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Abstract Analytical solutions are derived for the

start-up and cessation Newtonian Poiseuille and

Couette flows with wall slip obeying a dynamic slip

model. This slip equation allows for a relaxation time

in the development of wall slip by means of a time-

dependent termwhich forces the eigenvalue parameter

to appear in the boundary conditions. The resulting

spatial problem corresponds to a Sturm–Liouville

problem different from that obtained using the static

Navier slip condition. The orthogonality condition of

the associated eigenfunctions is derived and the

solutions are provided for the axisymmetric and planar

Poiseuille flows and for the circular Couette flow. The

effect of dynamic slip on the flow development is then

discussed.

Keywords Newtonian fluid � Poiseuille flow �
Start-up flow � Navier slip � Dynamic slip �
Couette flow

1 Introduction

Slip at the wall is a phenomenon observed not only

with non-Newtonian [1] but also with Newtonian

fluids [2]. Several slip laws have been used in the

literature, the simplest one being the Navier slip law

which states that the velocity of the fluid relative to

that to the wall, uw, is linearly proportional to the wall

shear stress, sw:

uw ¼ sw
b ð1Þ

where b is the slip coefficient, also defined as b � g=b,
where g is the viscosity and b is the slip length, i.e. the
distance beyond the wall at which the fluid velocity

extrapolates to zero. It should be noted that b ! 1 is

equivalent to no-slip, while b ¼ 0 corresponds to the

full-slip case.

The above slip equation, aswell as, its non-linear and

other extensions [1], is static, i.e. it implies that the slip

velocity adjusts instantaneously to the wall shear stress.

This assumption obviously holds for steady-state flows.

In transient flows, however, slip relaxation effects can

become important, see e.g. the slip of polymermelts [3–

5]. Amemory, i.e. dynamic, slipmodel inwhich the slip

velocity depends on the past states of the wall shear

stress has been proposed by Pearson and Petrie [6]. Its

simplest version is the following extension of (1):

uw þ K
ouw

ot
¼ sw

b
; ð2Þ
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whereK is the slip relaxation time. This model induces

a delay on the development of the slip velocity. When

K ¼ 0, the static Navier slip model is recovered. As

noted by Renardy [7] a relationship of the form (2)

may arise from a competition between high stresses,

which cause loss of adhesion, and a relaxation

mechanism by which adhesion is restored. The

experiments of Lim and Schowalter [8] on narrow

molecular weight distribution polybutadienes suggest-

ed that the transition from slip to stick conditions

exhibits the characteristics of a relaxation process. In

an attempt to find an explanation for the melt fracture

extrusion instability, Renardy [7] showed that the

equations governing the two-dimensional inertialess

flow of an upper-convected Maxwell fluid can become

ill-posed when combined with the slip Eq. (2), leading

to short-wave instabilities. However, as pointed out by

Graham [9], the addition of any finite solvent viscosity

to the model renders it well-posed. Black and Graham

[10] suggested that this pathology may stem from the

unphysical property that even if the shear stress

vanishes, the model allows a finite slip velocity to

persist. They thus proposed a modified dynamic slip

model involving an evolution equation for the fraction

of available polymer segments that are strongly

interacting with the solid surface.

Other dynamic slip models have been used in the

literature, such as the power-law model by Hatzikiri-

akos and Dealy [4], to explain the observed slip in

transient shear experiments of molten polymers (high

density polyethylenes). Transient observations were

made for both exponential and oscillatory shear and

the results were fitted with a dynamic slip model in

conjunction with a Maxwell model of viscoelasticity.

Hatzikiriakos and Dealy [4] pointed out that melt slip

is a physicochemical process in which the polymer/

wall interface may undergo continuous change with

time before attaining steady state. Hatzikiriakos and

Kalogerakis [5] extended the above model simulating

the behaviour of a polymer/metal interface by means

of a network kinetic theory. The calculated time-

dependent slip velocities with experimental data on

high-density polyethylene. Consequently, Hatzikiri-

akos [3] extended this single-mode model to a multi-

mode one. Aral and Kalyon [11] investigated the time

and temperature-dependent development of wall slip

in the case of concentrated suspensions with Newto-

nian binders in steady torsional flow. They showed

that for these generalised Newtonian materials there is

a critical time for both the wall velocity and the shear

stress to reach steady values and that this critical time

decreases with increasing apparent shear rate.

