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A mechanism for explaining some of the instabilities observed during the extru- 
sion of polymer melts is further explored. This is based on the combination of non- 
monotonic slip and elasticity, which permits the existence of periodic solutions in 
viscometric flows. The time-dependent, incompressible, one-dimensional plane 
Poiseuille flow of an Oldroyd-B fluid with slip along the wall is studied using a non- 
monotonic slip equation relating the shear stress to the velocity at the wall. The 
stability of the steady-state solutions to one-dimensional perturbations at fked vol- 
umetric flow rateis analyzed by means of a linear stability analysis and finite ele- 
ment calculations. Self-sustained periodic oscillations of the pressure gradient are 
obtained when an unstable steady-state is perturbed, in direct analogy with experi- 
mental observations. 

INTRODUCTION pressure drop oscillates between two extreme values 
although the-flow rate is kept constant. This instabil- 
ity is believed to be due to a transition Erom a weak 
slip to a strong slip in combination with the small but 
finite compressibility of polymers (1-5). Figure I de- 
picts a typical flow curve (i.e., the plot of the wall 
shear stress uw versus the apparent shear rate +A at 
the d) for a linear polyethylene. Such a curve is de- 

t is well known that during the capillary extrusion 
of polymers underfixed piston speed, when the wall 

shearstress exceeds a critical value and the apparent 
shear rate falls within a certain range, unstable flow 
commences (14). In a certain piston speed range, the 

I 

*Corresponding author. termined routinely by using a capillary rheometer 
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Fig. 1 .  A typicd_flow curve of a linear polyethylene as determined by a capillary rheometer. 

under constant piston speed operation. The piston 
speed is fixed and the pressure drop required to attain 
steady-state operation is recorded. 

Apart from a Newtonian flow region (not shown in 
Fig. l ) ,  which is identified at very low apparent shear 
rates, four distinct flow region scan, in general, be ob- 
served. At small shear rates (flow region A), the poly- 
mer emerging from %he capillary die is glossy and 
smooth upon cooling, and the classical no-slip bound- 
ary condition of fluid mechanics is a valid assump- 
tion. At higher shear rates and more specifically for 
wall shear stresses greater than a critical value ucl 
(region B), there is a sharp change in the slope of the 
flow curve that is mainly due to a small departure 
from the no-slip boundary condition (weak slip). The 
extrudate starts loosing gradually its glossiness and 
small amplitude periodic distortions appear on its 
surface (surface melt,fiacture or sharkskin). The mech- 
anism of slip in this flow region is apparently due to 
flow-induced chain cletachment/desorption from the 
interface (7). The number of desorbed chains in- 
creases with an increase of shear stress/shear rate, 
and as a result the slip velocity increases accordingly. 
For wall shear stresses greater than a second critical 
value, ua. and within a certain range of apparent 
shear rates, the flow becomes unstable (region C in 
Fig. 1, known as oscillating melt fracture flow region). 
Sustained pressure oscillations, due to the combined 
effects of the finite compressibility of the polymer and 
the transition from a weak slip (region B) to a strong 
slip (region D), are observed. This slip transition re- 
flects the sudden disentanglement of the polymer 

chains in the bulk from a monolayer of polymer 
chains adsorbed at the interface (8). When the shear 
stress relaxes and assumes a third critical value, an- 
other transition takes place, this time from a strong 
slip (region D) to a weak slip (B) due to there-estab- 
lishment of entanglements at the interface. A s  a re- 
sult, a hysteresis loop is obtained. In this flow regime, 
alternate distorted and smooth zones appear on the 
extrudate surface. Finally, at even higher wall shear 
stress values the flow becomes again stable (region D), 
although the extrudate assumes a chaotic appearance 
(gross meltfracture). In this flow regime, the flow can 
be approximated by a flat velocity profile, i.e., the flow 
is almost plug. 

