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Abstract 

Consideration is given to the flow of Newtonian and non-Newtonian 
elastic liquids in a channel obstructed by an antisymmetric array of cylin- 
ders. Experiments are carried out on Newtonian maltose-syrup/water mix- 
tures and a variety of non-Newtonian liquids, including constant-viscosity 
Boger fluids and shear-thinning aqueous polymer solutions. In one case, the 
polymer is polyacrylamide and the shear thinning is accompanied by high 
normal stresses and high extensional-viscosity levels. In another case, the 
polymer is the more rigid xanthan gum and the normal-stress and exten- 
sional-viscosity levels are accordingly much lower. The details of the flow 
are investigated by means of a laser technique, which permits an overall 
picture to be obtained with relative ease. The resistance to flow caused by 
the positioning of the cylindrical obstructions is also investigated through 
the pressure gradient/flow rate data. It is concluded that the tortuous 
geometry and rheology combine to produce significant viscoelastic effects 
with regard to both the general flow field and ‘resistance to flow’. 

A finite element technique is employed to simulate numerically the 
observed flows. Significant success is claimed in qualitatively reproducing 
the viscoelastic behaviour in the model geometry. The quantitative agree- 
ment between experiment and theory is considered to be satisfactory, within 
the acknowledged limitations of present-day viscoelastic simulations. 
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1. Introduction 

The work contained in this paper may be viewed as a part of an ongoing 
attempt to understand the way highly-elastic liquids behave in complex 
geometries (see, for example, Refs. l-5). In previous studies, dramatic 
changes in flow characteristics have been observed, brought about by a 
combination of shear thinning and strong viscoelastic effects. Attempts to 
simulate these changes have been marginally successful, although any 
quantitative agreement between experiment and theory has been elusive. The 
present paper indicates that significant progress is being made, most notably 
in the power of the numerical codes that are now available. The final 
chapter in the long search for agreement between theory and experiments 
has certainly not been written, but at least some success can be claimed. 

The particular flow under investigation in the present paper is the 
tortuous one brought about by the antisymmetric positioning of an array of 
equally spaced cylinders in a channel (see Fig. 1). The geometry is char- 
acterized by a series of narrow and wide channels caused by the positioning 
of the cylindrical barriers, thus simulating in a simple way the tortuous 
geometries encountered in a variety of applications of significant practical 
importance, including flow through porous media as encountered in En- 
hanced Oil Recovery (EOR) (cf. Ref. 5). 

The present work may be viewed as a continuation of the study of Jones 
and Walters [5] who were mainly concerned with the extensional-viscosity 
levels found in polymeric displacement fluids of use in EOR and their 
importance in determining flow characteristics. Alternatively, the present 
paper may be seen as the continuation of the work of Binding et al. [3] 
where a quantitative agreement between experiment and numerical simula- 

Dimensions of model geometries: (mm) 

Geometry A B C D L 

Wl 23 12.5 33.75 2.5 326 1 

w2 23 12.5 33.75 3.5 -_I 326 

Fig. 1. Schematic diagram of the geometries, with the relevant dimensions. 
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tion was sought for a number of complex flows involving abrupt changes in 
geometry. The flow domain discussed in the present work is certainly 
complex with a strong ‘Lagrangian unsteadiness’ but it is nevertheless free 
of the abrupt changes in geometry (like re-entrant corners) which figured so 
prominently in the earlier work. 

Published experimental work [5;6, p. 961 on the flow geometry shown in 
Fig. 1 indicates that extensional-viscosity effects become very important 
beyond a critical set of conditions, after which the fluid is often reluctant to 
pass through the narrow channels, on account of the high resistance to flow 
in the contraction regions between the cylinders and the walls. Such be- 
haviour is further explored in the present paper, both experimentally and 
theoretically. 

2. Experiment 

2.1. Apparatus 

Figure 2 is a schematic diagram of the apparatus. The fluid from the 
reservoir is circulated by means of a peristaltic pump. The fluctuations in 
the flow caused by the peristaltic nature of the pump are smoothed by 
means of a damping bottle. The flow after the smoothing bottle is essentially 
steady and the liquid passes into the test geometry and thence back to the 
reservoir to be recirculated. Flow rates are determined by a conventional 
catch-and-measure technique and the pressure gradient across the geometry 

SMOOTHING BOTTLES 

Fig. 2. Schematic diagram of the experimental set-up. 
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is measured by a differential pressure transducer acting at suitable points 
upstream and downstream of the obstruction or by two flush-mounted 
pressure transducers acting on either side of the obstacles (cf. Ref. 5). 