Graham [9] used a power-law dynamic slip model

with non-zero slip yield stress, as well as, its two-mode

generalisation and noted that, both viscoelasticity and

a dynamic slip model are necessary in order to explain

the instabilities and nonlinear dynamics of polymer

melts in oscillatory shear. Further, it was shown

rigorously that for linear and weakly nonlinear

viscoelasticity, in oscillatory shear with a static

power-law slip law there are no non-periodic respons-

es. Lan et al. [12] combined the dynamic slip models

of [4] and [10] with different constitutive equations,

such as Wagner’s equation and the Liu model, to

determine the slip parameters for a linear low-density

polyethylene. All models gave good predictions of

sliding plate rheometer slip data in steady shear by

showed insufficient gap dependence in exponential

shear. A multi-mode extension of slip Eq. (2), similar

to the generalised Maxwell mechanical model for

viscoelasticity, has been employed by Kazatchkov and

Hatzikiriakos [13], giving a better fit to experimental

data for molten polymers in shear flow. This new

dynamic slip model involving multiple slip relaxation

times was used along with Wagner’s constitutive

equation in solving the transient shear response of a

linear low-density polyethylene, yielding improved

predictions of the stress response in start-up of steady

shear and large-amplitude oscillatory tests. As noted

by Hatzikiriakos [1] the effect of dynamic slip has also

been taken into account in stochastic simulations of

polymer melts (see e.g. [3, 5, 14–16]).

In a recent paper Thalakkottor and Mohseni [17]

carried out molecular dynamic simulations to study

slip at the fluid-solid boundary in unsteady flow.

Interestingly, their numerical experiments revealed

that the slip velocity is dependent not only on the shear

rate but also on fluid acceleration and follows an

equation which is identical to Eq. (2). Although the

original derivation was based on some characteristics

of gases, it has been verified that an analogous

formulation is valid for simple liquid flows.

Several analytical solutions have been reported for

steady-state Newtonian, Poiseuille flows with static

slip in various geometries using static slip equations,

such as the Navier slip equation [18–20], and the slip
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yield stress model [21, 22]. Using various static slip

laws, both linear and non-linear, Ferrás et al. [23]

presented solutions of Newtonian and Non-Newtonian

Couette and Poiseuille flows. Additionally, analytical

solutions for time-dependent, Newtonian flows with

the Navier slip model (1), have also been reported in

the literature [24–28]. Solutions of various start-up

and cessation Newtonian flows with slip yield stress

models have been reported in [29, 30]. An analytical

solution corresponding to a pressure gradient varying

linearly with time was also recently reported by Tang

[31].

It is the purpose of this work to derive analytical

solutions of the Newtonian Poiseuille flow for the

planar and axisymmetric geometries and the Newto-

nian circular Couette flow using the dynamic slip

Eq. (2). As demonstrated below, the time-dependence

in the boundary condition leads to a more difficult

mathematical problem to solve than its static counter-

part. The spatial problem is of Sturm–Liouville type

where the eigenvalue parameter appears in the

boundary condition and thus, the orthogonality con-

dition of the corresponding spatial eigenfunctions

must be considered more carefully. The Sturm–

Liouville problem encountered here, is a special case

of more general ones which were tackled rigorously,

see e.g. Churchill [32], Walter [33] and Fulton [34].

This type of problems, involving time derivatives in

their boundary conditions are also common in free and

forced vibration problems governed by the wave

equation [35] and in problems in diffusion or in heat

transfer between a solid and a fluid using the heat

equation [36]. More references on these problems, as

well as, on electric circuits involving long cables and

diffusion processes in probability theory are provided

in Fulton [34].

