − pj

}
, j = 1, 2, 3, 4, 5,

reflecting the pole singularities of f , and singular functions of the form

d

dz

{
(z − zB)4k/3

}
and

d

dz

{
(z − zD)4k/3

}
, k = 1, 2, . . . , (4.2.1)

reflecting the branch point singularities at B and D.

Parametric representation: In order to deal with the integrant singularities that the functions
(4.2.1) introduce, the following parametric representation of the boundary segment ABCDE

is used:

z =





(zA − zB)(1− t)3 + zB, 0 ≤ t ≤ 1, for AB,

(zC − zB)(t− 1)3 + zB, 1 ≤ t ≤ 2, for BC,

(zC − zD)(3− t)3 + zD, 2 ≤ t ≤ 3, for CD,

(zE − zD)(t− 3)3 + zD, 3 ≤ t ≤ 4, for DE.

Numerical results: The following BKM values of nopt and corresponding BKM/MB, BKM/AB,
RM/MB and RM/AB error estimates Enopt and approximations rnopt to the conformal radius
r(Ω) of Ω with respect to 0 were obtained in [122, Ex. 5.2]. (In [122] the augmented set was
formed by introducing into the monomial set the five rational functions for the poles at pj ,
j = 1, . . . , 5, and the four singular functions (4.2.1) corresponding to the values k = 1, 2.)

BKM/MB : nopt = 15, E15 = 5.04× 10−3, r15 = 0.690 478 428,
RM/MB : E15 = 5.12× 10−3, r15 = 0.690 476 981,

BKM/AB : nopt = 19, E19 = 8.68× 10−7, r19 = 0.690 412 899 521,
RM/AB : E19 = 9.25× 10−7, r19 = 0.690 412 899 521.

(ii) Basis sets: Both ΩE and the corresponding bounded domain Ω̂ (the image of ΩE under
the inversion z → 1/z) have two-fold rotational symmetry about the origin when a 6= 1, and
four-fold rotational symmetry when a = 1. Because of this, the monomial basis sets used for
approximating the interior conformal mapping f̂ : Ω̂ → D1 are:

ηj(ζ) = ζ2(j−1), j = 1, 2, . . . , when a 6= 1, (4.2.2)

and
ηj(ζ) = ζ4(j−1), j = 1, 2, . . . , when a 6= 1. (4.2.3)
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The points zCj := Cj , j = 1, 2, 3, 4, are re-entrant corners, each of angle 3π/2, of ΩE .
Therefore, the points ζCj = 1/zCj , j = 1, 2, 3, 4, are re-entrant corners (of the same interior
angle) of Ω̂. For this reason, the augmented basis for the mapping f̂ is formed by introducing
into the monomial set (4.2.2), when a 6= 1, and the monomial set (4.2.3), when a = 1, singular
functions of the form

η
{r}
j (z) :=

d

dz

{
(ζ − ζCj )

r
}

, r = k + 2l/3, k = 0, 1, . . . , 1 ≤ l ≤ 3.

Because of the symmetry, for each r, the four functions η
{r}
j , j = 1, 2, 3, 4, can be combined

into two functions

η
{r}
j (z) + djη

{r}
j+2(z), j = 1, 2, (4.2.4)

when a 6= 1, and into a single function

η
{r}
1 (z) +

4∑

j=2

djη
{r}
j (z), (4.2.5)

when a = 1; see § 2.6.2.

Parametric representation: In order to deal with the integrant singularities that the singular

basis functions η
{r}
j introduce, the following parametric representation of ∂Ω is used:

z =





(zA − zC1)(1− t)3 + zC1 , 0 ≤ t ≤ 1, for AC1,

(zB − zC1)(t− 1)3 + zC1 , 1 ≤ t ≤ 2, for C1B,

e.t.c.

Because of the symmetry, the integrations need only be performed along the symmetric part
C1C2C3 of ∂Ω , when a 6= 1, and the symmetric part AC1B, when a = 1.