The basic geometry is that shown in Fig. 1, with two values of D available 
(2.5 and 3.5 mm). The narrow gap geometry is denoted by Wl and the wider 
gap geometry by W2. The third dimension in each case is 25 mm and the 
flow is considered to be basically two-dimensional. The validity of this 
assumption has been checked in the course of the present experiments (see 
Section 2.3). 

In previous papers [l-5], we have resorted to a simple flow-visualization 
technique which uses an expanded laser beam as an illuminating source. 
Small tracer particles, contained in and moving with the flow, give a visual 
representation of the flow as they are illuminated by the laser light and 
photographed. In the present study, polyvinyl chloride particles with a 
density of 1.4 g cme3 are used in the experiments on Newtonian and Boger 
fluids and a high-density polyethylene powder with a density of 0.94 g cmm3 
is used in the experiments on the aqueous polymer solutions. The grain size 
of the powders when in suspension is of the order of 0.1 mm in diameter, 
and except in extreme circumstances (cf. Ref. 3) it is reasonable to assume 
that the particles faithfully follow the streamlines. All the experiments were 
carried out at 20 o C. 

2.2. Test fluids 

Fluids with four basic types of behaviour have been used in the current 
experiments (cf. Refs. l-5): 

(i) Constant-viscosity Newtonian liquids. These were mixtures of water 
and maltose syrup (supplied by CPC, U.K.). The letter N is used to denote 
Newtonian liquids. 

(ii) ‘Weakly elastic’ shear-thinning liquids. These were 3% aqueous solu- 
tions of xanthan gum (Keltrol F, supplied by Kelco International Ltd) (see 
Ref. 7 for a detailed study of the rheology of this solution). The letter X is 
used to denote the xanthan-gum solution. 

(iii) ‘Highly elastic’ shear-thinning liquids. These were 2% aqueous solu- 
tions of polyacrylamide (El0 grade supplied by Allied Colloids Ltd, U.K.) 
(see Ref. 7 for a detailed study of the rheology of this solution). The letter P 
is used to denote the polyacrylamide solution. 

(iv) Highly elastic constant-viscosity (Boger) fluids (cf. Ref. 8). These were 
fairly dilute ( - 0.1%) solutions of polyacrylamide in a highly viscous solvent 
(a mixture of water and maltose syrup). Boger fluids are denoted by the 
letter B. 
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Fig. 3. Steady shear data for the 2% polyacrylamide solution and the 3% xanthan-gum 
solution (see also 7). 

In a steady simple shear flow with Cartesian velocity components given 

by 

u, = YJJ, uv = u, = 0, (1) 

where p is a constant shear rate, the corresponding stress distribution can be 
written in the form [6] 

u xy = (J = V/W, 

(7 xx - eyu = W), 

I 

(2) 

DJJJJ - % = M?), 

where u is the shear stress, n the shear viscosity and Ni and N, are the first 
and second normal stress differences, respectively. In conventional rheome- 
try it is customary to concentrate attention on u (or 77) and Ni. Representa- 

‘O’ 1’O‘ 

- 10’ 
.rl 

lO-2 
0 NI 

10' 
loo 

i W’) lo2 

Fig. 4. Steady shear data for Boger fluid B112 (20 o C). 
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TABLE 1 

Estimated constants for the Newtonian and Boger fluids 

Fluid P (g cm-7 7 (Pa s) h (s) 
Nil 1.31 1.28 - 
N12 1.23 0.04 - 

B112 1.3 0.6 0.22 

tive graphs of 9 and A$ for some of the liquids used in the present 
experiments are contained in Figs. 3 and 4 (cf. Refs. 5-7). The viscosity q is 
constant for the Newto~an fluids and is (appro~ately) constant for the 
Boger fluids. For the 3% xanthan-gum solution and the 2% polyacrylamide 

Fig. 5. Flow visualization of the three-dimensional effect for Newtonian liquid Nil in 
geometry Wl. (a) Front; (b) middle; (c) back. 
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solution, 77 decreases rapidly with shear rate. The two concentrations were in 
fact chosen such that the shear viscosities are very similar over a wide 
shear-rate range [7]. 