Despite the fact that wall slip of Newtonian fluids is

supported by experimental observations [2], it can be

argued that there is no justification for using a dynamic

slip equation in transient Newtonian flows. The recent

numerical dynamics experiments of [17] demonstrated

that the dynamic slip equation applies in unsteady

flows of simple liquids. Moreover, the analytical

solutions derived below may be useful in checking

numerical non-Newtonian simulation codes and in

start up and cessation of steady shear in MEMS

devices.

In Sect. 2, we consider the axisymmetric Poiseuille

flow of a Newtonian fluid with dynamic wall slip.

Following the solution procedure in [35], the appro-

priate orthogonality condition for the spatial eigen-

functions is derived, and the full procedure for the

solution is given. The implications of the dynamic slip

term in the slip equation are then discussed. In Sect. 3,

the results for the planar Poiseuille flow are sum-

marised. The circular Couette flow is solved

analytically in Sect. 4 and finally, in Sect. 5 the

conclusions of this work are provided.

2 Axisymmetric Poiseuille flow

We consider the start-up, pressure-driven flow of a

Newtonian fluid in an infinitely long circular tube of

radius R. The flow is assumed to be laminar, incom-

pressible and unidirectional and gravity is neglected.

In cylindrical polar coordinates, the velocity compo-

nent in the z-direction, uzðr; tÞ, satisfies

q
ouz

ot
¼ Gþ g

o2uz

or2
þ 1

r

ouz

or

� �
; ð3Þ

where q is the density and G is the constant pressure

gradient. Initially the flow is at rest,

uzðr; 0Þ ¼ 0: ð4Þ

As for the boundary conditions, uz is finite along the

axis of symmetry and slip is assumed along the wall

following the slip law (2). Given that sw ¼ jsrzjr¼R,

one gets

uw ¼ � g
b
ouw

or
� K

ouw

ot
: ð5Þ

It is clear that the steady-state solution of the problem

(3)–(5), is given by

usðrÞ ¼ R2G

4g
1þ 2B� r

R

� �2
� �

; ð6Þ

where

B � g
bR

; ð7Þ

is a dimensionless inverse slip number (where B ¼ 0

corresponds to no-slip and B ! 1 to the full-slip

case). In order to homogenise Eq. (3) we look for

solutions of the form

uzðr; tÞ ¼ us � �uzðr; tÞ; ð8Þ
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where �u is the solution of the homogeneous problem.

Using separation of variables,

�uzðr; tÞ ¼
X1
n¼1

XnðrÞTnðtÞ ð9Þ

we obtain the following ordinary differential equations

T 0
nðtÞ þ

k2nm
R2

TnðtÞ ¼ 0; ð10Þ

and

½rX0
nðrÞ�

0 þ rk2n=R
2XnðrÞ ¼ 0; ð11Þ

where, m � g=q is the kinematic viscosity and kn; n ¼
1; 2; . . .; are the eigenvalues of the problem to be

determined. The boundary conditions dictate that

Xnð0Þ is finite and

XnðRÞ ¼ �BRX0
nðRÞ þ k2n

Km
R2

XnðRÞ: ð12Þ

It is worth noting that the solution to the homogeneous

problem, �uz, corresponds to the solution of the

cessation problem. Equation (11) is Bessel’s equation

of zero order, which is a special type of Sturm–

Liouville problem where the eigenvalues appear in the

boundary condition (12). The solution to the homo-

geneous problem thus becomes

�uzðr; tÞ ¼
X1
n¼1

XnðrÞe
�
k2nm
R2

t
; ð13Þ

and

XnðrÞ � AnJ0ðknr=RÞ þ CnY0ðknr=RÞ: ð14Þ

Here, Ji and Yi are the order i Bessel functions of the

first and second kind, respectively. Given that Xnð0Þ is
finite, Cn ¼ 0 and Eq. (12) leads to the following

transcendental equation:

J0ðknÞ ¼
knBJ1ðknÞ

1� k2nKm=R
2
: ð15Þ

We still need to determine the coefficients An from the

initial condition (4), which requires that

X1
n¼1

AnJ0ðknr=RÞ ¼ usðrÞ ¼ R2G

4g
1þ 2B� r

R

� �2
� �

:

ð16Þ

In such problems, one multiplies both sides of the

equation above with the eigenfunction, integrates, and

obtains an expression for the coefficients An by means

of the orthogonality property of the eigenfunctions.

