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ABSTRACT
The system of Navier–Stokes–Fourier equations is one of the most celebrated systems of equations
in modern science. It describes dynamics of fluids in the limit when gradients of density, velocity
and temperature are sufficiently small, and loses its applicability when the flux becomes so non-
equilibrium that the changes of velocity, density or temperature on the length compatible with the
mean free path are non-negligible. The question is: how to model such fluxes? This problem is still
open. (Despite the fact that the first ‘final equations of motion’ modified for analysis of thermal creep
in rarefied gas were proposed by Maxwell in 1879.) There are, at least, three possible answers: (i) use
molecular dynamics with individual particles, (ii) use kinetic equations, like Boltzmann’s equation or
(iii) find a new system of equations for description of fluid dynamics with better accounting of non-
equilibrium effects. These three approaches work at different scales. We explore the third possibility
using the recent findings of capillarity of internal layers in ideal gases and of saturation effect in
dissipation (there is a limiting attenuation rate for very short waves in ideal gas and it cannot increase
infinitely). One candidate equation is discussed in more detail, the Korteweg system proposed in
1901. The main ideas and approaches are illustrated by a kinetic system for which the problem of
reduction of kinetics to fluid dynamics is analytically solvable.
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1. Introduction

1.1. Timeline (the history of equations)

Historical timelines are seldom comprehensive and are
often subject to debates but they do provide a background
to examine the present. Older chronology seems to be
more reliable and less disputable (it may happen because
some details went forgotten). For understanding the sit-
uation ‘beyond Navier–Stokes’ the following milestones
from the distant past are crucial:

• 1687 Isaac Newton stated that the shear stress be-
tween layers of a fluid is proportional to the velocity
gradient in the direction perpendicular to the layers.

• 1738 Daniel Bernoulli proved that the gradient of
pressure is proportional to the acceleration.

• 1759 Leonhard Euler applied Newton’s second law
of motion to fluid dynamics (no viscosity) and pub-
lished the Euler equations of fluid motion.

• 1807 JeanBaptiste Joseph Fourier presented his heat
conduction equation to the Institut de France.

• 1822 Claude Navier introduced viscosity in the
Euler equation.

• 1823 Augustin-Louis Cauchy published his general
theory of stress.

CONTACT A. N. Gorban ag153@le.ac.uk

• 1845 George Stokes published the Navier–Stokes
equations.

• 1872 Ludwig Boltzmann published ‘Kinetic Theory
of Gases’ and introduced the Boltzmann equation
for evolution of the particle distribution in the space
of possible positions and momenta.

• 1879 James Clerk Maxwell used Boltzmann’s kinet-
ics to come up with additional terms in the Navier–
Stokes equations (the ‘final equations ofmotion’), in
order to explain the thermal creep in rarefied gases
which cannot be captured by the Navier–Stokes–
Fourier equations.

• 1893 Johannes Diderik van der Waals introduced
the thermodynamic theory of capillarity under the
hypothesis of a continuous variation of density.

• 1900 David Hilbert presented his prominent list of
problems. The sixth Hilbert problem includes ‘the
problem of developing mathematically the limiting
processes, ... , which lead from the atomistic view to
the laws of motion of continua’.

• 1901 Diederik Johannes Korteweg proposed the
dynamics equations for fluids with capillarity, based
on van der Waals’ approach.

• 1917 David Enskog defended his thesis in which he
gave a systematic derivation of the Navier–Stokes–
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Fourier equations from theBoltzmannequation and
predicted the thermodiffusion effect in themixtures
of gases. The latter was used in early uranium sepa-
ration technologies.

• 1932 Steven Chapman and Steven Cowling refined
themethodofEnskog andwrote the classical treatise
‘Mathematical theory of non-uniform gases’.

Thus, at the beginning of the twentieth century, the
main equations we intend to discuss were invented. The
Navier–Stokes–Fourier equations and the Boltzmann
equation were known and Hilbert considered reduction
from kinetics (‘the atomistic view’) to fluid mechanics as
a crucially important problem. Van der Waals proposed
to include in the energy density a new term, ∼ c(∇ρ)2,
where ρ is the density and c is the capillarity coeffi-
cient [1]. His doctorate student, Korteweg, found how
this term affects the motion of fluids, and created the
dynamics of fluids with capillarity [2].

Since then the research tree has branched enormously.
The vanderWaals capillarity termplayed an essential role
in a number of important achievements: in the Landau
theory of phase transitions [3] and the Ginzburg–Landau
theory of superfluids and superconductors [4], in Cahn–
Hilliardmodels of phase separation [5] and in the Langer
Bar-On andMiller theory of spinodal decomposition [6],
to name a few. Many new equations of motion were in-
vented and studied for various continuous media,
and a special discipline, rational thermodynamics, was
developed tomanage this world of continuummechanics
models [7,8]. In particular, the Korteweg equations were
slightly revised bymeans of rational thermodynamics [9].

The fluid dynamics equations were rigorously derived
from Boltzmann’s kinetics in some rescaling limits: if we
consider a flow of an almost equilibrium gas with very
small space derivatives of velocities and density and then
change the time scale (go to ‘slow time’) then the Euler
equations hold for this flowwith high accuracy. For some
scaling procedures, theNavier–Stokes–Fourier equations
can be achieved as well. (Exact statements, more details,
more results and further references can be found in the
book [10].)

Several families of methods were developed in theo-
retical physics for deduction of fluid dynamic equations
from kinetic equations.We introduce some of them later.
They usuallyworkwell for the derivation of the ‘expected’
Euler and Navier–Stokes–Fourier equations but the next
step, a correction to the Navier–Stokes equations for
more non-equilibrium regimes, was far less successful.
Therefore, the most challenging goal of these methods,
the correct new post–Navier–Stokes–Fourier equations,
remained unachieved.

Figure 1. Crookes radiometer. It is made from a glass bulbwith low
air pressure inside. Within the bulb there is a rotor with several
vertical metal vanes, which are polished on one side and black on
the other. When exposed to light the vanes turn, the dark sides
retreating from the radiation source and the light sides advancing.
(Public domain picture.)

1.2. The problem

In 1946, John von Neumann stated that computational
fluid dynamics would make experimental fluid dynamics
obsolete [11] (see also [12]).

The computational approach to the problem as dis-
cussed by von Neumann has been developing in many
relevant works published meanwhile including e.g. very
recent publications [13,14].

But rephrasing the famous quotation of Lord Kelvin
[15] we can say that the beauty and clearness of the the-
ory, which explains fluid dynamics equations as special
limits of kinetic equations, is at present obscured by a
cloud. Higher order corrections to the Navier–Stokes–
Fourier equations produced from kinetics beyond the
degenerated scaled flows demonstrate somenon-physical
properties and cannot be used without regularisation.
Moreover, there are relatively simple experiments with
rarefied gases (known to Reynolds and Maxwell [16,17])
which can be captured by neither the Navier–Stokes–
Fourier equations nor by the higher order corrections
obtained from the Boltzmann equations by regular pro-
cedures. These are, for example, effects of thermal creep
(or transpiration), i.e. the steady motion of a rarefied gas
induced by a temperature gradient on the boundary of
the flow domain, which are demonstrated by the Crookes
radiometer (the light mill, Figure 1).
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Another example of such a system is the Knudsen
pump [18]. In Knudsen’s experiments, it was a pipe
with alternating narrow (diameter 1/3 mm) and wide
(diameter 10 mm) segments of 5 cm length (Figure 2).
Every second pipe joint was heated by a special heat-
ing element. Metallic wire was used for heat removal
from other joints. The temperature difference between
the heated and unheated pipe joints was 500 ◦C. For
normal pressure, there was no difference in pressure at
the opposite ends of the pipe, whereas for the pressure at
one end, p1 ∼ 0.5 mmHg (65 Pa) the ratio between these
pressures is ∼ 10. Recently, this system was revisited,
both by the reproduction of experiments and by theoret-
ical analysis [19]. The effect was also demonstrated on
two joined pipes of different inner diameters, 12 and 24
mm, each 60mm in length. The joint was heated to about
500 ◦C, the ends were cooled by thick copper plates. The
flux from the thinner to the thicker pipe was indicated
for the pressure 5–50 Pa. At pressure 100 Pa (and above)
there was no motion observed in this system [19].

Of course, these effects do not contradict the kinetic
theory and can be explained in the framework of Boltz-
mann’s kinetics and some of its simplifications [20,21].
The problem is in the appropriate continuummechanics
model, which is produced systematically from kinetics
and explains thermal creeps. The prophecy of von Neu-
mann is unfulfilled not only because the computational
tools are insufficient, but also because the proper equa-
tions for some situations remain unknown.

1.3. Solutions proposed: capillarity of ideal gas

Van der Waals introduced capillarity energy for non-
ideal multiphase fluids [1,22]. However, the terms which
look similar to Korteweg’s stress tensor have been recog-
nised in the Chapman–Enskog expansion for non-
equilibrium ideal gasmany times. Everyone can compare
the Korteweg stress (Equation (11) below) with Burnett’s
equations, the first post-Navier–Stokes correction de-
rived from the Boltzmann equation (see, for example,
the Chapman and Cowling book [23]).

Nevertheless, it was not before the exact summation
of the entire Chapman–Enskog series was found [24–27]
that the following rulewas discovered [28,29]:Chapman–
Enskog ⇒ Viscosity + Capillarity.