Numerical results: The following BKM values of nopt and corresponding BKM/MB, BKM/AB
and RM/AB error estimates Enopt and approximations cnopt to the capacity c of ∂Ω were
obtained in [123, Ex. 3.2], for each of the three cases a = 1, a = 2 and a = 6. (In [123] the
augmented set was formed by introducing: (a) into the set (4.2.2) the six singular functions
(4.2.4) corresponding to the values r = 2

3 , 4
3 , 5

3 , when a 6= 1, and (b) into the set (4.2.3) the
four singular functions (4.2.5) corresponding to the values r = 2

3 , 4
3 , 5

3 , 7
3 , when a = 1.)
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a = 1 : BKM/MB : nopt = 20, E20 = 8.0× 10−2, c20 = 1.1731 · · · ,

BKM/AB : nopt = 21, E21 = 1.2× 10−6, c21 = 1.180 340 599 00,
RM/AB : E21 = 3.3× 10−6, c21 = 1.180 340 599 34,

Exact value: c = 1.180 340 599 02.

a = 2 : BKM/MB : nopt = 20, E30 = 1.4× 10−1, c20 = 1.7163 · · · ,

BKM/AB : nopt = 17, E17 = 8.6× 10−6, c17 = 1.749 514 556 2,
RM/AB : E17 = 1.1× 10−5, c17 = 1.749 514 555 7,

Exact value: c = 1.749 514 556 3.

a = 6 : BKM/MB : nopt = 20, E20 = 5.6× 10−1, c20 = 2.528 · · · ,

BKM/AB : nopt = 15, E15 = 3.8× 10−4, c15 = 3.883 142 3,
RM/AB : E15 = 3.8× 10−4, c15 = 3.883 142 3,

Exact value: c = 3.883 145 0.

The exact values of c listed above were computed by using the exact formula of Bickley [15,
p. 86].

(iii) As in Example 2.7.4: (a) Ω has four-fold rotational symmetry about the origin, and
(b) the singularities of the mapping function f are branch point singularities due to the four
re-entrant corners

C1 := (0.5, 0.5) C2 := (−0.5, 0.5), C3 := (−0.5,−0.5) C4 := (0.5,−0.5),

of the inner square boundary. Thus, the details for constructing the augmented basis set and
for defining the parametric representation of the inner component of ∂Ω are exactly the same
as those given in Example 2.7.4.

The following ONM results were obtained in [124, Ex. 5.3] using the same basis sets as
those used in Example 2.7.4:

ONM/MB : nopt = 30, E30 = 5.1× 10−2, M30 = 1.702 0 · · · ,

ONM/AB : nopt = 24, E24 = 7.0× 10−8, M24 = 1.691 564 902 59.

The VM/AB error estimate E24 is again 7.0× 10−8 and the VM/AB approximation M24, to
the conformal modulus M of Ω, agrees with that of the ONM/AB to all the figures quoted.

2.16 From Exercise 1.20 we know that, for the domain under consideration, the exact aux-
iliary function H is

H(z) =
1

z − 1/3
− 1

z − 3
− 1

z
,
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i.e. H is a linear combination of the first two basis functions. Therefore, the ONM (with
n = 2 or n = 3) should give essentially the exact H.

2.17 The function P (z)/{φ(z)}n is analytic in ΩE := Ext(Γ) and continuous in ΩE , including
the point at ∞. (Observe that

φ(z) = bz + b0 +
b1

z
+

b2

z2
+ · · · with b = 1/c,

where c = cap(Γ).) Hence, P/φn must attain its maximum on Γ. Therefore,
∣∣∣∣

P (z)
{φ(z)}n

∣∣∣∣ ≤ 1, for z ∈ Ext(Γ).

The required resulat follows, because for z ∈ ΓR we have that |φ(z)| = R.

2.18 The dominant singularities of f occur at the two points given by (2.10.3) with n = 0
and n = −1, i.e. at the points

z = i(a2 − 1)1/2 sinh
(
± sinh−1

(
2a

a2 − 1

))
=

±2ia

(a2 − 1)1/2
=: ±ip1.