However, since the eigenvalue appears in the bound-

ary condition (12), the orthogonality condition must be

considered more carefully.

Now we consider the one-dimensional problem in r

and introduce,

½rX0
mðrÞ�

0 þ rk2m=R
2XmðrÞ ¼ 0; ð17Þ

XmðRÞ ¼ �BRX0
mðRÞ þ k2m

Km
R2

XmðRÞ; ð18Þ

such that, Xm, Xn and km, kn are distinct (m 6¼ n).

Multiplying (11) by Xm and integrating by parts gives

RX0
nðRÞXmðRÞ �

Z R

0

rX0
nX

0
m dr

þ k2nR
2

Z R

0

rXnXm dr ¼ 0:

ð19Þ

Multiplying (17) by Xn, integrating by parts, and

subtracting from (19), we have

R½X0
nðRÞXmðRÞ � XnðRÞX0

mðRÞ� þ ðk2n � k2mÞ=R2

Z R

0

rXnXm dr ¼ 0: ð20Þ

Using now the b.c.s. (12) and (18) we get

ðk2n � k2mÞ
Km
B

XnðRÞXmðRÞ þ
Z R

0

rXnXm dr

� �
¼ 0:

ð21Þ

Since km and kn are distinct

Km
B

XnðRÞXmðRÞ þ
Z R

0

rXnXm dr ¼ dm;nNn ð22Þ

where

Nn ¼
Km
B

X2
nðRÞ þ

Z R

0

rX2
n dr; ð23Þ

and dm;n is the Kronecker delta.
Expression (22) is the appropriate orthogonality

condition for this problem, and the RHS of Eq. (23) is

the square of the norm of the eigenfunctions XnðrÞ.
This result is a special case, of more general expres-

sions on Sturm–Liouville operators, obtained by
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Churchill [32], and Langer [36], and similar results

also hold if the governing equation is the heat

equation, i.e. in diffusion problems [36] and for the

wave equation, i.e. in forced vibration problems [35].

Setting K ¼ 0, the orthogonality condition (22) leads

to its static counterpart [24–28].

In order to determine the coefficients An, Eq. (16)

must be supplemented by an extra term. Thus,

multiplying (16) by rJ0ðkmr=RÞ, and integrating gives

Z R

0

rusðrÞJ0ðkmr=RÞ dr

¼
X1
n¼1

An

Z R

0

rJ0ðknr=RÞJ0ðkmr=RÞ dr:
ð24Þ

Also, consider (16) times ðKm=BÞJ0ðkmr=RÞ which

gives

Km
B

usðrÞJ0ðkmr=RÞ ¼
Km
B

X1
n¼1

AnJ0ðknr=RÞJ0ðkmr=RÞ;

ð25Þ

and when r ¼ R,

Km
B

usðRÞJ0ðkmÞ ¼
Km
B

X1
n¼1

AnJ0ðknÞJ0ðkmÞ: ð26Þ

Adding (24) and (26) gives

Km
B

usðRÞJ0ðkmÞ þ
Z R

0

rusðrÞJ0ðkmÞ dr

¼
X1
n¼1

An

Km
B

J0ðknÞJ0ðkmÞ
�

þ
Z R

0

rJ0ðknr=RÞJ0ðkmr=RÞ dr
�

¼
X1
n¼1

AnNndn;m ¼ AmNm:

ð27Þ

where, the orthogonality condition (22) has been used

to obtain the right-hand side of (27). Thus, the

coefficients are given by

An ¼
2R2G

g
J1ðknÞ

k3n 1þ 2Km
BR2

� �
J20ðknÞ þ J21ðknÞ

� � ; ð28Þ

and the solution to the problem becomes

Therefore, the slip velocity is

uwðtÞ

¼ R2G

2g
B� 4

X1
n¼1

J0ðknÞJ1ðknÞ

k3n 1þ 2Km
BR2

� �
J20ðknÞ þ J21ðknÞ

� � e�
k2nm
R2

t

2
664

3
775

ð30Þ

and the volumetric flow rate is given by

uzðr; tÞ ¼
R2G

4g
1þ 2B� r

R

� �2

�8
X1
n¼1

J1ðknÞJ0 knr=Rð Þe
�
k2nm
R2

t

k3n 1þ 2Km
BR2

� �
J20ðknÞ þ J21ðknÞ

� �
2
6664

3
7775: ð29Þ

QðtÞ ¼ pR4G

8g
1þ 4B� 32

X1
n¼1

J21ðknÞ

k4n 1þ 2Km
BR2

� �
J20ðknÞ þ J21ðknÞ

� � e�
k2nm
R2

t

2
664

3
775: ð31Þ
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SettingK ¼ 0 in Eq. (29) we obtain the solution for the

static slip case

uzðr; tÞ ¼
R2G

4g
1þ 2B� r

R

� �2

�8
X1
n¼1

J0 knr=Rð Þe
�
k2nm
R2

t

k3n 1þ B2k2n
� 	

J1ðknÞ

2
6664

3
7775;

ð32Þ

where kn are the roots of

J0ðknÞ ¼ BknJ1ðknÞ: ð33Þ

In the case of no-slip, B ¼ K ¼ 0. It turns out that kn
are the roots of J0 and the standard-textbook solution is

obtained.

uzðr; tÞ ¼
R2G

4g
1� r

R

� �2

�8
X1
n¼1

J0 knr=Rð Þe
�
k2nm
R2

t

k3nJ1ðknÞ

2
6664

3
7775:

ð34Þ

To non-dimensionalise the solution, we scale the

velocity by the mean steady-state velocity U, lengths

by R, pressure by gU=R, and time by m=R2 and denote

all dimensionless variables by stars. Hence, the

dimensionless velocity is given by

where

K� ¼ Km
R2

; ð36Þ

is the dimensionless dynamic slip number. The non-

dimensional slip velocity at the wall is given by

and the dimensionless volumetric flow rate becomes

Q�ðt�Þ

¼ 1� 32

1þ 4B

X1
n¼1

J21ðknÞ

k4n 1þ 2K�

B

� �
J20ðknÞ þ J21ðknÞ

� � e�k2nt� :

ð38Þ

The evolution of the velocity profile for two slip

numbers, B ¼ 0:1 and 1 (corresponding to moderate

and strong slip), and three relaxation times (K� ¼ 0, 1

and 10) is illustrated in Figs. 1 and 2. Compared to the

static slip model ðK� ¼ 0Þ, it takes longer for the flow
to develop to steady-state for higher values of the

relaxation time. This is due to the fact that the slip

boundary condition changes dynamically and the past

states of the wall shear stress affect the slip velocity.

This is more clearly seen in Fig. 3, which shows the

evolution of the slip velocity for different values ofK�.

u�z ðr�; t�Þ ¼
2

1þ 4B
1þ 2B� r�2 � 8

X1
n¼1

J1ðknÞJ0 knð Þe�k
2
nt
�

k3n 1þ 2K�

B

� �
J20ðknÞ þ J21ðknÞ

� �
2
664

3
775; ð35Þ

u�wðt�Þ ¼
4

1þ 4B
B� 4

X1
n¼1

J0ðknÞJ1ðknÞ

k3n 1þ 2K�

B

� �
J20ðknÞ þ J21ðknÞ

� � e�k2nt�
2
664

3
775; ð37Þ
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Similar conclusions can be drawn for the effect of

the relaxation time on the evolution of the dimension-

less volumetric flow rate, illustrated in Fig. 4. An

interesting observation is that for higher values of B

(i.e. for stronger slip), Q� needs more time to develop,

and thus at any given time, Q� decreases with

(a)

(b)

(c)

Fig. 2 Evolution of the velocity profile in start-up axisymmet-

ric Poiseuille flow with B ¼ 1: a K� ¼ 0 (static slip); b K� ¼ 1;

and c K� ¼ 10

(a)

(b)

(c)

Fig. 1 Evolution of the velocity profile in start-up axisymmet-

ric Poiseuille flow with B ¼ 0:1: a K� ¼ 0 (static slip);

b K� ¼ 1; and c K� ¼ 10
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increasing B. Actually, there is more flow as B

increases, which cannot be seen due to our non-

dimensionalisation.