From the above, it is clear that unlike Newtonian 
fluids, polymers slip over solid surfaces when the wall 
shear stress exceeds a critical value (4-6). For the 
case of a passive interface (no interaction between the 
polymer and solid surface), de Gennes (9) first pro- 
posed an interfacial rheological law in terms of an ex- 
trapolation length. If a linear expression between the 
slip velocity and wall shear stress is assumed, it may 
easily be deduced that the extrapolation length should 
scale with the viscosity of the polymer at constant 
shear stress values (9, 10). This theory has recently 
been extended by Brochard-Wyart and de Gennes (1 1) 
to distinguish a passive interface (no polymer adsorp- 
tion) from an adsorbing one. I t  has been predicted 
that there exists a critical wall shear stress value at 
which a transition from a weak to a strong slip takes 
place. This result is in agreement with experimental 
observations (4, 8, 10, 12). 
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Therefore, the flow of polymer melts is governed by 
two slip mechanisms. The first slip mode, which ac- 
counts for relatively small deviations from the no-slip 
boundary condition, is observed macroscopically at 
relatively small values of the wall shear stress and is 
attributed to the direct detachment/desorption of a 
few chains from the wall (7, 13, 14). The second mode, 
i.e. the transition from a weak to a strong slip, is at- 
tributed to sudden disentanglement of the polymer 
chains in the bulk from those in a monolayer of poly- 
mer chains adsorbed at the wall (8, lo). Both mecha- 
nisms are still being studied actively by many groups. 

It is emphasized that the various flow regimes of 
Fcg. 1 ,  and in particular the stick-slip flow, can be ob- 
served under constant piston speed operation, i.e., at 
constant volumetric flow rate. The origin of the insta- 
bilities has been a controversial and not yet fully re- 
solved issue. Pearson (15) first pointed out that the 
combination of nonmonotonic slip with compressibil- 
ity can lead to self-sustained oscillations of the pres- 
sure drop in Poiseuille flow. Georgiou and Crochet 
(16, 17) demonstrated numerically this instability 
mechanism solving the compressible, two-dimen- 
sional Newtonian Poiseuille and extrudate-swell flows. 
Kumar and Graham used a one-dimensional relax- 
ation model in order to describe the oscillations of the 
pressure and the volumetric flow rate in the stick-slip 
regime [(18) and references therein]. This model in- 
cludes the reservoir region and takes into account the 
compressibility of the fluid. The authors modified the 
slip equation used by Georgiou and Crochet (16). in 
order to include the pressure dependence of the slip 
velocity, and considered both generalized Newtonian 
and viscoelastic fluids ( 18). 

Recently, Shore et aL (19, 20) presented a hydrody- 
namic model describing the Poiseuille flow of a vis- 
coelastic Maxwell fluid, under the assumption that the 
polymer near the surface undergoes a first-order tran- 
sition in conformation as the wall shear stress in- 
creases. This conformational change produces stick- 
slip behavior and leads to an effectively multivalued 
flow curve. Shore et aL (19, 20) considered the lin- 
earized, incompressible, two-dimensional Navier- 
Stokes equations assuming periodic conditions in the 
direction of the flow and demonstrated the existence 
of self-sustained oscillations and their relationship to 
sharkskin texturing. by means of linear stability analy- 
sis and numerical simulations. Black and Graham (2 1) 
have also demonstrated that the combination of slip 
and elasticity leads to unstable solutions. They em- 
ployed a simple phenomenological evolution equation 
for the slip process and carried out a linear stability 
analysis for the creeping, plane, incompressible 
Couette flow of the upper convected Maxwell fluid. 

In this paper, we explore further an instability 
mechanism which is based on the combination of 
nonlinear slip and elasticity (22-24). We consider the 
time-dependent, incompressible, one-dimensional 
plane Poiseuille flow of a n  Oldroyd-B fluid. The 
Oldroyd-B model exhibits a monotonic steady shear 

response, and involves the upper convected Maxwell 
model as a trivial case. We use a slip law which cap- 
tures several of the experimentally observed features 
and assumes that slip depends only on the shear 
stress through a multivalued relation. Note that the 
slip model employed by Black and Graham (21) is sin- 
gle valued and involves normal stress dependence 
which is necessary for instability. In contrast to the 
work of Shore et aL (19, 20), the existence of periodic 
solutions in the linearly unstable regime is demon- 
strated in the case of the one-dimensional flow, with- 
out the use of periodic conditions in the direction of 
the flow. 