The next two nearest poles occur at the points given by (2.10.3) with n = 1 and n = −2, i.e.
at the points

z = i(a2 − 1)1/2 sinh
(
±3 sinh−1

(
2a

a2 − 1

))
.

On using the identity sinh 3u = 3 sinhu + 4 sinh3 u, these can be written as

z = ±i(a2 − 1)1/2

{
3 sinh

(
± sinh−1

(
2a

a2 − 1

))
+ 4 sinh3

(
± sinh−1

(
2a

a2 − 1

))}

= ±ip1

(
3 +

4p2
1

a2 − 1

)
.

2.19 (i) For the conformal mapping f : Ω → S{A}, the proof is exactly the same as that of
Theorem 2.5.1, except that now the sum on the right-hand side of (2.5.11) goes from j = 1 to
j = N . Nothing changes in the case of the conformal mapping f : Ω → S{D} (where 0 ∈ Ω),
because the function A remains analytic in Ω.

(ii) Recall that
A(z) = −A(z) + 2{log |f(z)| − log |z|}.

Therefore, for either of the two conformal mappings,
(

1
z − αj

,H
)

=
1
2i

∫

∂Ω

1
z − αj

A(z)dz

= − 1
2i

∫

∂Ω

1
z − αj

A(z)dz +
1
i

∫

∂Ω

1
z − αj

log |f(z)|dz

− 1
i

∫

∂Ω

1
z − αj

log |z|dz, j = 1, . . . , N − 1.
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Since A(z)/(z − αj) is analytic in Ω and log |f(z)| = rk, for z ∈ Γk, this implies that for
j = 1, . . . , N − 1,

1
2i

∫

∂Ω

1
z − αj

A(z)dz =
1
i

N∑

k=1

log rk

∫

Γk

1
z − αj

dz − 1
i

∫

∂Ω

1
z − αj

log |z|dz.

But ∫

Γj

1
z − αj

dz = −2πi,

∫

ΓN

1
z − αj

dz = 2πi,

and ∫

Γk

1
z − αj

dz = 0, for all k 6= j, N.

Hence, for j = 1, . . . , N − 1,

1
2i

∫

∂Ω

1
z − αj

A(z)dz = 2π log
(

rN

rj

)
− 1

i

∫

∂Ω

1
z − αj

log |z|dz,

which is the required result. In the above (due to the normalizations (2.11.5) and (2.11.10))
rN = |ζ|, in the case of the mapping f : Ω → S{A}, and rN = 1 in the case of the mapping
f : Ω → S{D}.

Note: In the case of the mapping f : Ω → S{A}, we may take α1 = 0. Then, because (see
the proof of Theorem 2.5.2),

||H||2 =
i

2

∫

∂Ω

1
z
A(z)dz,

we get that

||H||2 = −2π log
(

rN

r1

)
− i

∫

∂Ω

1
z

log |z|dz,

which is the direct generalization of (2.5.13).

2.20 For the conformal mapping f : Ω → S{A}, the proof is exactly the same as that used
for proving the formula of Example 2.12, i.e. it is based on applying the integration by parts
formula of Example 2.10 to the inner product

(u,H) = (v′,H) = i

∫

∂Ω
v′(z) log |z|dz.

The proof remains the same in the case of the conformal mapping f : Ω → S{D}, except that
now 0 ∈ Ω and therefore, ∫

∂Ω

1
z
v(z)dz = 2πiv(0).

2.21 (i) We note that the function A is analytic and single-valued in Ω and proceed as in
the proof of Theorem 2.5.1. That is,

(u,H) =
1
2i

∫

∂Ω
u(z)A(z)dz,
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where now
A(z) = −A(z) + 2{log |f(z)| − log |z|+ log |z − ζ|}.

Therefore, in this case,

(u,H) = − 1
2i

∫

∂Ω
u(z)A(z)dz +

1
i

N∑

j=1

log rj

∫

Γj

u(z)dz

+ i

∫

∂Ω
u(z){log |z| − log |z − ζ|}dz,

and the required result follows because
∫

∂Ω
u(z)A(z)dz = 0 and

∫

Γj

u(z)dz = 0, j = 1, . . . , N.