In the case of cessation i.e. when the flow is initially

fully-developed flow and the pressure-gradient is

suddenly set to zero, the velocity is given by:

u�z ðr�; t�Þ ¼
16

1þ 4B

X1
n¼1

J1ðknÞJ0 knð Þe�k
2
nt

�

k3n 1þ 2K�

B

� �
J20ðknÞ þ J21ðknÞ

� � :

ð39Þ

Similarly, the slip velocity and the volumetric flow

rate correspond to the last terms of Eqs. (37) and (38).

(a)

(b)

Fig. 3 Evolution of the slip velocity, in start-up axisymmetric

Poiseuille flow for different values K�: a B ¼ 0:1; and b B ¼ 1

(a)

(b)

Fig. 4 Evolution of the volumetric flow rate, in start-up

axisymmetric Poiseuille flow for different values of K�:
a B ¼ 0:1; b B ¼ 1
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3 Planar geometry

3.1 Poiseuille flow

In the case of plane Poiseuille flow in a tube with

�1� y� � 1, one finds that the dimensionless velocity

is given by

where similar scales are used for the non-dimension-

alisation, B � g=ðbHÞ is the slip number, and the

eigenvalues, kn, are the solutions of the transcendental
equation

tan kn ¼
1

Bkn
ð1� K�k2nÞ; ð41Þ

where K� ¼ Km=H2. Hence, the non-dimensional slip

velocity takes the form

and the dimensionless volumetric flow rate is given by,

Obviously, the velocity in the case of cessation is

given by

u�xðy�; t�Þ ¼
3

2ð1þ 3BÞ 1þ 2B� y�2 � 4
X1
n¼1

sin kn cosðkny�Þe�k
2
nt
�

k2n
2knK

�

B
cos2 kn þ kn þ sin kn cos kn

� �
2
664

3
775; ð40Þ

u�wðt�Þ ¼
3

1þ 3B
B� 2

X1
n¼1

sin kn cos kn

k2n
2knK

�

B
cos2 kn þ kn þ sin kn cos kn

� � e�k
2
nt
�

2
664

3
775; ð42Þ

Q�ðt�Þ ¼ 1� 6

1þ 3B

X1
n¼1

sin2 kn

k3n
2knK�

B
cos2 kn þ kn þ sin kn cos kn

� � e�k
2
nt
�
: ð43Þ

u�xðy�; t�Þ ¼
6

2ð1þ 3BÞ
X1
n¼1

sin kn cosðkny�Þe�k
2
nt

�

k2n
2knK

�

B
cos2 kn þ kn þ sin kn cos kn

� � : ð44Þ
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3.2 Couette flow

Here we consider the planar Couette flow in a tube

with 0� y� � 1 where the wall at y� ¼ 1 moves with

speed V . One finds that the non-dimensional velocity

(scaled by V) is given by

u�xðy�; t�Þ ¼
y� þ B

1þ 2B

�
X1
n¼1

Cn sinðkny�Þ þ
kn
BI

cosðkny�Þ
� �

e�k
2
nt

�
; ð45Þ

where

Cn ¼
ðB2k2nþ I2Þ sinkn

k2nBðI2þ 2BþB2k2nþ 2K�k2nÞ
; I ¼ 1� k2nK

�;

ð46Þ

and the eigenvalues, kn, are the solutions of the

transcendental equation

tan kn ¼
2BIkn
Bkn

ðB2k2n � I2Þ: ð47Þ

The non-dimensional slip velocities at y� ¼ 0, and 1

are given by

u�w1ðt�Þ ¼
B

1þ 2B
�
X1
n¼1

Cn

kn
BI

e�k
2
nt

�
; ð48Þ

and

u�w2ðt�Þ ¼
1þB

1þ 2B
�
X1
n¼1

Cn sinknþ
kn
BI

coskn

� �
e�k

2
nt

�
;