The problem with Burnett’s equations is, among oth-
ers, in thewrong sign of the higher order correction terms
leading to a parasite instability of short waves (Bobylev’s
instability [30]). Maxwell, in his attempt to describe ther-
mal creep, encountered the wrong sign of the effect (ac-
cording to Burnett’s equations the light mill rotates in
the direction opposite to the experimentally observed
rotation).

The exact solutions demonstrate that the van der
Waals capillarity emerges in the non-equilibrium ideal
gas. Therefore, Korteweg’s equations can be a candidate
for the post–Navier–Stokes–Fourier equations. The fact
that the van der Waals capillarity energy emerges from a
rigorous analytic solution of the reduction problem for
kinetic models of ideal gas was unexpected.

On the other hand, the exact solutions demonstrate
saturation of dissipation: the attenuation rate of the
acoustic waves has a finite limit when the wave length
tends to zero [24,27]. In that respect, the original
Korteweg’s equation may be not sufficient: for them,
the attenuation rate grows as (frequency)2/3 (for high
frequency, see (26) and Figure 7(b)). Two different
hypotheses seem to be possible at present:

• For the genuine Boltzmann equation with realistic
interaction between the particles, the asymptotic of
the attenuation rate of acoustic waves is the same as
for the Korteweg equations;

• Theproper hydrodynamics for non-equilibriumgas
should include the mixed derivatives, which look
like the operator (1−α�)∂t in the left-hand side of
the equations (in the simplest form), where� is the
Laplace operator.

There are some arguments in favour of the Korteweg
asymptotic reported very recently [31]. Nevertheless, the
second hypothesis is strongly supported by the exactly
solved problem, as we demonstrate below.

1.4. Capillarity of ideal gas in words and numbers

In high school textbooks and popular science literature,
capillarity is the ability of a liquid to flow in narrow gaps
without the assistance of, and in opposition to, external
forces such as external pressure or gravity. In scientific
literature, the term ‘capillarity’ is used in wider sense.
For example, the pressure difference across the curve
interface is termed the ‘capillary pressure’. Gibbs theory
of capillarity [33] carries the title ‘Influence of Surfaces
of Discontinuity upon the Equilibrium of Heterogeneous
Masses’. This title includes two important ideas: equilib-
rium and discontinuity. On the contrary, van der Waals
[1,22] proposed the theory of continuous transition layers
which was developed later in the dynamic phase field
theory and numerics. In the limit of the thin equilibrium
film, the van der Waals theory gives results very similar
to the Gibbs theory.

Gibbs studied energy and equilibria of interface sur-
faces. We can call them infinitely ‘thin films’, films with-
out thickness. Van der Waals and, later, his student
Korteweg studied continuous media with energy depen-
dent on density gradients. We can call the van der Waals
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Figure 2. Knudsen pump. Bold lines correspond to thick pipes. The direction of flux (for open pipe ends) is indicated. For closed pipe ends,
p1 > p2. Original Knudsen’s experimental data for stationary pressure are in the table. The plot of stationary temperature difference δT
from non-heated pipe joints is presented schematically.

transition layers ‘thick films’, they have non-negligible
thickness and volume. Now, we aim to demonstrate that
even very simplified piecewise continuous approxima-
tion of a thick film can give useful insights.

Consider two chambers with fluid connected by a
capillary tube (Figure 3). Assume that a system of heaters
and coolers keeps the temperatures, θ1 > θ2, in these
chambers constant in time. In a steady state, there is no
fluid flux through the tube but a heat flux exists and so
this is not a thermodynamic equilibrium. Two limit cases
for gases are very well known:

• The Navier–Stokes limit, the mean free path λ � d.
In this limit zero flux implies zero pressure differ-
ence. In the steady state P1 = P2;

• The Knudsen limit λ � d, the flux in the capil-
lary tube is collisionless. The gas flux from the hot
chamber to the cold chamber is const × n1v̄1 and
the inverse flux is const × n2v̄2 with the same const
(we presume that the capillary tube is symmetric).
Here, ni is density, the ideal gas equation gives
nikθi = Pi, v̄i is the thermal velocity, proportional
to

√
kBθi, and kB is the Boltzmann constant. The

zero flux condition gives

P1√
θ1

= P2√
θ2

or
P2
P1

=
√

θ2

θ1
. (1)

In the Knudsen limit, we see how the steady state dif-
ference between temperatures produces the difference
between pressures. This is called the thermomechanical
effect, and the effect of the capillary flux induced by the
temperature gradient is called thermoosmosis. The ratio
P2/P1 is called the thermal transpiration ratio.

The thermomechanical effect and thermoosmosis
were discovered in the twentieth century for various flu-
ids, from rarefied gases to superfluid liquids and water
[34,35]. Now, they are considered as a promising driving
mechanism for micro- or nanoscale engines [37]. There
are many approaches to the theory of these effects based

Figure 3. Two chambers connected by a capillary tube.

on non-equilibrium thermodynamics [36]. All of them
include unknown parameters, which should be found
experimentally. Here we will demonstrate two simple
models based on capillarity (perhaps, the simplest mod-
els). First of all, assume that the thermomechanical effect
is produced by a thin layer at the wall of the capillary. The
property of this surface depends on the thermodynamic
conditions and on the material of the wall and the fluid.

In the Gibbs approach [33], we operate with a thin
film (a surface). The force in the thermomechanical effect
should be proportional to the length of the section of this
surface, that is the circle, F = γπd, and the pressure
difference should be (Figure 4)

P1 − P2 = F
1
4πd

2
= 4γ

d
and

P2
P1

= P2d
P2d + 4γ

.

This model includes one unknown coefficient γ ,
which can be easily evaluated from the empiric curves
(Figure 4). Of course, this simplestmodel belongs to Type
5 of Peierls’ classification [32]: ‘Instructive model (No
quantitative justifications but gives insight)’ or even to
Type 6: ‘Analogy (Only some features in common)’. This
modelworkswell in comparisonwith experiment (Figure
4) for not very high Knudsen numbers Kn < 0.1, gives
the proper Navier–Stokes limit, but has one fundamental
defect: P2/P1 → 0 when P2d → 0 (or, which is the same,
Kn→ ∞).

To improve the model, let us follow the van derWaals
capillarity idea. Consider a ‘thick film’ near the border
with thickness ς , if d > 2ς . If d < 2ς then the thick sur-
face fills the whole capillary. Assume that the thickness is
proportional to the mean free path, ς = aλ. The force of
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Figure 4. Thermal transpiration values P2/P1 of hydrogen. The
simplest thin film capillarity model (solid line) and the thick
film model (bold dotted line) versus experimental data (bold
dashed line). P1 is the pressure at the ‘hot end’, T1 = 473 ± 1K,
P2 is the pressure at the ‘cold end’, T2 = 295 ± 1K (room
temperature). Experimental data are taken from [38]. The simplest
capillarity model gives: P2/P1 = P2d/(P2d+ 1/15) (fitted to data
in the interval 0.01 < Kn < 0.1). Kn (the ratio of the mean
free path λ to the diameter d) is evaluated at the cold end.
We used the collisional diameter of H2, DH2 ≈ 2.3 × 10−10m
estimated from viscosity data using mean free path theory. In
the analysis of molecular seeds a larger diameter is used usually,
DH2 ≈ 2.89 × 10−10m [41]. In the thick film model a ≈ 0.25 for
the experimental data presented.

the thermomechanical effect in thismodel is proportional
to the section of the surface orthogonal to the axis of the
capillary (to the surface area), and to the particle density
(empty space does not produce force): F = κAn, whereA
is the area of the section. The coefficient κ has the physical
sense of ‘energy per particle’ and describes the energetic
difference between the boundary layer of thickness ς and
the rest of the volume of the capillary tube. Recall that
nλ = (

√
2πD2)−1, where D is the collision diameter

of molecules, and P = nkBθ . Evaluate λ at the cold
end. After simple algebra we get the formula for the
transpiration ratio in the thick film approximation:

P2
P1

=
{ P2d

P2d+4κa(
√
2πD2)−1(1−aKn)

if aKn < 1
2 ,

1
1+κ(kBθ2)−1 if aKn ≥ 1

2 .

Here, κ is still an unknown coefficient. The thick film
fills the whole capillary at Kn = 1/(2a). It is convenient
to gather all the coefficients into two unknown numbers:

coefficient α (a function of temperature, which can be
easily extracted from the Knudsen asymptotic) and the
ratio of the film thickness to themean free path, a = ς/λ.
We express the thermal transpiration ratio through the
Knudsen number:

P2
P1

=
{

1
1+αKn(1−aKn)

if aKn < 1
2 ,

1
1+α/(4a) if aKn ≥ 1

2 .
(2)

The thick surface model has the proper high Kn and
low Kn asymptotics and can be used for the understand-
ing the data. Of course, it is not far from the simple
dimensional analysis andbelongs toType 5 or 6 of Peierls’
classification. It does not reveal the intrinsic physical
mechanism of the thermomechanic effect and the ther-
moosmosis. We just hypothesised that these effects are
connected to the energy (enthalpy) density in the layers
near the interface between gas and capillary and to the
transport in these layers (thermoosmosis slip). The mod-
els can be improved if we account carefully for variations
of the films along the tube. Solving the Korteweg equa-
tions instead of postulating of the thick surface can pro-
vide the further improvements, but this next step requires
more technical effort. Some calculations of boundary
layers and transpiration were performed recently on the
basis of Korteweg’s equation [39]. The problem is not
in an accurate calculation of these effects. The kinetic
equations or even direct molecular simulation do this job
quite well. The question is about an appropriate contin-
uum model that describes the bulk motion, the thermal
transpiration and the other similar effects in a unified
way.