The normal stress difference IV1 is zero for the Newtonian fluids. For the 
B and P fluids IV1 is non-zero and can be higher than the shear stress u, 
indicating substantial viscoelastic behaviour. For Boger fluids, IV1 is a 
quadratic function of 9 over a reasonable shear-rate range and it is customary 
to define a characteristic relaxation time X for these fluids through (cf. Refs. 
1-3) 

Nr = 21~x9~. (3) 

Fig. 6. Flow visualization of the three-dimensional effect for 2% polyacrylamide solution in 
geometry Wl. (a) Front; (b) middle; (c) back. 
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Two dimensionless numbers may now be defined. First, the Reynolds 
number Re given by 

UA 
Re=pF, 

where p is the density, U is the mean velocity in the channel, A is the width 
of the channel and ?j is the viscosity at the mean shear rate it,, given by 

Secondly, the Weissenberg number We is defined by 

J$$&hu 
A * 

(5) 

(6) 

Table 1 contains estimates of the constants for the Newtonian and Boger 
fluids used in the present experiments. 

Fig. 7(i) Flow visualization of the three-dimensiond effect for N12 in the central plane of 
geometry Wl. (a) Re = 31.0; (b) Re = 41.3; (c) Re = 55.1. 
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In a uniaxial extensional flow given by 

iY 
. 

v,=~x,v,=-- vz-Ez 
2 ’ 2 ’ 

where i is a constant extensional strain rate, the corresponding stress 
distribution can be written 

0 rk = 0 for i # k, 

CT - uyy = uxx - a,, = Q&L i 
(8) 

xx 

where qE is the uniaxial extensional viscosity. 
For Newtonian liquids, nE is three times the shear viscosity 11. For some 

polymer solutions, like the polyacrylamide solutions used in the present 
experiments, qE can be a strong increasing function of i. It is generally 
conceded that in many complex situations, the extensional behaviour of the 
fluid can strongly affect the flow characteristics. 

Fig. 7 (ii) Flow visualization for liquid N12 near the boundary wall of geometry Wl, (a) 
Re = 31.0; (b) Re = 41.3; (c) Re = 55.1. 
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The determination of nE in the case of polymer solutions is very difficult 
and the value of the various available experimental methods is under careful 
scrutiny at the present time (cf. Ref. 9). What is incontrovertible, however, is 
that some dilute polymer solutions like the B and P series offer significant 
resistance to stretching deformations, while others, like the X and N series, 
do not. The general consequences of this observation for the type of flows 
considered in the present work have been adequately dealt with by Jones 
and Walters [5]. 

We note that since the 2% polyacrylamide solution and the 3% xanthan- 
gum solution have similar shear viscosities, a comparison of their behaviour 
in complex flows is useful in estimating the effect of fluid elasticity on flow 
characteristics in the case of shear-thinning fluids. 

Finally, the behaviour of the more dilute xanthan-gum solutions consid- 
ered by Jones and Walters [5] is discussed in the section on numerical 
simulation. 

2.3. Experimental results 

In the interpretation of the experimental results, it is assumed that the 
flow is two-dimensional. There is, therefore, a need to investigate whether 
this is a meaningful assumption. Accordingly, two types of experiment were 
carried out to investigate any three-dimensional components in the flow. 
First, the laser beam was turned through 90” and the flow structure 
investigated in the narrow gap between the top wall and the cylinders and 
also near the centre of the channel, where some of the domain is clearly 
taken up by the cylinders themselves. Figures 5 and 6 show that, for both a 
Newtonian and an elastic polymer solution in geometry Wl, the streamlines 
are not straight and parallel as would be required for a truly two-dimen- 
sional flow. The three-dimensional effect is even more pronounced in the 
photographs shown in Fig. 7 for a Newtonian liquid with the usual laser 
positioning. Here the laser beam illuminates the central plane in Fig. 7(i) (as 
in the vast majority of the cases considered) while in Fig. 7(ii) the laser beam 
illuminates a plane near the bonding wall. The interesting appearance of an 
upstream vortex is clearly visible in Fig. 7(ii); but this is much less pro- 
nounced in Fig. 7(i). This is clear evidence of a three-dimensional compo- 
nent in the flow. We remark that the three-dimensional effect increased with 
the Reynolds number. 