The method of deriving the second formula is similar to that used for deriving the formulas
of Examples 2.12 and 2.20. That is, the integration by parts of

(u,H) = (v′,H) = i

∫

∂Ω
v′(z){log |z| − log |z − ζ|}dz,

gives that

(u,H) = − i

2

∫

∂Ω

{
1
z
− 1

z − ζ

}
v(z)dz − i

2

∫

∂Ω

{
1
z
− 1

z − ζ

}
v(z)dz,

and the required result follows because
∫

∂Ω

1
z
v(z)dz = 2πiv(0) and

∫

∂Ω

1
z − ζ

v(z)dz = 2πiv(ζ).

(ii) The method of derivation is similar to that used for deriving the formula of Example
2.19. The only difference is that now (because of the form of A(z)) the expression for

(
1

z − αj
,H

)
=

1
2i

∫

∂Ω

1
z − αj

A(z)dz,

also involves the term
+

1
i

∫

∂Ω

1
z − αj

log |z − ζ|dz.

2.22 (i) We have that

(u,H) =
1
2i

∫

∂Ω
u(z)A(z)dz,

where A can be written as

A(z) = A(z)− 2i{arg f(z)− arg z + arg(z − ζ)}.
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Therefore, since arg f(z) = θj , for z ∈ Γj , j = 1, . . . , N ,

(u,H) = − 1
2i

∫

∂Ω
u(z)A(z)dz −

N∑

j=1

θj

∫

Γj

u(z)dz

+
∫

∂Ω
u(z){arg z − arg(z − ζ)}dz

=
∫

∂Ω
u(z){arg z − arg(z − ζ)}dz.

For the second formula, the integration by parts of

(u,H) = (v′,H) =
∫

∂Ω
v′(z){arg z − arg(z − ζ)}dz

gives that (see Exercise 2.10)

(u,H) = [v(z){arg z − arg(z − ζ)}]∂Ω −
∫

∂Ω
v(z)Im

(
dz

z
− dz

z − ζ

)
,

where the integrated part vanishes because the increment in arg z, as z describes ∂Ω, is
cancelled out by that of arg(z − ζ). Therefore, since

Im
(

dz

z

)
=

1
2i

(
dz

z
− dz

z

)
,

we have that

(u,H) = − 1
2i

∫

∂Ω

(
1
z
− 1

z − ζ

)
v(z)dz +

1
2i

∫

∂Ω

(
1
z
− 1

z − ζ

)
v(z)dz.

The required result follows, because
∫

∂Ω

1
z
v(z)dz = 2πiv(0),

∫

∂Ω

1
z − ζ

v(z)dz = 2πiv(ζ),

and (H, u) = (u,H).

(ii) For j = 1, . . . , N − 1,
(

1
z − αj

,H
)

=
1
2i

∫

∂Ω

1
z − αj

A(z)dz

=
1
2i

∫

∂Ω

1
z − αj

{A(z)− 2i[arg f(z)− arg z + arg(z − ζ)]}dz.

or, since A(z)/(z − αj) is analytic in Ω and arg f(z) = θk, for z ∈ Γk, k = 1, . . . , N ,

1
2i

∫

∂Ω

1
z − αj

A(z)dz = −
N∑

k=1

θk

∫

Γk

1
z − αj

dz +
∫

∂Ω

1
z − αj

{arg z − arg(z − ζ)}dz.
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The required result follows, because
∫

Γj

1
z − αj

dz = −2πi,

∫

ΓN

1
z − αj

dz = 2πi,

and ∫

Γk

1
z − αj

dz = 0, for all k 6= j, N.

4.3 Exercises of Chapter 3

3.1 The bisector of the right angle at 0 subdivides Ω into two right-angled triangles Ω1 and
Ω2 with vertices at the points 0, 2, 1 + i and 1 + i, 2i, 0 respectively; see Figure 4.1. Let
Q := {Ω; 1, 2, 2i, i} be the original quadrilateral and let

Q1 := {Ω1; 1, 2, 1 + i, 0} and Q2 := {Ω2; 0, 1 + i, 2i, i}.
Then, by symmetry m(Q1) = m(Q2) and m(Q) = 2m(Q1). Furthermore, the quadrilateral
Q1 is symmetric; see Definition 3.1.5. Hence, m(Q1) = 1 and, therefore, m(Q) = 2.