In any case, already very simple models demonstrate
that the transport phenomena of the rarefied gas near the
interfaces may be described using the idea of capillarity.
We might imagine that the light mill is a close relative of
the soap boat [40] because both are moving by capillarity
effects.

1.5. The structure of the paper

The goal of this paper is to highlight the origin of the
capillarity of ideal gas. For this purpose, we give a com-
prehensive introduction into modern theory of dynamic
model reduction from kinetics to fluid dynamics and
analyse approximate and recently found exact solutions
of this problem.

In the next Section, we start the unhurried introduc-
tion of themain equations: from the conservation ofmass
and Cauchy equations to the Navier–Stokes–Fourier
equations. In Section 2.6, Korteweg’s stress tensor is
described. After that, we discuss a simple ‘mean free path’
theory for Korteweg’s stress. To that end, the idea of
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Ehrenfests’ coarse-graining is utilised: we take the col-
lisionless Knudsen gas with periodic equilibration to the
local equilibrium and analyse the post-Navier–Stokes
equation derived by this approach.

After that, a short but comprehensive explanation of
the Chapman–Enskog procedure is presented. We intro-
duce the invariance equation in Section 4.2 and construct
the Chapman–Enskog as a formal solution to this equa-
tion (Section 4.3). The geometric language allows us to
avoid the usual bulky calculations while describing the
main constructions.

Analysis of exactly solvable problem of reduction
allows us to prove that the capillarity effects in ideal
gas is not a by-product of special approximations and
series expansions but appears as a direct consequence of
kinetic equations. In Section 5 the energy formula for
hydrodynamics of non-equilibrium ideal gas is proved.
It includes the pseudodifferential capillarity term, which
coincides with the van der Waals energy of capillarity
in first approximation. Finally, hypotheses are discussed
about the plausible forms of non-equilibrium fluid
mechanics.

2. Fluid dynamics equations

2.1. Hydrodynamic fields

Consider the classical fluid, which is defined by the
hydrodynamic fields: densityρ (scalar), velocity u (vector)
and specific internal energy e, that is internal energy per
unit of mass (scalar).

2.2. Conservation ofmass

∂ρ

∂t
+
∑
j

∂(ρuj)
∂xj

= 0.

1

(3)

2.3. Cauchymomentum equations

∂(ρui)
∂t

+
∑
j

∂(ρuiuj)
∂xj

=
∑
j

∂σij

∂xj
+ fi. (4)

where f = (fi) is the body force density, σii (i = 1, 2, 3)
are normal stresses, and σij (i = j) are shear stresses. The
pressure p is

p = −1
3
trσ = −1

3

∑
i

σii.

The Cauchy stress tensor σ = (σij) (i, j = 1, 2, 3)
describes the so-called contact force: Let for a small ele-
ment of a body surface with area �S and outer normal

vector n = (ni) the stress tensor σ be given. Then the
force applied to the body through this surface fragment is

�F = σ · n�S, that is, Fi = �S
∑
j

σijnj.

The stress tensor is symmetric (to provide conservation
of angular momentum), σij = σji.

The momentum Equation (4) is the second Newton
law written for a small brick of the material: Imagine a
small cubic brick (a ‘parcel’) with soft but impenetrable
boundaries and edges parallel to the coordinate axes,
which moves with the material. The outer normals of the
opposite faces differ by sign only, therefore the sum of
the contact forces from all faces is

∑
j

∂σij
∂xj �L3 + o(�L3),

where�L is the edge of the brick (use the Taylor formula
for σij). The possibility to represent themotion of contin-
uum as the flight of many infinitesimal parcels with soft
deformable but impenetrable boundaries is in the essence
of the mechanics of materials.

2.4. Energy equation

If the material body� experiences infinitisemal displace-
ment x �→ x + δr(x), which vanishes with derivatives
on the boundary, then the work of the contact forces is
(use the Stokes formula for integration by parts):

δW =
∫

�

∑
i,j

∂σij

∂xj
δri d3x = −

∫
�

∑
i,j

σij
∂δri
∂xj

d3x. (5)

Take into account symmetry of σij and find that δW
depends on the symmetric part of ∂δri/∂xj:

δW = −1
2

∫
�

∑
i,j

σij

(
∂δri
∂xj

+ ∂δrj
∂xi

)
d3x.

The power is the work per time. For a moving of con-
tinuummedia, the power produced by the contact forces
is

P = −
∫

�

∑
i,j

σij
∂ui
∂xj

d3x

= −1
2

∫
�

∑
i,j

σij

(
∂ui
∂xj

+ ∂uj
∂xi

)
d3x. (6)

According to the Cauchy equation and the formula for
power we can write the conservation of energy

∂(ρε)
∂t +∑

j
∂(ρεuj)

∂xj = ∑
ij σij

∂ui
∂xj

+∑
i fiui −

∑
i

∂qi
∂xi ,

(7)
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where ε is the energy density per unit mass: ε = e+ 1
2u

2,
e is the specific internal energy, u2 = ∑

i u
2
i , and q =

(qi) is the vector of heat flux, which appears because of
thermal conductivity. For the perfect (monoatomic) gas,
e = 3R

2M θ , where R is the ideal gas constant, M is the
molar mass and θ is the absolute temperature.

2.5. Stress tensor and heat flux for ideal fluid: the
Navier–Stokes–Fourier equations

Cauchy equations are simple and nice, and can be applied
to many materials (and even beyond the mechanics of
materials). The question is: how can we express the stress
tensor and the heat flux through the hydrodynamic fields:
density ρ, velocity u and specific internal energy e?

The simplest answer is given by the Navier–Stokes
stress tensor and Fourier heat flux:

σij = σ E
ij + σV

ij ;
σ E
ij = −pδij;

σV
ij = λδij

∑
k

∂uk
∂xk

+ μ

(
∂ui
∂xj

+ ∂uj
∂xi

)
;

qi = −κ
∂θ

∂xi
.

(8)

Here (and in what follows), δij is Kronecker’s delta, σ E
ij ,

σV
ij are elastic and viscous contributions to the Cauchy

stress tensor, the coefficients λ, µ and κ depend on den-
sity and temperature. The thermodynamic pressure p in
the elastic stress is defined through the equation of state.
For example, for ideal gas p = nRθ = ρθR/M, where n is
the molar density (n = ρ/M). The standard assumption
is that the viscous tensor has zero trace and, therefore,
λ = − 2

3μ. Strictly speaking, this is just an assumption
and the mechanical pressure should not necessarily co-
incide with the thermodynamic pressure and may have a
viscous component.

With the constitutive Equation (8) we can immedi-
ately write the Navier–Stokes–Fourier equations for the
density, velocity and temperature of ideal gas (p = R

M θ ,
e = 3R

2M θ):

∂ρ

∂t
+
∑
j

∂(ρuj)
∂xj

= 0;

∂(ρui)
∂t

+
∑
j

∂(ρuiuj)
∂xj

+ R
M

∂(ρθ)

∂xi

= ∂

∂xi

(
λ
∑
k

∂uk
∂xk

)
+
∑
j

∂

∂xj

[
μ

(
∂ui
∂xj

+ ∂uj
∂xi

)]
+ fi;

∂(ρ[ 3R
2M θ + 1

2u
2])

∂t
+
∑
j

∂(ρ[ 3R
2M θ + 1

2u
2]uj)

∂xj

+ ρθ
R
M

∑
i

∂ui
∂xi

= λ

(∑
i

∂ui
∂xi

)2

+ μ

2

∑
ij

(
∂ui
∂xj

+ ∂uj
∂xi

)2
+
∑
i

fiui +
∑
i

∂

∂xi

(
κ

∂θ

∂xi

)
.

(9)

The power produced by the viscous stress is

P = −λ

(∑
i

∂ui
∂xi

)2

− μ

2

∑
ij

(
∂ui
∂xj

+ ∂uj
∂xi

)2
.

If μ > 0 and 3λ + 2μ ≥ 0 then P ≤ 0 (i.e. viscosity is
friction, indeed).

According to the model classification proposed by R.
Peierls [32], the Navier–Stokes viscous stress tensor is
a typical example of the linear response models together
with Ohm’s and Hooke’s laws, Fourier’s law and many
others. ‘This refers to a situation in which one is inter-
ested, by definition, in the response of a system to some
parameter in the limit in which this parameter may be
treated as infinitesimal’.

2.6. Fluids with capillarity: van derWaals energy
and Korteweg stress tensor

In 1877, Gibbs published the theory of capillarity based
on the idea of surfaces of discontinuity [33]. He intro-
duced and studied thermodynamics of two-dimensional
objects – surfaces. On the contrary, van der Waals pro-
posed the theory of capillarity using the hypothesis that
density of the body varies continuously at and near the
transition layer and the energy depends on the gradient
of density [1] (just square of gradient is added). This is
an energetic ‘penalty’ for high gradients, which does not
allow discontinuities to appear and defines the thickness
and the energy of the layer between phases. Modern
‘phase field’ approaches are also based on this idea [42,
43]. After van der Waals, the standard approach to the
continuous theory of capillarity is: represent the Gibbs
free energy of a body � as a sum, G = G0 + GK , where

G0 =
∫

�

g0(ρ, θ) d3x;

GK =
∫

�

K(ρ, θ)
∑
i

(
∂ρ

∂xi

)2
d3x. (10)

Here, K(ρ, θ) is the capillarity coefficient. Korteweg
found the correspondingGK addition to the stress tensor:
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σK
ij = ρ

[∑
k

∂
∂xk

(
K(ρ, θ)

∂ρ
∂xk

)]
δij

− K(ρ, θ)
∂ρ
∂xi

∂ρ
∂xj .