Clearly the presence of these three-dimensional effects makes quantitative 
agreement between theory and experiment difficult, but the flow structure 
viewed in the central plane should still give a reasonable picture of the flow 
to be expected in a truly two-dimensional flow. 



241 

Fig. 8. Flow visualization for liquid N12 in gel 
Re = 44.8. 

ometry W2. (a) Re = 21.7; (b) Re = 28; (cl 

Fig. 9. Pressure drop AP vs. flow rate Q data for Newtonian liquid Nil in geometries Wl 
(0) and W2 (A). 
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0 20 40 60 80 100 120 

Q (cc/s1 

Fig. 10. Pressure drop vs. flow rate data for a 2% polyacrylamide solution in geometries Wl 
(0) and W2 (A). 

Photographs of the streamlines for a Newtonian liquid in geometry W2 
are included in Fig. 8 for increasing Reynolds number. The appearance of 
downstream vortices at the higher Reynolds numbers is clearly evident. 

Figure 9 contains (A P, Q) data for Newtonian liquids in geometries Wl 
and W2, AP being the pressure drop across the geometry (see Fig. 1). It is 
clear that it is easier to pump Newtonian liquids through the geometry with 
the narrowest gap D between the cylinders and the wall (i.e. geometry Wl). 
Figure 10 for a 2% aqueous polyacrylamide solution shows the same general 
trend for varying gap D. 

Figures 11 and 12 include a comparison of the pressure drop/flow rate 
behaviour of the aqueous solutions of polyacrylamide and xanthan gum. At 
low flow rates, the resistance to flow is similar for both liquids. At inter- 
mediate flow rates, the more elastic polyacrylamide solution shows a mea- 

L 
Oo 20 40 60 80 100 

Q (cc/s) 

Fig. 11. Pressure drop vs. flow rate data for a 2% aqueous polyacrylamide solution (A) and a 
3% aqueous xanthan-gum solution (V ) in geometry Wl. 
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6000 

0 
0 20 LO 60 80 100 120 

a [CC/S) 

Fig. 12. Pressure drop vs. flow rate data for a 2% aqueous polyacrylamide solution (A) and a 
3% aqueous xanthan-gum solution (V ) in geometry W2. 

sure of drag reduction, before the extensional-viscosity effect for this solu- 
tion results in an upturn in the appropriate curve, with the consequent 
possibility of a cross-over in the curves for the two solutions. Such a 
cross-over is already in evidence for geometry W2, but the available experi- 
mental range for geometry Wl was not sufficient to reach the cross-over 
point in this case. 

In the case of the Boger fluids, it is convenient to plot the ‘resistance’ 
AP/Q against Q. In Figs. 13 and 14 we see that the resistance initially 
decreases with Q (compared to that expected for a Newtonian liquid of the 
same viscosity) and then increases significantly. This is a striking example of 
the validity of the Walters-Barnes [lo] conjecture that viscoelasticity is 
associated with an initial decrease in drag for low flow rates followed by a 
significant increase at higher flow rates. The increase is generally associated 
with the high extensional viscosities of the elastic liquids. 

I a I I 89 I1 ,I 
3oO 20 

C&IS, 
60 60 

Fig. 13. AP/Q against Q data for Boger fluid B112 in geometry Wl. 
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I I 

5o0 
I 

20 LO 60 
a CCC/S) 

Fig. 14. AP/Q against Q data for Boger fluid B112 in w2. 

Interestingly, over the examined range of Reynolds numbers of the 
experiments, the flow field for the B liquids is not significantly affected by 
either viscoelasticity or Reynolds number (see Figs. 15 and 16). 

From previous work with very dilute polymer solutions [5] it is known 
that the extensional-viscosity effect is so dominant that often virtually no 

Fig. 15. Flow visualization for Boger fluid B112 in geometry Wl 
Re = 1.46; (c) Re = 3.05. 

(a) Re=0.65; (b) 
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Fig. 16. Flow visualization for Boger fluid B112 in geometry W2. (a) Re = 0.51; (b) Re = 1.3; 
(c) Re = 2.77. 

fluid can enter the narrow channels between the cylinders and the walls. 
With the more concentrated 2% solutions studied here, the general phenome- 
non is still evident (see Figs. 17 and 18), but the scale of the effect over the 
available flow rate range is not as dramatic as in the very dilute P liquids 
discussed in Ref. 5. 