ð49Þ

respectively. The dimensionless volumetric flow rate

is given by,

In the case of cessation, the velocity is given by

u�xðy�; t�Þ ¼
X1
n¼1

Cn sinðkny�Þ þ
kn
BI

cosðkny�Þ
� �

e�k
2
nt

�
:

ð51Þ

4 Circular Couette flow

In this section we derive the analytical solution for the

start-up Newtonian circular Couette flow, i.e. the flow

between two vertical coaxial cylinders of infinite

length and radii jR and R, with 0\j\1. The outer

cylinder is stationary while the inner cylinder rotates

about the common axis with angular velocity X, in the
absence of gravity. Hence, the angular velocity

component uhðr; tÞ satisfies,

q
ouh

ot
¼ g

o

or

1

r

o

or
ðruhÞ

� �
: ð52Þ

The fluid is initially at rest, thus

uhðr; 0Þ ¼ 0: ð53Þ

We assume that both walls have the same properties,

so the b.c.s. are given by

uh ¼ XjR� uw1; on r ¼ jR ð54Þ

uh ¼ uw2; on r ¼ R; ð55Þ

where uw1 and uw2 are the slip velocities at the inner

and outer walls, respectively. The wall shear stress is

defined as

sw ¼ jsrhj ¼ �gr
o

or

uw

r

� �
: ð56Þ

For this type of flow, the slip velocity at the inner wall,

which is rotating, is actually decreasing with time.

This is a consequence of the sign convention em-

ployed in b.c.s. (54) and (55). In start-up flow, the

velocity of the fluid at both walls will be increasing,

which implies that uw1 will be decreasing and uw2 will

be increasing with time. Thus the appropriate slip

equations are

uw1 � K
ouw1

ot
¼ sw1

b
; ð57Þ

Q�ðt�Þ ¼ 1� 6

1þ 3B

X1
n¼1

sin2 kn

k3n
2knK�

B
cos2 kn þ kn þ sin kn cos kn

� � e�k
2
nt
�
: ð50Þ
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uw2 þ K
ouw2

ot
¼ sw2

b
: ð58Þ

Hence the b.c.s. become

uh ¼ XjRþ g
b
r
o

or

uw

r

� �
� K

ouw

ot
; on r ¼ jR

ð59Þ

uh ¼ � g
b
r
o

or

uw

r

� �
� K

ouw

ot
; on r ¼ R: ð60Þ

The steady-state velocity profile is given by

ush ¼ jCXR ð2B� 1Þ r
R
þ R

r

� �
; ð61Þ

where B � g=ðbRÞ and

C ¼ j2

j� j3 þ 2Bð1þ j3Þ :
ð62Þ

Note that the steady-state slip velocities satisfy usw2 ¼
j2usw1 and are given by,

usw1 ¼ 2CBXR=j ð63Þ

and

usw2 ¼ 2jCBXR: ð64Þ

Since the b.c. (59) is non-homogeneous we follow a

similar procedure as in Sect. 2 thus, the solution to the

homogeneous problem, �uh becomes

�uhðr; tÞ ¼
X1
n¼1

DnZ1ðknr=RÞe
�
k2nm
R2

t
; ð65Þ

where,

Z1ðknr=RÞ � J1ðknr=RÞ þ dnY1ðknr=RÞ; ð66Þ

and kn, dn are the nth pair of the roots of

BknZ0ðjknÞ ¼ 1þ 2B

j
� k2n

Km
R2

� �
Z1ðjknÞ; ð67Þ

BknZ0ðknÞ ¼ �1þ 2Bþ k2n
Km
R2

� �
Z1ðknÞ: ð68Þ

The appropriate orthogonality condition for the eigen-

functions Z1 can be found as

Km
B

Z1ðknÞZ1ðkmÞ þ jZ1ðjknÞZ1ðjkmÞ½ �

þ
Z R

jR
rZ1ðknr=RÞZ1ðkmr=RÞ dr ¼ dm;nNn

ð69Þ

where

Nn ¼
Km
B

½Z2
1ðknÞ þ jZ2

1ðjknÞ� þ
Z R

jR
rZ2

1ðknr=RÞ dr;