(11)

Detailed analysis of this stress tensor and its various
modifications from the rational thermodynamics point
of view is performed by Dunn and Serrin [9]. Thermo-
dynamics requires to complement the Korteweg stress
tensor by the additional contributions to the internal
energy and the heat flux:

eK = 1
2ρ
(
K − θ ∂K

∂θ

)∑
i

(
∂ρ
∂xi

)2 ;
qKi = K(ρ, θ)ρ

∂ρ
∂xi

∑
j

∂uj
∂xj .

(12)

Tomodify theNavier–Stokes equationwe should just add
theKorteweg stress to the elastic and viscous stresses, and
also add the capillarity contributions to the energy and to
the heat flux

σij = σ E
ij + σV

ij + σK
ij ;

ε = e + 1
2
u2 + eK ;

qi = −κ
∂θ

∂xi
+ qKi . (13)

With these additions, the Navier–Stokes–Fourier equa-
tions for ideal gas (9) turn into Korteweg equations for
gas with capillarity. Now we have to understand how it
may happen that the ideal gas gains capillarity.

3. Kinetics

3.1. Stress tensor for collisionless gas

Collisionless gas consists of particles which are moving
without collisions between them. It is described by the
one-particle distribution function f (x, v, t), where x is
particle’s position, v is particle’s velocity and t is time.
The integral of the density over a domain � in the 6-
dimensional space of positions and velocities is the num-
ber of particles in �:

∫
�
f (x, v, t)d3x d3v = N(t).

Time evolution of f (x, v, t) is given by a simple explicit
expression:

f (x, v, t) = f (x − vt, v, 0). (14)

It satisfies the advection equation

∂f (x, v, t)
∂t

+
∑
i

vi
∂f (x, v, t)

∂xi
= 0. (15)

The hydrodynamic variables are (for particles of unit
mass):

ρ =
∫

f (x, v, t) d3v;

ρu =
∫

vf (x, v, t) d3v;

ρε = 1
2

∫
v2f (x, v, t) d3v. (16)

Integration of the advection Equation (15) in v gives
the conservation of mass Equation (3). If we multiply the
advection equation by vi then the integration gives the
momentum equation and after multiplication with 1

2v
2

the integration produces the energy equation:

∂ρ

∂t
+
∑
j

∂(ρuj)
∂xj

= 0;

∂ρui
∂t

+
∑
j

∂�ij

∂xj
= 0;

∂ρε

∂t
+
∑
j

∂Qj

∂xj
= 0. (17)

Here, tensor �ij of momentum flux and vector Qi of
energy flux are defined as moments of the distribution f :

�ij =
∫

vivjf (x, v, t) d3v; Qi = 1
2

∫
viv2f (x, v, t) d3v.

(18)
It is convenient to separate the flux with the mean flow
velocity u from other forms of transport. For this pur-
pose, the central moments of f are convenient. Simple
algebra gives:

ρe = 1
2

∫
(v − u)2f (x, v, t) d3v,

ρε = ρe + 1
2
ρu2; (19)

σij = −
∫

(vi − ui)(vj − uj)f (x, v, t) d3v,

�ij = uiuj − σij; (20)

qi = 1
2

∫
(vi − ui)(v − u)2f (x, v, t) d3v,

Qi = qi −
∑
j

σijuj + uiρε (21)

(the minus sign in the definition of σ appears just to
provide similarity to Cauchy stress). Recall that here for
simplicity, we take unit mass of the particles andmeasure
ρ in number of particles per unit volume. To return to
the standard absolute temperature θ we have to notice
that e = 3

2kBθ , where kB is Boltzmann’s constant.
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With usage of central moments, the transport
equations look very similar to the qCauchy and energy
equations:

∂ρ

∂t
+
∑
j

∂(ρui)
∂xi

= 0;

∂(ρui)
∂t

+
∑
j

∂(ρuiuj)
∂xj

=
∑
j

∂σij

∂xj
;

∂(ρε)

∂t
+
∑
j

∂(ρεuj)
∂xj

+
∑
j

∂qj
∂xj

=
∑
j

σijuj.

(22)

The standard definition of pressure gives:

p = −1
3

∑
i

σii = 1
3

∫
(v − u)2f (x, v, t) d3v = 2

3
ρe.

(23)
Particles of collisionless gas do not interact and there

are no forces. Motion of such a gas cannot be represented
as motion of continuum. Nevertheless, the Cauchy stress
tensor can be defined through the momentum flux and
the Cauchy transport equation holds (22).

The elastic part (pressure) of the stress tensor for colli-
sionless gas has the very common form (23). It is not sur-
prising that the rest of the stress tensor does not satisfy the
Navier–Stokes constitutive relations (8). Nevertheless,
Ehrenfests’ idea of coarse-graining allows us to deduce,
step by step, the Euler equations, the Navier–Stokes–
Fourier equations and the Korteweg equations for fluid
motion from the simple model of collisionless gas.

3.2. Ehrenfests’ coarse-graining: from collisionless
gas to Korteweg fluid dynamics through
coarse-graining

In 1911, Paul and Tanya Ehrenfest in their paper for
the scientific Encyclopedia [44] discussed emergence of
irreversibility and introduced a special operation, that
of coarse-graining. This operation transforms a proba-
bility density in phase space into a ‘coarse-grained’ den-
sity. That is a piece-wise constant function, a result of
density averaging in cells. The size of cells is assumed
to be small, but finite, and does not tend to zero. The
coarse-graining (‘shaking’) models thermalisation of the
system by uncontrollable and weak interaction with
surroundings.

We generalise Ehrenfests’ idea of coarse-graining by
combining the genuine motion with the periodic
partial equilibration. The result is Ehrenfests’ chain [45]
(Figure 5). The general theory with the proof of the en-
tropy production formula and various examples can be
found elsewhere [46,47]. Here we just define Ehrenfests’

chain for the collisionless gas and present the results of
the coarse-graining.

First of all, for each value of hydrodynamic variables,
the equilibrium distribution should be defined:
f eq(v|ρ, u, e). It is the Maxwellian distribution. In the
units used in this section (we count neither moles nor
grams but particles) the Maxwellian is

f eq(v|ρ, u, e) = ρ

(
3

4πe

)3/2
exp

(
−3(v − u)2

4e

)
.

(24)
For the given hydrodynamic fields, ρ(x), u(x), e(x), we
use the local Maxwellian, f eq(v|ρ(x), u(x), e(x)), that is
a distribution in six-dimensional space of positions and
velocities, which is the Maxwellian for each x.

Define Ehrenfests’ chain with time step τ . Let the
initial values of the hydrodynamic fields be given,ρ(x, 0),
u(x, 0), e(x, 0). The initial distribution is

f (x, v, 0) = f eq(v|ρ(x, 0), u(x, 0), e(x, 0)).

Start the advection from this distribution. After time τ it
approaches the distribution f (x − vτ , v, 0). The hydro-
dynamic fields ρ(x, τ), u(x, τ), e(x, τ) are defined using
the moments of this distribution: ρ(x, τ) = ∫

f (x −
vτ , v, 0) d3v, etc.

If the hydrodynamic fields ρ(x, kτ), u(x, kτ), e(x, kτ)

are given then

f (x, v, kτ) = f eq(v|ρ(x, kτ), u(x, 0), e(x, kτ)),

and the hydrodynamic fields ρ(x, (k + 1)τ ), u(x, (k +
1)τ ), e(x, (k + 1)τ ) are defined using the moments of
the distribution f (x − vτ , v, kτ). Ehrenfests’ chain is
the sequence ρ(x, kτ), u(x, kτ), e(x, kτ) (k = 0, 1, 2, . . .)
(Figure 5). The hydrodynamic fields do not change in
the equilibration steps and their trajectories between the
equilibration jumps are just ‘shadows’ of the advection
(14). Equilibration returns the distribution to the local
Maxwellian form and free flight destroys this form.

As a result, a discrete-timedynamical system is defined
in the space of hydrodynamic fields. We can look for
a continuous-time system which transforms ρ(x, kτ),
u(x, kτ), e(x, kτ) into ρ(x, (k + 1)τ ), u(x, (k + 1)τ ),
e(x, (k + 1)τ ) during time τ .

Let us describe formally this procedure. Denote five
hydrodynamic fields as M(t) = {ρ(x, v, t), u(x, v, t),
e(x, v, t). We aim to find a closed system ∂

∂tM = Jτ (M),
where Jτ is a (nonlinear) operator, which depends on
the coarse-graining time τ as a parameter, and Jτ (M) is
also a set of five fields (scalar, vector, and scalar again).
Let operator m map the distribution f onto hydrody-
namic fields: M = m(F) (16). Select an initial state:



10 A. N. GORBAN AND I. V. KARLIN

Figure 5. Ehrenfests’ chain. Two spaces are schematically
represented: the space of distribution functions (the upper
rectangle) and the space of hydrodynamic fields (the bottom
parallelogram). The vertical lines with bidirectional arrows
illustrate coupling between the hydrodynamic fields and the
corresponding local Maxwellians. The coarse-graining is the
projection of a distribution function onto the corresponding local
Maxwellian with preservation of the hydrodynamic fields.