3. Numerical simulation 

3.1. General equations 

To avoid solving the flow problem over the entire physical domain of Fig. 
1, periodicity is assumed near the middle of the channel where the photo- 
graphs are taken. Therefore, we consider the flow in the geometry shown in 
Fig. 19. For steady incompressible flow in the absence of body forces, the 
governing field equations are 

pv.vv= -vpi-v.T (9) 

v*u=o, 00) 

where v is the velocity vector, p an arbitrary isotropic pressure and T is the 
extra stress tensor defined by 

O= -PI+ T. (11) 



Fig. 17. Flow visualization for a 2% polyacrylamide solution in geometry WI. (a) Q = 23.3; 
(b) 27.8; (c) 44 (cm3 s-l). 

In addition to the field eqns. (9) and (lo), we require constitutive 
equations to describe the response of the various elastic liquids discussed in 
Section 2. For the Newtonian fluids we have simply 

T = 2qd, 02) 

where the rate-of-strain tensor d is defined by 

d= i[(vu) + (vu)*], 03) 
where T denotes the transpose. 

For the shear-thinning and weakly-elastic xanthan-gum solutions, we 
employ the Bird-Carreau model with the viscosity 77 in eqn. (12) (now 
considered to be a function of 12, the second invariant of d) given by 

1) = I,_& + (Tjo - ?J,)[l + KZ12](n-1)‘2; (14) 
where vo, v,, K and n are material parameters. For the 1500 ppm X fluid 
used by Jones and Walters [5] we take 

no = 10 Pa s, 71, = 0, K= 1425 s, n = 0.5. 
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Fig. 18. Flow visualization for a 2% polyacrylamide solution in geometry W2. (a) Q = 25.2; 
(b) 33.4; (c) 56.2 (cm3 s-l). 

To simulate viscoelastic flow in the model geometry we employ the 
Oldroyd-B model, customarily used for the constant-viscosity Boger fluids. 
(The flow simulation of the elastic and shear-thinning P fluids is not in the 

Q=Qo 
- 

Y 
v&y) =V(-t,Y) 

!-+ 0 T&y) = T(-4,~) 
z 

v=o 
v=o 

p&y) =P(-&Y) + *p 

v=o 

Fig. 19. Geometry and boundary conditions for the periodic flow. 

v=o 
A 
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focus of the present work.) The extra-stress tensor is decomposed as follows 
(cf. [ll]): 

T= Tl -I- T,, 05) 

Tl + Afl = 2qld, (16) 

T2 = 274, (17) 
where nr, q2 and A are constants and the symbol v denotes the upper 
convected derivative [12]. The shear viscosity is given by n = qr + n2 and the 
first normal stress difference N1 by eqn. (3) with X replaced by Xn,/(n, + 
n2). For the uniaxial extensional viscosity we have 

2% 
qE= 3172 + (1 _ 2<h) + (1 :;A) ’ (18) 

The ratio n2/( n1 + q2) is the ratio of the retardation time to the relaxation 
time; a value of l/8 is taken for this ratio. 

The boundary conditions are also shown in Fig. 19. A no-slip condition is 
assumed on all solid surfaces while periodicity relates the unknowns at the 
inlet and outlet. Respective nodal velocity and extra-stress components (only 
for the elastic fluids) are equal and nodal pressures are required to differ by 
the unknown pressure drop AP. Imposing the flow rate Q provides the 
additional constraint required to determine A P. 

To non-dimensionalize the governing equations, we scale the velocity 
components by the average velocity in the channel U, the lengths by the 
channel half-width A/2 and the pressure and the stress components by 
2YjU/A. This scaling yields the two dimensionless numbers, Re and We, 
defined in eqns. (4) and (6). 

3.2. Numerical method 

The finite element method is used for all the numerical solutions of this 
work. For the generalized-Newtonian flows, the pressure and the velocity 
components are interpolated by means of bilinear and biquadratic shape 
functions, respectively. When viscoelastic models are used, one has also to 
expand the extra-stress components in terms of appropriate shape functions. 
We use the mixed finite element developed by Marchal and Crochet [13] 
which is highly stable in solving various viscoelastic problems at high values 
of the Weissenberg number [13,14]. This element is based on a 4 X 4 
sub-linear interpolation for the extra-stress components and satisfies the 
Babuska-Brezzi conditions for stability [15,16]. 