THE PROPOSED MODEL 

Governing Equatiolu and Borrndarp C O p d i t i O ~  

Let lengths be scaled by the ha-width H of the slit, 
the velocity vector v by a characteristic velocity V, the 
pressure and the stress components by q V / H ,  where 
q is the shear viscosity, and the time t by H / V .  The di- 
mensionless x-momentum equation is 

where V P  denotes the dimensionless pressure gradi- 
ent, Re is the Reynolds number given by 

PW Re=---- 
? 

and p is the density. T, is the viscoelastic part of the 
stress tensor T, so that 

(3) 

where q2 is a dimensionless viscosity parameter 
(scaled by the shear viscosity q), Vv is the velocity-gra- 
dient tensor, and the superscript T denotes the trans- 
pose. For the xy-component TY of T,, one obtains 

where We is the Weissenberg number, defined by 

AV 
We = -. 

H 

(4) 

(5) 

A is the relaxation time, and ql = 1 - q2 is another 
dimensionless viscosity parameter. Along the symme- 
try plane (y = 0), the velocity gradient is zero. Along 
the wall, we assume that slip occurs following a law of 
the general form 

o w =  - F(u,) at y = 1, (6) 

where u, is the slip velocity. 

Steady-State Solution 

The solution of the steady-state problem (Eqs 1-2) is: 

1 
2 u, = u, - - V P ( 1  - y") 1 
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and 

where the slip velocity u, satisfies the condition 

IT, = V P =  - F(u,). (9) 
The volumetric flow rate Q is given by 

1 1 
:3 3 

9 = U, - -- VP = U, + - F(u,). 

We now consider the arbitrary nonmonotonic slip 
equation ( 16, 17) 

In Fig. 2, we show the nonmonotonic flow curve corre- 
sponding to A, = 1, A,  = 15 and A3 = 100. For fixed 
volumetric flow rate, integrating the x-momentum Eq 1 
over the cross section of the slit yields 

(12) 
Therefore, the time-dependent pressure gradient fol- 
lows the steady-state curve of V P  vs u,, exactly as has 
been observed experimentally (13). 

- VP = F(u,) V t . 

Time-Dependent Solution for Re = 0 

pendent solution is given by 
In the case of creeping flow (Re = O), the time-de- 

2; 
2 u, = u, + -- (Q - u,) (1 - y”), (13) 

and 

w = - F ( U , ” ) Y  + 3 q,(Q - U,)Y9 (14) 
i.e. the shear stress is linear and the velocity u, is par- 
abolic at all times. If the steady-state slip velocity ;, 

is perturbed to u: and the derivative F‘(u,J is locally 
constant, one obtains from Eq I :  

When -3q2 < F’(u,) < 0, the flow is stable for all val- 
ues of u,. Note also that the points where F’(&,) = -3 
q2 are limit points. A steady solution on the right sta- 
ble branch cannot be reached if calculations start 
from a point to the left of a limit point, and vice versa. 
In the case of the Maxwell fluid, r), = 0 and the limit 
points are the extrema of F(u,). 

Linear stability Analpie 

The stability of the steady-state solutions to infinitesi- 
mal one-dimensional antisymmetric disturbances at 
fixed volumetric flow rate was first studied by means 
of a linear stability analysis. The neutral stability 
curves for various values of q2 are plotted in Q. 3. 
The procedure for constructing the neutral stability 
curves is analogous to that for the case of simple 
shear flow (23). 

It is clear that the stability of a basic solution de- 
pends on three parameters: q2, F‘(G,) and the elastic- 
ity number, E, defmed by 

We 
Re 

& = -  

Unstable solutions exist only when Ft(Gw) is negative 
and above the corresponding mar@ stability curve. 
The flow is stable for a Newtonian fluid (q2 = 1) and 
destabilizes as q2 is decreased. The size of the insta- 
bility regime is increased with the elasticity number E. 