M(0) = M0 and f0 is the corresponding localMaxwellian,
f0 = f eq(x, v|M0). Represent the result of advection dur-
ing time τ as a power series in τ :

f (τ ) = f0 +
∞∑
k=1

τ k

k! ( − 1)k(v,∇)kf0.

Find the power series for the result of hydrodynamic
motion according to a hypothetical equation Ṁ = Jτ (M):

M(t) = M(0) + tJτ +
∞∑
k=2

tk

k!
dk−1Jτ (M)

dtk−1

∣∣∣∣∣
M=M0

,

where the sequence of derivatives dk−1Jτ (M)

dtk−1 is calculated
by iterations of the chain rule from the equation Ṁ =
Jτ (M). We use this series for t = τ .

Recall that Jτ (M) depends also on τ as on a parameter.
Represent this dependence as a power series as well and
substitute it into the series forM(t) (t = τ). The match-
ing condition should hold: M(τ ) = m(f (τ )) (Figure 6).
Coefficients at the same powers of τ inM(τ ) andm(f (τ ))

should coincide. As a result, we recover the macroscopic
vector field Jτ order-by-order.

The zeroth-order terms give the Euler equations and
the first-order terms give the Navier–Stokes–Fourier
equations with viscosity and heat conductivity propor-
tional to τρe with constant coefficients (ρe is the density
of internal energy): λ = − 2

3μ, μ = 1
3τρe [47]. These

formulas recall the Maxwell mean free path estimations

Figure 6. Matching condition for hydrodynamic equations.
Two spaces are schematically represented: the space of
distribution functions (upper rectangle) with the manifold of
local Maxwellians and the space of hydrodynamic fields (the
bottomparallelogram). The vertical lineswith bidirectional arrows
illustrate coupling between the hydrodynamic fields and the
corresponding local Maxwellians. The matching condition is:
M(τ ) = f eq(x − vτ , v|M0).

of kinetic coefficients: μ ≈ 1
3ρlv̄ = 1

3ρτf v̄2 (where v̄ is
the thermal velocity and τf is the mean free time, see,
for example [48]). The thermal velocity for Maxwellian
distribution is v̄ ∼ √

4e/3 (that is the most probable
velocity, whereas the average magnitude of the velocity
of the particles is 2√

π
v̄). Therefore, the coarse-graining

time τ can be considered as the analogue of the mean
free time τf with a constant coefficient of order 1.

It is worth mentioning that viscosity and thermal con-
ductivity grow with the coarse-graining time, and dissi-
pative processes become more intensive with the growth
of the mean free path. Collisions in gas delay diffusive
transport and decrease kinetic coefficients.

Thus, the simple model of non-equilibrium gas based
on Ehrenfests’ coarse graining produces the Navier–
Stokes–Fourier equations in the first order of the coarse-
graining time τ . This model has only one free parameter,
τ , and, therefore, the viscosity and the thermal conduc-
tivity are proportional (and Prandtl number Pr = 1). This
is not a miracle, and just demonstrates that the Navier–
Stokes–Fourier equations provide an unavoidable first
dissipative correction to the Euler equations. The prob-
lem is in the next approximation. In the second order of
τ , the coarse graining produces the Korteweg terms from
the collisionless gas.

Consider the linearised fluid dynamics near a state
with u = 0, ρ = ρ0, e = e0. Introduce the dimensionless
deviation from this state:
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M0 = ρ − ρ0

ρ0
,

Mi = ui
v̄

(i = 1, 2, 3),

M4 = 3
2

(
ρ − ρ0

ρ0
+ e − e0

e0

)
,

where v̄ =
√

4
3e0. Use the new space scale in which

v̄ = 1: xnew = x/v̄. In these variables, the linearised
second approximation in τ for the coarse-grained free
flight advection is:

∂M0

∂t
=

3∑
i=1

∂Mi

∂xi
;

∂Mi

∂t
= −1

3
∂M4

∂xi

+ τ

4

3∑
j=1

∂

∂xj

(
∂Mi

∂xj
+ ∂Mj

∂xi
− 2

3
δij

3∑
k=1

∂Mk

∂xk

)

+ τ 2
∂

∂xi

(
1
8
�M0 + 89

108
�M4

)
(i = 1, 2, 3);

∂M4

∂t
= −5

2

3∑
k=1

∂Mk

∂xk
+ 5τ

2

3∑
k=1

�M4

+ τ 2
59
9

�

( 3∑
k=1

∂Mk

∂xk

)
. (25)

Here, � = ∑3
k=1

∂2

∂x2k
is the Laplace operator. Terms

without τ correspond to the linearisedEuler equation, the
first-order terms give theNavier–Stokes–Fourier dissipa-
tion (viscosity and thermal conductivity). Terms of the
second order in τ correspond to Korteweg’s stress tensor
(in equations forMi, i = 1, 2, 3) and to the contribution
of capillarity into heat flux (in equation forM4).

The parameter τ can be eliminated fromEquation (25)
by rescaling. Recall that in these equations space and time
are measured by the same time units (to provide v̄ = 1).
Let us select the new time and space unit τ . In this scale,
τ = 1 in (25). From some point of view, this means
that the equations are the same for all values τ > 0. For
example, it is sufficient to analyse stability just for one
value τ = 1.

Let us look for the solutions of Equation (25) in the
formMj = Aj exp (λt + ikx). Here, k is the wave vector
and real parts of λ describe dissipation. It is necessary
for stability that Reλ ≤ 0 for all real vectors k. The
characteristic equation for λ(k) has five roots (Figure 7).
For all of them Reλ < 0 (k = 0). In the short wave
asymptotic of λ (k2 → ∞) the roots are:

(a) (b)

Figure 7. Dispersion curves for the second approximation (25). (a)
Dependence of attenuation rates on |k|: solid λ1,2, dashed λ3,
dotted λ4,5; (b) Curves λ(k) on complex plane for λ4,5.

λ1,2

k2
= −1

4
; λ3

k2
= O(1/k2) → 0;

λ4,5

k2
= −17

12
± i|k|

√
59 · 89
9 · 108 . (26)

The second approximation in τ for the coarse-grained
collisionless gas provides a sort of ‘mean free pathmodel’
of capillarity effects and Korteweg stress in ideal gas.
It seems to be surprising that such a simple approach
generates theKorteweg equations (with some restrictions
on the relationships between parameters, like Pr = 1).

Nevertheless, two question remain: (i) are there capil-
larity effects in more realistic models of non-equilibrium
gas, and (ii) what will happen in the coarse-grained col-
lisionless gas beyond the second order in τ ? Of course, if
we summarise the whole power series then the solutions
of the resulting continuum mechanics equations will go
exactly through the points of Erenfests’ chain but what
will happen on the way?

The more realistic model of non-equilibrium gases is
well-known, that is the Boltzmann equation.

4. From Boltzmann kinetics to fluid dynamics:
model reduction

4.1. Themodel reduction problem

Let us consider kinetic equations which describe the evo-
lution of a one-particle gas distribution function f (x, v, t)

∂f
∂t

+
∑
i

vi
∂f
∂xi

= 1
Kn

Q(f ). (27)

The only difference from the free flight advection (15) is
the collision operatorQ(f ) in the right-hand part of (27).
For the Boltzmann equation, Q is a quadratic operator
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and, therefore, the notation Q(f , f ) is often used. Kn is
theKnudsen number, which is a dimensionless parameter
defined as Kn = l

L , where l is the mean free path and L is
‘representative physical length’ scale. It aims to measure
how important the microscopic effects are (associated
with l) at themacroscopic scale (L).

The collision term Q(f ) in (27) describes the change
in distribution f due to collisions. The term Q(f ) does
not contribute directly into the time derivatives of the
hydrodynamic variables, ρ = ∫

f d3v, u = ∫
vf d3v

and e = 1
2
∫

(v − u)2f d3v because, due to the mass,
momentum and energy conservation in collisions:

∫
{1; v; v2}Q(f ) d3v = 0.

For the space-uniform distributions the collision opera-
tor in (27) provides relaxation toMaxwellian distribution
(24) [49] (about the general problem of existence and
stability for the Boltzmann equations we refer readers to
[50]).

Therefore, the following qualitative ‘nonrigorous pic-
ture of the Boltzmann dynamics’ [51] is expected for the
solutions: (i) the collision term goes quickly almost to its
equilibrium (the system almost approaches a local equi-
librium) and during this fast initial motion the changes
of hydrodynamic variables are small, (ii) after that the
distribution function is defined with high accuracy by
the hydrodynamic variables (if they have bounded space
derivatives). The relaxation of the collision term almost
to its equilibrium is supported by monotonic entropy
growth (Boltzmann’s H-theorem). This qualitative pic-
ture is illustrated in Figure 8.