ð70Þ

and the coefficients in (65) are given by:

Dn ¼
2XjRC

kn

j� j3 þ 2Bð1þ j3Þ
L

� �
Z1ðjknÞ ð71Þ

where

L ¼ 2Km
R2

jkn½Z2
1ðknÞ þ jZ2

1ðjknÞ� þ kn½Z2
0ðknÞ

þ Z2
1ðknÞ � j2ðZ2

0ðjknÞ þ Z2
1ðjknÞÞ�

� 2½Z0ðknÞZ1ðknÞ � jðZ0ðjknÞZ1ðjknÞÞ�

ð72Þ

The solution to the full problem thus becomes,

uhðr; tÞ

¼XjRC ð2B�1Þ r
R
þR

r
�
X1
n¼1

eDnZ1
knr
R

� �
e
�
k2nm
R2

t

2
64

3
75;

ð73Þ

where

eDn ¼
Dn

CR
: ð74Þ

Scaling the velocity by XjR and the rest of the

quantities as in Sect. 2, the non-dimensional velocity

profile is given by

u�hðr�; t�Þ

¼ C ð2B� 1Þr� þ 1

r�
�
X1
n¼1

eDnZ1 knr
�ð Þe�k

2
nt

�
" #

ð75Þ

and the dimensionless slip velocities by

u�w1ðt�Þ ¼ C
2B

j2
þ
X1
n¼1

eDnZ1 jknð Þe�k
2
nt

�
" #

ð76Þ

and
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(a)

(b)

(c)

Fig. 5 Evolution of the velocity profile in start-up circular

Couette flow with B ¼ 0:1 and j ¼ 0:25: a K� ¼ 0; b K� ¼ 1;

and c K� ¼ 10

(a)

(b)

(c)

Fig. 6 Evolution of the velocity profile in start-up circular

Couette flow with B ¼ 1 and j ¼ 0:25: aK� ¼ 0; bK� ¼ 1; and

c K� ¼ 10
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u�w2ðt�Þ ¼ C 2B�
X1
n¼1

eDnZ1 knð Þe�k
2
nt
�

" #
: ð77Þ

In the case of cessation, the velocity is given by

u�hðr�; t�Þ

¼ C ð2B� 1Þr� þ 1

r�
�
X1
n¼1

eDnZ1 knr
�ð Þe�k

2
nt

�
" #

:

ð78Þ

In Figs. 5 and 6, the evolution of the velocity profile is

plotted, for slip numbers, B ¼ 0:1, and B ¼ 1, respec-

tively, j ¼ 0:25 and three relaxation times (K� ¼ 0:1,

1 and 10). Similarly to the axisymmetric Poiseuille

problem, higher values ofK� increase the time that the

velocity evolves to steady-state. In the no-slip case

ðB ¼ 0Þ, the fluid velocity at the inner wall, which is

rotating, is always constant and equals the speed of

rotation. However, it can be seen here where slip is

present that the fluid velocity at the inner wall evolves

gradually to its steady-state value, and it is always less

than the speed of rotation. This can also be inferred

indirectly from Fig. 7, which shows the evolution of

the two slip velocities for two slip numbers (B ¼ 0:1

and 1) and two relaxation times (K� ¼ 0 and 1). The

slip velocity at the inner wall initially, equals the speed

of rotation and then drops eventually to its steady-state

value u�sw1. On the other hand, u�w2 increases with time

to reach the steady-state value u�sw2 ¼ j2u�sw1.

5 Conclusions

We have derived analytical solutions for the start-up

Newtonian Poiseuille and Couette flows with dynamic

wall slip. For this purpose, the appropriate orthogon-

ality condition for the spatial eigenfunctions has been

derived. Under a dynamic slip condition, the slip

velocity rather than depending on the instantaneous

value of the wall shear stress, also depends on its past

states. This effect delays the evolution of the slip

velocity, and also the flow development.
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