As already mentioned, in the limit of zero Reynolds 

Q. 2. Flow cwve for A, == 1 ,  A, 
= 1 5 a n d A ,  = 100. 

0 0 . 4  0 . 8  
Q 

POLYMER ENGINEERING AND SCIENCE, DECEMBER 1999, Vol. 39, No. 12 2501 



M. mrillas, G. Georgbu, D. Vlassopoulos, and S. Hatzikiriakos 

3 

2.5 
- F’ ( vw) 

2 

1.5 

1 

0 . 5  

10 20 30 40 50 

E 
Flg. 3. Stability c u ~ e s  for the plane Pois&jlow of an Oldroyd-BJluid with slip along the wall. Theflow is unstable above the cor- 
respndlng curve and stable below. The curves go to 3q2 as E 4 w. 

number (E + m), the steady-state solutions are unsta- 
ble when F’(&J < -3q2. Hence, the stability curves of 
Fig. 3 approach asymptotically the value 3q2. 

~ E R I C A C R E S U L T S  

To solve the system of Eqs 1 and 4 numerically, we 
employ standard finite elements in space and the 
Euler backward difference scheme in time. We ap- 
proximate both ux and in terms of quadratic basis 
functions using a uniform mesh with 400 elements. 

The time-dependent calculations are in excellent 
agreement with the predictions of the linear stability 
analysis, i.e., steady-state solutions above the mar- 
gmal stability curves of Flg. 3 are unstable. If such a 
solution is perturbed, periodic oscillations of the pres- 
sure gradient are obtained. Elasticity acts as the stor- 
age of elastic energy leading to self-sustained oscilla- 
tions of the pressure drop and to transitions from 
weak to strong slip and vice versa. 

In 3. 4, we show results obtained with A, = 1.4 
= 15 and A3 = 100, Re = 0.1, We = 1 and q2 = 0.1. 
We plot the evolution of the slip velocity and the pres- 
sure gradient when we start from the steady-state so- 
lution for Q,, = 0.449 and set Q = 0.45 at t = 0 the 
latter value of the volumetric flow rate Q corresponds 
to the negative slope regime of the flow curve (Fig. 2). 
Similar results have been obtained with much lower 
Reynolds numbers. Notice that, in general, the same 
periodic solution is obtained when Qo is much further 
away from Q, say on one of the two positive-slope 
branches of the slip equation. In Fig. 4% we observe 
that the slip velocity jumps from low (weak slip) to 
high values (strong slip): when the slip velocity is at a 
maximum the flow is almost plug. A good test for the 
accuracy of the time-dependent calculations is to plot 
the pressure gradient versus the slip velocity (Fig. 4c), 

in order to venfy that, indeed, these two quantities 
move along the steady-state flow curve, as required by 
Eq 12. The local minima of the pressure gradient in 
Fig. 4 b  are caused by the fact that the oscillations ex- 
tend to a small part of the left positive-slope part of 
the flow curve (Fig. 44 

The effect of the elasticity on the amplitude and the 
period of the oscillations has also been studied. Both 
quantities decrease as We is decreased, and below a 
critical value the solution becomes stable, in good 
agreement with the linear stability analysis. Finally, 
our calculations show that the amplitude and the fre- 
quency of the oscillations increase when the Reynolds 
number is reduced. Since the definition of the Reynolds 
number involves a characteristic velocity coming from 
the arbitrary slip equation (4 11). a detailed study of 
the Reynolds number effect has not been pursued in 
the present work. 

CONCLUSIONS 

In summaxy, our numerical calculations show that, 
indeed, the combination of nonmonotonic slip at the 
wall with elasticity produces, above a threshold volu- 
metric flow rate value, self-sustained oscillations of 
the pressure drop, in qualitative agreement with the 
existing experimental evidence (14). The proposed 
mechanism can thus provide a reasonable explana- 
tion for the main features of the stick-slip instability 
and opens the route for testing more realistic but less 
tractable computationally constitutive equations to- 
gether with a realistic slip equation for analynng the 
flows of entangled melts (25). The proposed mecha- 
nism might be proved useful in explaining similar in- 
stability phenomena encountered with other soft ma- 
terials such as surfactants (26). 
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Any realistic simulation of extrusion instabilities 
should include the reservoir and extrudate regions. 
The former region is needed in order to account for 
reservoir volume effects, i.e., for compressibility effects 
(16, 18). The latter is, of course, necessary for study- 
ing the resulting oscillations of the extrudate surface 
which is the ultimate goal of the simulation (24). 
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