Perhaps,McKean gave the first clear explanation of the
problem as a construction of a ‘nice submanifold’ where
‘the hydrodynamical equations define the same flow as
the (more complicated) Boltzmann equation does’ [52].
Hepresented the problemby adiagramandwe reproduce
his idea in slightly revised form in Figure 9. How to find
this ‘nice submanifold’? Perhaps, the first task is to write
an equation for them (for more detail we refer to the
chapter ‘Invariance equation’ of the book [53]).

4.2. Invariance equation

The invariance equation expresses the fact that the
vector field is tangent to the manifold. In 1892, A.M.
Lyapunov introduced and studied this equation in his
doctoral thesis ‘The general problem of the stability of
motion’ (the Lyapunov ‘auxiliary theorem’ [55], which
is recently used in various applications, from model
reduction in chemical kinetics to optimal control prob-
lems [56,57]).

Figure 8. Fast–slow decomposition. Bold dashed lines outline
the vicinity of the slow manifold where the solutions stay
after initial layer. The projection of the distributions onto the
hydrodynamic fields and the parametrisation of this manifold
by the hydrodynamic fields are represented. (A derivative work
based on Figure 1 from [59].)

Figure 9. McKean diagram. All the model reduction approaches
aim to create a lifting operation, from the hydrodynamic variables
to the relevant distributions on the invariant manifold. IM stands
for Invariant Manifold. The part of the diagram in the dashed
polygon is commutative, that is any superposition of operations
following the arrows does not depend on the path but only on the
start and end points. (A derivative work based on Figure 2 from
[59].)

The essence of the invariance equation and the
Chapman–Enskog method become more transparent in
the abstract form when the bulky details of the genuine
Boltzmann equation do not obscure the simple geometric
sense. Let us consider an equation in a domain U of a
normed space E with analytical right-hand side

∂t f = J(f ). (28)

We call f a microscopic variable. A space of macroscopic
variables (moment fields) is defined with a linear map
m : f �→ M (M are macroscopic variables). Assume
that the image of m is the whole space of M (i.e. m
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is surjective). We are looking for an invariant mani-
fold (McKean’s nice manifold’) parameterised with the
macroscopic fields M. For such manifolds we use the
notation f M . The self-consistency conditionm( f M) = M
is necessary: themanifold is parametrisedby its ownvalue
of macroscopic variables.

For the reduction of Boltzmann’s kinetics hydrody-
namics, the microscopic variable is the one-particle dis-
tribution function f and the macroscopic variables are
hydrodynamic fields. In extended irreversible thermody-
namics (EIT) the larger sets of macroscopic variables are
considered [58].

The invariance equation for f M is

J(fM) = (DMfM)m(J(fM)). (29)

Here, the differential DM of fM is calculated at the point
M = m(fM).

Equation (29) means that the time derivative of f on
the manifold fM can be calculated by a simple chain
rule: calculate the derivative of M using the map m,
Ṁ = m(J(fM)), then write that on the invariant manifold
the time dependence f (t) can be expressed through the
time dependence of M(t): f (t) = fM(t) and the time
derivatives also coincide. If we find the approximate so-
lution to Equation (29) then the approximate reduced
model (hydrodynamics) is

∂tM = m(J(fM)). (30)

The invariance equation can be represented in the form

∂micro
t fM = ∂macro

t fM , (31)

where the microscopic time derivative, ∂micro
t fM is just a

value of the vector field J(fM) and the macroscopic time
derivative is calculated by the chain rule,

∂macro
t fM = (DMfM)∂tM

under the assumption that dynamics of M follows the
projected Equation (30). For more details we refer to the
review paper [59].

4.3. Chapman–Enskog expansion in brief

TheChapman–Enskog approach assumes the special sin-
gularly perturbed structure of the equations and looks
for the invariant manifold in a form of the series in the
powers of a small parameter ε. A one-parametric system
of equations is considered:

∂t f + A(f ) = 1
ε
Q(f ). (32)

The following assumptions connect the macroscopic
variables to the singular perturbation:

• m(Q(f )) = 0;
• for each M ∈ m(U) the system of equations
Q(f ) = 0, m(f ) = M has a unique solution f eqM
(in Boltzmann kinetics it is the local Maxwellian);

• f eqM is asymptotically stable and globally attracting
for the fast system ∂t f = 1

ε
Q(f ) in (f eqM +kerm)∩U .

Let the QM be the differential of the fast vector field
Q(f ) at equilibrium f eqM : QM = (DMQ(f ))f=f eqM

. For the
Chapman–Enskog method it is important that QM is
invertible in kerm.

The invariance equation for the singularly perturbed
system (32) with the moment parametrisationm is:

1
ε
Q(fM) = A(fM) − (DMfM)(m(A(fM))). (33)

The self-consistency condition m(fM) = M gives
m((DMfM)m(J)) = m(J) for all J , hence,

m[A(fM) − (DMfM)m(A(fM))] = 0. (34)

Ifwefind an approximate solution fM of (33) then the cor-
responding macroscopic (hydrodynamic) Equation (30)
is

∂tM + m(A(fM)) = 0. (35)
Let us represent all the operators in (33) by the Taylor

series (for the Boltzmann equation A is the linear free
flight operator,A = v ·∇ , andQ is the quadratic collision
operator).We look for the invariantmanifold in the form
of the power series:

fM = f eqM +
∞∑
i=1

εif (i)
M (36)

with the self-consistency condition m(fM) = M, which
implies m(f eqM ) = M, m(f (i)

M ) = 0 for i ≥ 1. After
matching the coefficients of the series in (33), we obtain
for every f (i)

M a linear equation

QMf (i)
M = P(i)(f eqM , f (1)

M , . . . , f (i−1)
M ), (37)

where the polynomial operator P(i) at each order i can
be obtained by straightforward calculations from (33).
Due to the self-consistency, m(P(i)) = 0 for all i and the
Equation (37) is solvable. The first term of the Chapman–
Enskog expansion has a simple form

f (1)
M = Q−1

M (1 − (DMf eqM )m)(A(f eqM )). (38)
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Many books and papers are devoted to the detailed analy-
sis of this formula for the Boltzmann equation and other
kinetic equations after the classical book [23]. Most of
the physical applications of kinetic theory, from transport
processes in gases to modern numerical methods (lattice
Boltzmann models [54]) give examples of the practi-
cal applications and deciphering of this formula. For
the Boltzmann kinetics, the zero-order approximation,
f (0)
M ≈ f eqM produces in projection on the hydrodynamic
fields (35) the compressible Euler equation. The first-
order approximate invariantmanifold, f (1)

M ≈ f eqM +εf (1)
M ,

gives the compressible Navier–Stokes equation and pro-
vides the explicit dependence of the transport coefficients
on the collision model.

The calculation of higher order terms needs nothing
but differentiation and calculation of the inverse operator
Q−1

M , although it may be rather bulky. The second or-
der in ε hydrodynamic Equation (30) are called Burnett
equations (with ε2 terms) and super-Burnett equations
for higher orders.

Alas, the Burnett equations produce non-physical ef-
fects, instability of short waves (Bobylev’s instability) and
negative viscosity at the space scale near mean free path,
i.e. close to the scales, where they are needed. What will
happen if we sum up the whole Chapman–Enskog series
(at least, hypothetically)? For Ehrenfests’ chain the sum
is expected to coincide with the chain in discrete time
moments nτ . For the Boltzmann equation, it remains
unclear. Let us choose a simplified system, for which the
model reduction can be performed explicitly for all time
scales.

4.4. Exact analytic solution of reduction problem for
a simple kinetic equation

The simplest model and the starting point in our analysis
is

∂tp = −5
3
∂xu,

∂tu = −∂xp − ∂xσ ,

∂tσ = −4
3
∂xu − 1

ε
σ ,

(39)

To obtain this system from Boltzmann’s equation we
have to select the set of macroscopic variables: ‘Hydrody-
namic fields plus stress tensor’. For these 10 variables (1
– density, plus 3 – momentum density, plus 1 – energy,
and plus 5 – traceless symmetric stress tensor) find the
representative (quasiequilibrium) density function f by
conditional maximisation of entropy, S = − ∫ f ln f d3v,
for given values of these 10 macroscopic moments. The
conditional maximisation of entropy subject to given
first and second moments is a standard exercise in the
MaxEnt approach. The result is theGaussian distribution

(more precisely, it is the locally Gaussian distribution
with space-dependent parameters defined by hydrody-
namic fields). Substitute this function into Botzmann’s
equation, calculate the corresponding time derivatives of
macroscopic variables and the closed 10-moment Max-
Ent Grad system is ready. Linearise and study the solu-
tions that depend on one space coordinate x with the
velocity oriented along the x axis. Use dimensionless
variables. (Here, σ is the dimensionless xx-component
of the stress tensor.)

Let us illustrate the invariance equation and the
Chapman–Enskog series on the simplest example (39).

f =
⎛
⎝ p(x)

u(x)
σ (x)

⎞
⎠ , m =

(
1 0 0
0 1 0

)
,

M =
(
p(x)
u(x)

)
, kerm =

⎧⎨
⎩
⎛
⎝0
0
y

⎞
⎠
⎫⎬
⎭ ,

A(f ) =
⎛
⎝ 5

3∂xu
∂xp + ∂xσ

4
3∂xu

⎞
⎠ , Q(f ) =

⎛
⎝ 0

0
−σ

⎞
⎠ ,

Q−1
M = QM = −1 on kerm,

f eqM =
⎛
⎝ p(x)
u(x)
0

⎞
⎠ , DMf eqM =

⎛
⎝1 0
0 1
0 0

⎞
⎠ ,

f (1)
M =

⎛
⎝ 0

0
− 4

3∂xu

⎞
⎠ .