0
×
1 2

×

×i 1 + i

×
2i

Ω1

Ω2

Figure 4.1

3.2 v̂ is the solution of the Laplacian problem:

∆v̂ = 0, in Rm(Q),

v̂ = 0, on 0 < ξ < 1, η = 0,

v̂ = 1, on 0 < ξ < 1, η = m(Q),
v̂ = 0, on ξ = 0, and ξ = 1, 0 < η < m(Q).
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Thus, by using the method of separation of variables,

v̂(ξ, η) =
∞∑

n=1

c2n−1 sin(2n− 1)πξ sinh(2n− 1)πη,

where
c2n−1 = 4{(2n− 1)π sinh(2n− 1)πm(Q)}−1, n = 1, 2, . . . ;

see below. Therefore,

∂v̂

∂η
(ξ, 0) =

∞∑

n=1

(2n− 1)πc2n−1 sin(2n− 1)πξ,

and hence, from (3.2.8) (since I is conformally invariant),

I =
∫

(z1,z2)

∂v

∂n
ds = −

∫ 1

0

∂v̂

∂η
(ξ, 0)dξ = −2

∞∑

n=1

c2n−1.

Thus

I = − 8
π

∞∑

n=1

{(2n− 1) sinh(2n− 1)πm(Q)}−1,

and the required result follows, at once, from the first expression in (3.2.8).

Note: In order to find v̂ by the method of separation of variables, we set

v̂(ξ, η) = X(ξ)Y (η).

Then, since ∆v̂ = 0,
X(2)(ξ)Y (η) + X(ξ)Y (2)(η) = 0

or
X(2)(ξ)
X(ξ)

= −Y (2)(η)
Y (η)

= −λ,

where λ is a scalar. Thus, the functions X and Y must satisfy, respectively, the ordinary
differential equations

X(2)(ξ) + λX(ξ) = 0 and Y (2)(η)− λY (η) = 0,

which have general solutions

X(ξ) = A sin
√

λ ξ + B cos
√

λ ξ and Y (η) = D sinh
√

λ η + E cosh
√

λ η.

Next, in order to satisfy the homogeneous boundary conditions: (i) v̂(0, η) = v̂(1, η) = 0, and
(ii) v̂(ξ, 0) = 0, we must have, respectively: (i) B = 0 and λ = n2π2, n = 1, 2, . . ., and (ii)
E = 0. Thus,

v̂n(ξ, η) = cn sinnπξ sinhnπη, n = 1, 2, . . . ,
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are particular solutions that satisfy the homogeneous boundary conditions of the Laplacian
problem. Hence,

v̂(ξ, η) =
∞∑

n=1

cn sinnπξ sinhnπη,

where by applying the boundary condition v̂(ξ, m(Q)) = 1, 0 < ξ < 1,

cn sinh{nπm(Q)} = 2
∫ 1

0
sinnπξ dξ = − 2

nπ
{cosnπ − 1},

i.e.

cn =

{
4/{nπ sinh(nπm(Q)), n = 1, 3, . . . ,

0, n = 2, 4, . . . .

3.3 Let Ω
′
1, Ω

′
2 be, respectively, the images (under the conformal mapping F : Ω → Rm(Q))

of the sub-domains Ω1, Ω2, and let

Q
′
1 := {Ω′

1; F (z1), F (z2), F (a), F (b)} and Q
′
2 := {Ω′

2; F (b), F (a), F (z3), F (z4)},

be the corresponding transplanted quadrilaterals. Also, let A1, A2 be, respectively, the areas
of Ω

′
1, Ω

′
2, observe that the area of Rm(Q) is A = m(Q), and recall the conformal invariance

property of conformal modules. Then, by applying Rengel’s inequality (3.3.9) to each of the
quadrilaterals Q

′
1 and Q

′
2 we find that

m(Q1) = m(Q
′
1) ≤ A1 and m(Q2) = m(Q

′
2) ≤ A2,

with equality in each of the two cases if and only if Q
′
1 and Q

′
2 are both rectangular quadri-

laterals. Hence,
m(Q1) + m(Q2) ≤ A1 + A2 = A = m(Q),

with equality if and only if the crosscut γ is an equipotential of the harmonic problem (3.2.2).
(Thus, Theorem 3.3.7, on Rengel’s inequality, provides a particularly simple method for
proving the additivity property of Theorem 3.3.6, including the “if and only if” assertion of
the last part of the theorem.)

