❖ C. Christoforou,  Hyperbolic systems of balance laws via vanishing viscosity. Journal of Differential Equations, 221 (2006), (2), 470--541.

❖  C. Christoforou, Uniqueness and sharp estimates on solutions to hyperbolic systems with dissipative source. Communication in Partial Differential Equations, 31 (2006), (12), 1825--1839.

❖ C. Christoforou, Hyperbolic Conservation Laws with Fading Memory. Proceedings of Women in Mathematics: The Legacy of Ladyzhenskaya and Oleinik workshop, May 18--20, 2006, Mathematical Sciences Research Institute (MSRI) Publications, (2006).

❖ C. Christoforou, Non-Local Conservaton Laws with Memory. Hyperbolic Problems. Theory, Numerics and Applications. (Proceedings of the 11th Conference on Hyperbolic Problems (HYP2006), Lyon, France, July 17-21, 2006). 381--388, Springer, Berlin, 2008.

❖ G.Q. Chen and C. Christoforou, Solutions for a nonlocal conservation law with fading memory. Proceedings of the AMS, 135 (2007), 3905--3915.

❖ G.Q. Chen Yongqian Zhang and C. Christoforou, Dependence of entropy solutions in the large for the Euler equations on nonlinear flux functions. Indiana University Mathematics Journal,  56 (2007), (5) 2535--2568

❖ C. Christoforou, Systems of conservation laws with fading memory. Journal of Hyperbolic Differential Equations, 4,  (2007), (3) 435--478.

❖ C. Christoforou, A Survey on the L^1 comparison of Entropy Weak Solutions to Euler Equations in the Large with respect to Physical Parameters, Proceedings of the 12th International Conference on Hyperbolic Problems: Theory, Numerics, Applications (HYP2008), Maryland, USA,, Proc. Sympos. Appl. Math., 67, Part 1, Amer. Math. Soc., Providence, RI, 2009.

❖ G.Q. Chen Yongqian Zhang and C. Christoforou,  Continuous dependence of entropy solutions to the Euler equations on the adiabatic exponent and Mach number.  Archive for Rational Mechanics and Analysis 189 (2008) (1), 97--130.

❖ C. Christoforou and Konstantina Trivisa. Sharp Decay Estimates for Hyperbolic Balance Laws.  Journal of Differential Equations 247 (2009), 401-423.

❖ J. Chen, C. Christoforou and K. Jegdic. Existence and uniqueness analysis of a detached shock for the potential flow.  Nonlinear Analysis, 74, Issue 3 (2011) 705-720.

❖ J. Chen, C. Christoforou and K. Jegdic  Rarefaction wave interaction for the unsteady transonic small disturbance equations. Proceedings of The 15th American Conference on Applied Mathematics, ISBN: 978-960-474-071-0, ISSN: 1790-5117, University of Houston – Downtown, Houston, TX (2009), 211-216.

❖ C. Christoforou, The initial-boundary Riemann problem and the time-variant vanishing viscosity method, Workshop Hyperbolic Conservation Laws, Mathematisches Forschungsinstitut Oberwolfach Report 56/2008.

❖ C. Christoforou and Laura V. Spinolo. A uniqueness criterion for viscous limits of boundary Riemann problems. Journal of Hyperbolic Differential Equations 8 (2011), (3), 507--544.

❖ C. Christoforou and Laura V. Spinolo. On the physical and the self-similar viscous approximation of a boundary Riemann problem. Riv. Mat. Univ. Parma (N.S.)}, 3 (2012) (1) 41--54.

❖ C. Christoforou and Konstantina Trivisa. Rate of convergence for vanishing viscosity approximations to hyperbolic balance laws. SIAM J. Math. Anal., 43 (2011) (5) 2307-2336.

❖ C. Christoforou and Laura V. Spinolo. Boundary layers for self-similar viscous approximations of nonlinear hyperbolic systems, Quarterly of Applied Mathematics  71 (2013), (3) 433--453.

❖ C. Christoforou. BV weak solutions to Gauss-Codazzi system for isometric immersions. Journal of Differential Equations, 252 (2012) (3) 2845–2863

❖ C. Christoforou and Konstantina Trivisa. Decay of positive waves of hyperbolic balance laws. Acta Mathematica Scientia 32, Ser. B (2012)  (1) 352--366.

❖ C. Christoforou, A remark on the Glimm scheme for inhomogeneous hyperbolic systems of balance laws, J. Hyperbolic Differ. Equ.,  12 (2015), (4), 787--797.

❖ C. Christoforou and M. Slemrod, Isometric immersions via compensated compactness for slowly decaying negative Gauss curvature and rough data,  Z. Angew. Math. Phys., 66 (2015)  (6) 3109-3122.

❖ C. Christoforou and M. Slemrod,  On the decay rate of the Gauss curvature for isometric immersions,  Bulletin of the Braz. Math. Soc., (N.S.), 47 (2016) (1), 255--265.

❖ C. Christoforou "On hyperbolic balance laws and applications", Chapter V of Innovative Algorithms and Analysis, Eds L. Gosse and R. Natalini, Springer INdAM Series 16, Springer International Publishing, 2017. 141--166. DOI 10.1007/978-3-319-49262-9.

❖ C. Christoforou, "Isometric Immersions via Continum Mechanics", Chapter in Partial Differential Equations: Ambitious Mathematics for Real-Life Applications,  Eds D. Donatelli and C. Simeoni, SEMA SIMAI Springer Series, Springer, submitted 2016. 29 pages.

C.Christoforou and A.Tzavaras, Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity, Arch. Rational Mech. Analysis 229 (2018), 1-52.  arxiv 1603.08176. Article available from Springerlink

❖ C. Christoforou and A. Tzavaras, On The Relative Entropy Method For Hyperbolic-Parabolic Systems, Proceedings of HYP2016: XVI International Conference on Hyperbolic Problems: Theory, Numerics and Applications, Eds: Ch. Klingenberg and M. Westdickenberg, eds; Springer Proceedings in Mathematics & Statistics, Vol 236, Springer, Berlin, 2018, pp 363-374

❖ C. Christoforou, M. Galanopoulou and A. E. Tzavaras, A symmetrizable extension of polyconvex thermoelasticity and applications to zero-viscosity limits and weak-strong uniqueness, Comm. Partial Differential Equations 43 (2018), 1019-1050. Article available from Taylor and Francis online

❖ C. Christoforou, M. Galanopoulou and A. E. Tzavaras, Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity (2018) Discrete Cont. Dynami. Systems 39 (2019), 6175--6206. Article available from AIMS Sciences

❖ C. Christoforou, M. Galanopoulou and A. E. Tzavaras, A discrete variational scheme for isentropic processes in polyconvex thermoelasticity, accepted March 2020, Calculus of Variations and Partial Differential Equations.



● Nonlinear PDEs

● Applied Analysis

● Continuum Physics

● Hyperbolic Conservation Laws