We hasten to remark that (39) is a simple linear sys-
tem and can be integrated immediately in explicit form.
However, that solution contains both the fast and slow
components and it does not readily reveal the slow
hydrodynamic manifold of the system. Instead, we are
interested in extracting this slow manifold by a direct
method. The Chapman-Enskog expansion is thus the for
this which we shall address first.

The projected equations in the zeroth (Euler) and the
first (Navier–Stokes) order of ε are

(Euler) ∂tp = − 5
3∂xu,

∂tu = −∂xp;
(Navier–Stokes) ∂tp = − 5

3∂xu,
∂tu = −∂xp + ε 4

3∂
2
xu.

It is straightforward to calculate the two next terms (Bur-
nett and super-Burnett ones) but let us introduce conve-
nient notations to represent the whole Chapman-Enskog
series for (39). Only the third component of the invari-
ance Equation (33) for (39) is non-trivial because of the
self-consistency condition (34), and we can write
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− 1
ε
σ(p,u) = 4

3∂xu − 5
3 (Dpσ(p,u))(∂xu)

− (Duσ(p,u))(∂xp + ∂xσ(p,u)).
(40)

Here, M = (p, u) and the differentials are calculated by
the elementary rule: if a function � depends on values
of p(x) and its derivatives, � = �(p, ∂xp, ∂2x p, . . . ) then
Dp� is a differential operator,

Dp� = ∂�

∂p
+ ∂�

∂(∂xp)
∂x + ∂�

∂(∂2x p)
∂2x + . . .

The equilibrium of the fast system (the Euler approx-
imation) is known, σ

(0)
(p,u) = 0. We have already found

σ
(1)
(p,u) = − 4

3∂xu (the Navier–Stokes approximation). In
each order of the Chapman–Enskog expansion i ≥ 1 we
get from (40):

σ
(i+1)
(p,u) = 5

3 (Dpσ
(i)
(p,u))(∂xu) + (Duσ

(i)
(p,u))(∂xp)

+∑
j+l=i (Duσ

(j)
(p,u))(∂xσ

(l)
(p,u)).

(41)

This chain of equations is non-linear but every σ
(i+1)
(p,u)

is a linear function of derivatives of u and pwith constant
coefficients because this sequence starts from− 4

3∂xu and
the induction step in i is obvious.

Simple algebra gives for the Burnett term (i + 1 = 2)
σ

(2)
(p,u) = − 4

3∂
2
x p and for the super Burnett term (i + 1 =

3) the σ
(3)
(p,u) = − 4

9∂
3
xu. The projected equations have the

form

∂tp = − 5
3∂xu,

∂tu = − ∂xp + ε 4
3∂

2
xu + ε2 43∂

3
x p; Burnett; (42)

∂tp = − 5
3∂xu,

∂tu = − ∂xp + ε 4
3∂

2
xu + ε2 43∂

3
x p

+ ε3 49∂
4
x u;

super Burnett. (43)

Compute the dispersion relation for these hydrodynamic
modes. Exclude ε using a new space-time scale,
x′ = ε−1x, and t ′ = ε−1t. Look for wave solutions
u = ukϕ(x′, t ′), and p = pkϕ(x′, t ′), where ϕ(x′, t ′) =
exp (λt ′ + ikx′), and k is a real-valued wave vector. The
following dispersion relations λ(k) are the conditions of a
non-trivial solvability of the corresponding linear system
with respect to uk and pk:

λ± = −2
3
k2 ± 1

3
i|k|
√
15 − 4k2, Navier–Stokes;

λ± = −2
3
k2 ± 1

3
i|k|
√
15 + 16k2, Burnett;

λ± = −2
9
k2(3 − k2)

± 1
9
i|k|
√
135 + 144k2 + 24k4 − 4k6, super Burnett;

(44)

For the super Burnet equations Reλ > 0 if k2 > 3. This is
an example of Bobylev’s instability. The dispersion curves
are presented in Figure 10.

Let us analyse the structure of the Chapman–Enskog
series given by the recurrence formula (41). The terms
in the series alternate: For odd i = 1, 3, . . . they are
proportional to ∂ ixu and for even i = 2, 4, . . . they are
proportional to ∂ ixp. It follows from the parity properties:
u and ∂x change sign after spatial reflection (vectors),
whereas p (a scalar) and σ (a second-order tensor) are
invariant with respect to inversion. This global structure
of the Chapman–Enskog series gives the following repre-
sentation of the stress σ on the hydrodynamic invariant
manifold

σ(x) = A( − ∂2x )∂xu(x) + B( − ∂2x )∂
2
x p(x), (45)

whereA(y), B(y) are yet unknown functions and the sign
‘−’ in the arguments is adopted for simplicity of formulas
in the Fourier transform. For the stress tensor (45) the
reduced equations have the form

∂tp = −5
3
∂xu,

∂tu = −∂xp − ∂x[A( − ∂2x )∂xu + B( − ∂2x )∂
2
x p].

(46)

4.5. Exact invariantmanifold in Fourier
representation

It is convenient to work with the pseudodifferential oper-
ators like (45) in Fourier space. Let us denote pk, uk and
σk, where k is the ‘wave vector’ (space frequency).

The Fourier-transformed kinetic Equation (39) takes
the form (ε = 1):

∂tpk = −5
3
ikuk,

∂tuk = −ikpk − ikσk,

∂tσk = −4
3
ikuk − σk.

(47)

We know already that the result of the reduction
should be a function σk(uk, pk, k) of the following form:

σk(uk, pk, k) = ikA(k2)uk − k2B(k2)pk, (48)

where A and B are unknown real-valued functions of k2.
The solution of the invariance equation amounts to

finding the two functions,A(k2) and B(k2). Let us rewrite
the invariance equation for these unknown functions.
Compute the time derivative of σk(uk, pk, k) in two dif-
ferent ways. First, use the right-hand side of the third
equation in (47).We find themicroscopic time derivative:
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Figure 10. Dispersion curves (44) for various hydrodynamic approximations obtained from the simple kinetic Equation (39): solid -
exact solution, dotted - Navier–Stokes approximation, dashed - Burnett equation, dash and dotted – super Burnett approximation. (a)
Dependence of attenuation rates on |k| (for the Navier–Stokes and Burnett curves Reλ coincide if 4k2 < 15; they differ in Imλ); (b)
Curves λ(k) on complex plane.

∂micro
t σk = −ik

(
4
3

+ A
)
uk + k2Bpk. (49)

Secondly, let us use the chain rule and the first two
equations in (47). We find the macroscopic time
derivative:

∂macro
t σk = ∂σk

∂uk
∂tuk + ∂σk

∂pk
∂tpk

= ikA
(−ikpk − ikσk

)− k2B
(

−5
3
ikuk

)

= ik
(
5
3
k2B + k2A

)
uk + k2

(
A − k2B

)
pk.

(50)

The microscopic time derivative should coincide with
the macroscopic time derivative for all values of uk and
pk. This is the invariance equation:

∂macro
t σk = ∂micro

t σk. (51)

For the kinetic system (47), it reduces to a system of two
quadratic equations for functions A(k2) and B(k2):

−A− 4
3

− k2
(
5
3
B + A2

)
= 0, −B+A

(
1 − k2B

) = 0.

(52)
Solving the system (52) for B, and introducing a new
function,X(k2) = k2B(k2), we obtain an equivalent cubic
equation:

−5
3
(X − 1)2

(
X + 4

5

)
= X

k2
. (53)

We need the real-valued functions A(k2) and B(k2) (48).
The real-valued rootX(k2) of (53) is unique and negative
for all finite values k2. Moreover, the function X(k2) is a
monotonic function of k2 and

lim
|k|→0

X(k2) = 0, lim
|k|→∞

X(k2) = −0.8. (54)

Therefore, bothB = k2X andA = B/(1−X) are negative.
For the given A(k2) and B(k2) the dispersion relation

for the hydrodynamic modes are (just use the stress ten-
sor σ (48) in the first two equations of system (47) and
express A and B through X):
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λ± = X
2(1 − X)

± i
|k|
2

√
5X2 − 16X + 20

3
, (55)

whereX = X(k2) is the real-valued root of Equation (53).
Since 0 > X(k2) > −1 for all |k| > 0, the attenuation
rate, Re(λ±), is negative for all |k| > 0, and the exact
acoustic spectrum of the reduced equations is stable for
arbitrary wave lengths (Figure 10, solid line). In the short-
wave limit, from (54), (55) we obtain the saturation of
dissipation:

lim
|k|→∞

Reλ± = −2
9
; lim

|k|→∞
Imλ±
|k| = ±√

3. (56)

Thus, we found the invariant hydrodynamic manifold
in two steps:

(1) We used the invariance equation, Chapman–
Enskog procedure and the symmetry properties
to find a linear space where the hydrodynamic
invariant manifold is located. This space is param-
eterised by two functions of one variable (48);

(2) We used the invariance equation again and
defined an algebraic manifold in this space. For
the simple kinetic system (39), (47) this manifold
is given by the system of two quadratic equations
which depend linearly on k2 (52).