3.4 (i) Let Q := {Ω; z1, z3, z5, z7} and observe that the conjugate quadrilateral Q′ :=
{Ω; z3, z5, z7, z1} is symmetric. Therefore, m(Q′) = 1 and hence m(Q) = 1/m(Q′) = 1.

(ii) Let Q := {Ω; z5, z6, z8, z1}, and observe that the line joining the points z3 and z7 divides
Ω into two trapeziums – a trapezium Ω1 with vertices at the points z3, z5, z6 and z7 , and a
trapezium Ω2 with vertices at z1, z3, z7 and z8. Let

Q1 := {Ω1; z5, z6, z7, z3} and Q2 := {Ω2; z3, z7, z8, z1}.
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Then, by symmetry, m(Q1) = m(Q2) and m(Q) = 2m(Q1). Also, if Tl denotes the trapezium
of Example 3.6.2, then clearly m(Q1) = m(Q2) = m(T2), and hence from Table 3.1

m(Q) = 2× 1.279 261 571 171 = 2.558 523 142 342.

3.5 (i) Consider the decomposition of Q illustrated in Figure 4.2 and let

m̃(Q) := m(Q1) + m(Q2),

where m(Q1) = m(T5) and, by symmetry, m(Q2) = 2m(T8.5). Thus, m(Q1) and m(Q2) are
given to, at least, eight decimal places by

m(Q1) = m(T4) + 1 = 4.279 364 399 and m(Q2) = 2{m(T4) + 4.5} = 15.558 728 799 ;

see Example 3.9.1. Therefore, m̃(Q) is given to eight decimal places by

m̃(Q) = 19.838 093 20.

As for the DDM error, from Theorem 3.10.1 we have that

0 ≤ m(Q)− m̃(Q) ≤ 4
π

e−2πm(Q1) < 2.7× 10−12.

Thus, to eight decimal places
m(Q) = 19.838 093 20.

A B

C D

EF

Ω1

Ω2

Figure 4.2

(ii) Consider the decomposition of Q illustrated in Figure 4.3, where AK = 5, KL = 5,
LM = 5 and MB = 4, and observe that

m(Q1) = m(T5), m(Q2) = m(Q3) = 2m(T5) and m(Q4) = 4.



208 CHAPTER 4. SOLUTIONS

Thus, from Example 3.9.1, the DDM approximation to m(Q) is given to eight decimal places
by

m̃(Q) :=
4∑

j=1

m(Qj) = 5m(T5) + 4 = 5{m(T4) + 1}+ 4 = 25.396 822 00.

As for the DDM error the application of Theorems 3.10.1 and 3.10.2 gives the following:

• Theorem 3.10.2:

0 ≤ m(Q)− {m(Q1,2) + m(Q3,4)} ≤ 5.26e−2πm(Q2) < 2.4× 10−23.

• Theorem 3.10.1:

0 ≤ m(Q1,2)− {m(Q1) + m(Q2)} ≤ 4
π

e−2πm(Q1) < 2.7× 10−12.

• Theorem 3.10.1:

0 ≤ m(Q3,4)− {m(Q3) + m(Q4)} ≤ 4
π

e−2πm(Q4) < 1.6× 10−11.

Thus,
0 < m(Q)− m̃(Q) < 1.9× 10−11,

and therefore, to eight decimal places,

m(Q) = 25.396 822 00.

A B

CD

EF

GH

Ω1 Ω2 Ω3 Ω4

K L M

Figure 4.3
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