5. Van derWaals capillarity energy in ideal gas

5.1. The energy formula and ‘capillarity’ of ideal gas

Let us look on the stress tensor (48). Traditionally, σ in
kinetics of gases is considered as a viscous stress tensor
but the second term, B( − ∂2x )∂

2
x p(x), is proportional to

second derivative of p(x) and it does not meet usual
expectations (σ ∼ ∇u). Slemrod [28,29] noticed that
the proper interpretation of this term is the capillarity
tension rather than the viscous stress. This is made clear
by inspection of the energy equation. Let us derive the
energy equation for the simple model (39). Find the time
derivative of the kinetic energy due to the first two Equa-
tion (39):

1
2
∂t

∫ ∞

−∞
u2 dx =

∫ ∞

−∞
u∂tu dx

= −
∫ ∞

−∞
u∂xp dx −

∫ ∞

−∞
u∂xσ dx

= −1
2
∂t
3
5

∫ ∞

−∞
p2 dx +

∫ ∞

−∞
σ∂xu dx.

(57)

Here we used integration by parts under the standard
assumptions at infinity. Note, that 1

2∂t(p
2) = − 5

3p∂xu.

In x-space the energy equation has the standard form
(7):

1
2
∂t

(
3
5

∫ ∞

−∞
p2 dx +

∫ ∞

−∞
u2 dx

)
=
∫ ∞

−∞
σ∂xu dx.

(58)
Note that the usual factorρ in front ofu2 is absent because
we work with linearised equations and dimensionless
variables.

Let us use in (58) the representation (45) for σ and
notice that ∂xu = − 3

5∂tp:∫ ∞

−∞
σ∂xu dx =

∫ ∞

−∞
(∂xu)(A( − ∂2x )∂xu) dx

− 3
5

∫ ∞

−∞
(∂tp)[B( − ∂2x )∂

2
x p] dx.

The operator B( − ∂2x )∂
2
x is symmetric, therefore,∫ ∞

−∞
(∂tp)[B( − ∂2x )∂

2
x p] dx

= 1
2
∂t

(∫ ∞

−∞
p[B( − ∂2x )∂

2
x p] dx

)
.

The quadratic form,

Uc = 3
5

∫ ∞

−∞
p(B( − ∂2x )∂

2
x p) dx

= −3
5

∫ ∞

−∞
(∂xp)(B( − ∂2x )∂xp) dx (59)

may be considered as a part of the energy. Moreover,
the function B(y) is negative, hence, this form is positive.
Finally, the energy formula in x-space is

1
2
∂t

∫ ∞

−∞

(
3
5
p2 + u2 − 3

5
(∂xp)(B( − ∂2x )∂xp)

)
dx

=
∫ ∞

−∞
(∂xu)(A( − ∂2x )∂xu) dx.

(60)

It is crucially important that the functions A(k2) and
B(k2) are negative, indeed, despite the fact that some of
the Taylor coefficients may be positive and, therefore, the
truncation of the formula at some powers of ∂x may not
work. We have to use either the whole series or special
approximations which preserve negativity of A and B.

Slemrod [28] represents the structure of the obtained
energy formula as

∂t(MECHANICAL ENERGY)

+ ∂t(CAPILLARITY ENERGY)

= VISCOUS DISSIPATION.

(61)



18 A. N. GORBAN AND I. V. KARLIN

5.2. Matched asymptotics: from k2 = 0 to k2 = ∞
For large values of k2, an analogue of the Chapman–
Enskog expansion at an Infinitely distant point is useful.
Let us rewrite the algebraic equation for the invariant
manifold (52) in the form

5
3
B + A2 = −ς

(
4
3

+ A
)
, AB = ς(A − B), (62)

where ς = 1/k2. For the analytic solutions near the
point ς = 0 the Taylor series is: A = ∑∞

l=1 αlς
l , B =∑∞

l=1 βlς
l , where α1 = − 4

9 , β1 = − 4
5 , α2 = 80

2187 ,
β2 = 4

27 , ... . The first term gives for the frequency (55)
the same limit:

λ± = −2
9

± i|k|√3, (63)

and the higher order term give some corrections.
Let usmatch theNavier–Stokes term and the first term

in the 1/k2 expansion. Find rational functionsA ≈ Ã(k2)
and B ≈ B̃(k2) such that Ã(0) = B̃(0) = − 4

3 (the
Navier–Stokes limit) and k2Ã(k2) → − 4

9 , k
2B̃(k2) →

− 4
5 when k2 → ∞ (the short wave limit). Solution with

the minimal powers of k2 is:

A ≈ − 4
3 + 9k2

, B ≈ − 4
3 + 5k2

(64)

and

σk = ikA(k2)uk − k2B(k2)pk

≈ − 4ik
3 + 9k2

uk + 4k2

3 + 5k2
pk. (65)

This simplest non-locality captures the main effects:
the Navier–Stokes approximation for small Knudsen and
Mach numbers (small k2) and the proper asymptotic for
short waves (large k2) with the saturation of dissipation.
This saturation is a universal effect [60–64] and hydro-
dynamics that do not take it into account cannot pretend
to be an universal asymptotic equation.

For the matched asymptotic (64) we obtain from (46)

∂tp = −5
3
∂xu,

(1 − 3∂2x )
(
1 − 5

3
∂2x

)
∂tu = −∂xp

+ 4
3
∂x

[(
1 − 5

3
∂2x

)
∂xu

+ (1 − 3∂2x )∂
2
x p
]
,

(66)

These equations give us a clue about the proper asymp-
totic of the continuum mechanic equations for rarefied
non-equilibrium gas: we can expect the appearance of
several factors of the form (1 − α�), where � is the
Laplace operator.

6. Other approaches: conclusion and outlook

We presented the main continuummechanics equations
for compressible fluids, from the Euler to the Navier–
Stokes–Fourier and Korteweg equations. The problem
of deduction of the proper equations for highly non-
equilibrium fluxes was formulated. The essential part of
Hilbert’s sixth problem is model reduction from kinetics
to continuum mechanics [29,59]. We demonstrated two
classical approaches: solution of the invariance Equations
(29), (31) by the Chapman–Enskog series and the Ehren-
fests coarse graining. We solved the reduction problem
exactly for a simple kinetic system (39). This system
provided us with a benchmark for comparison of various
methods and for the explicit demonstration of the van
der Waals capillarity of ideal gases (60), (61).

There are many attempts to solve the reduction prob-
lem and deduce the continuum mechanics equations for
non-vanishing Knudsen number from the Boltzmann
equation.We can solve the invariance equation by the di-
rectNewton (orNewton–Kantorovich)method [60]. The
Newton iterations for the invariance equations provide
much better results than the Chapman–Enskog expan-
sion. The first iteration gives the Navier–Stokes asymp-
totic for long waves and the qualitatively correct
behaviour with saturation for short waves. The second
iteration gives the proper higher order approximation in
the long wave limit and the quantitatively proper asymp-
totic for short waves.

Another idea is extension of the set of independent
variables.Gradproposed towrite the equations for higher
moments [65].Hismethod in combinationwith theMax-
imum Entropy approach got the name ‘Extended irre-
versible thermodynamics’ (EIT) [58]. We can start from
any equation of EIT and apply the method of invariant
manifold: write the invariance Equation (29), find the
first terms of the Chapman–Enskog expansion, etc. [66].
There appears also a group of methods, which take ac-
count of someof the higher order terms in the lower order
truncation of the Chapman–Enskog expansion [67–69].
These terms may regularise the singularities in the lower
orders.

A rich family of mesoscopic lattice Boltzmann meth-
ods was developed for applications in fluid dynamics
and beyond [54]. They can be successfully applied to
microfluidics and various other problems between fluid
dynamics and kinetics.
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Most of these methods lead beyond continuum me-
chanics. The Korteweg equation is the first post Navier–
Stokes–Fourier equation, which remains inside
continuum mechanics but captures some nonequilib-
rium kinetic phenomena like the capillarity of ideal gas.
Exact solutions of the reduction problem (from kinetics
to hydrodynamics) give us hints of how the post Navier–
Stokes equations may look.

Finally, it should be noted that the dissipation and the
capillarity terms in the energy equation resulting from
the exact summation are of same order if the gradients
are not small. Thus, Korteweg’s term is not just a small
correction to dissipation but rather a contribution to the
energy balance on the same scale. Korteweg’s equations
were originally introduced in relation to non-ideal gas
equation of state to capture the effect of surface tension
between different phases.

So, after all, why capillarity emerges in ideal gas? The
answer to this question is in the nature of the inter-
face of the brick of matter in Cauchy stress construc-
tion. Whenever the gradients of the hydrodynamic fields
become commensurable with the mean free path, there
is an energy price to be paid for their maintenance. The
highly idealised conventional picture of continuous me-
dia assumes an almost impenetrable elastic interface
(Euler) with only a small smearing (Navier–Stokes
–Fourier) of the order of a mean free path. However,
when the gradients increase, also the dispersion effects
come into play which is precisely what the surface energy
is responsible for in Korteweg’s picture. It is clear that
the non-locality associated with this effect is essential
since no truncation of the Chapman–Enskog series is
possible.

We demonstrated how the van der Waals capillarity
appears in dynamics of ideal gas. The above assertion is
based on the linearised model equations, the only case
so far which was amenable to the exact solution. The
non-linear case still requires work but the useful clues
are provided by Korteweg’s equations and kineticmodels
with exactly solvable reduction problem.

Notes

1. The most important equations are boxed.
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