Another important feature of the method is the use of streamline upwind- 
ing [17]. This technique stabilizes the numerical results by means of artificial 
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stress diffusi~ty along the streamlines. As pointed out in Ref. 18, the 
artificial stress diffusi~ty vanishes as the element size goes to zero and the 
method converges linearly with mesh refinement. More details about the use 
of streamline upwinding for viscoelastic flows can be found in Refs. 13, 18 
and 19. 

Imposing the flow rate at the inlet provides the additional equation 
needed to calculate the unknown pressure drop. Details about the modifica- 
tions required to handle periodic flows with the finite element method are 
given by Delvaux [19]. The periodicity assumption eliminates the need for 
solving the problem over the entire physical domain. It should be added, 
however, that the frontal width doubles when periodic boundary conditions 
are applied and a row-by-row element numbering is performed [19], 

3.3. Numerical results 

The three meshes constructed for the numerical calculations are shown in 
Fig. 20 and their main characteristics are listed in Table 2, Mesh 1 is rather 
coarse and is only used to study the convergence of the results with mesh 
refinement. Very thin elements are required around the cylinders to account 

Mesh 1 

Mesh 2 

Mesh 3 

Fig. 20. Finite element meshes. 
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TABLE 2 

Mesh characteristics 

Mesh 

1 
2 
3 

Number of Number of 
elements velocity nodes 

648 2751 
1248 5227 
1728 7147 

Degrees of 
freedom 

38 291 
73 137 

100 487 
(16 140) a 

a For the generalized Newtonian problems. 

for the stress boundary layers likely to develop in the vicinity of the 
cylindrical walls. Mesh 3 was used for all the generalized-Newtonian calcula- 
tions. 

Re=O 

Re=ZO 

Re=30 

Re=40 

Fig. 21. Numerical simulation of Newtonian flow for D =1.5 mm. 
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Re=O 

Re=20 

Re=30 

Fig. 22. Numerical simulation of Newtonian flow for D = 2.5 mm (geometry Wl). 

To study the sensitivity of the flow to the size of the gap between the 
cylinders and the wall D, we use different gap thicknesses varying from 1.5 
up to 5.25 mm which corresponds to the sy~et~c case. The computed 
streamlines for a Newtonian liquid and D = 1.5, 2.5 (geometry Wl), 3.5 
(geometry W2) and 5.25 mm are given in Figs. 21-24. Flow is from left to 
right in all pictures. Notice that the wiggles observed in some of the plots are 
generated by the contours program and are not real. For low values of Re, it 
is found that the streamlines are essentially the same as those at zero lie 
with no perceptible change in the position of the divided streamline, in 
a~eement with the how-~sua~ation results. At higher Re, the divided 
streamline moves farther from the channel walls, especially downstream 
where we observe different recirculation patterns depending on the geome- 



Re=20 

Re=30 

Fig. 23. Numerical simulation of Newtonian flow for D = 3.5 mm (geometry W2). 

try. The simulations in Figs. 22 and 23 are in satisfactory agreement with the 
flow-visualization results, indicating that three-dimensionality effects are not 
very important at the central plane where the flow-visualization pictures are 
taken. It is interesting to note that, when D is small, a vortex similar to that 
obtained experimentally with Wl near the vertical wall (Fig. 7(ii)) appears 
upstream (see Fig. 21). 

The predicted dimensionless pressure drops A P * are plotted against Re 
in Fig. 25. Notice that AP * is proportional to AP/Q. AP * is constant at 
low Re in agreement with the experimental measurements of Fig. 9, and 
increases at higher values of it. As with the experiments, when Re is low, the 
pressure drop decreases as we reduce D. This is not true, however, at higher 
Re. 
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Re=20 

Re=dO 

Fig. 24. Numerical simulation of Newtonian flow for D = 5.25 mm (symmetric case). 

Another interesting quantity is the amount of fluid Q, passing through 
the narrow gap between the cylinders and the walls relative to the total flow 
rate. The results for various values of D are plotted vs. the Re in Fig. 26. 
Q,/Q is initially constant and then increases with the Re, As expected, the 
flow through the gap decreases rapidly as D is reduced. 

The computed streamlines for the 1500 ppm X fluid are shown in Fig. 27, 
for different values of Re. They are in good qualitative agreement with the 
experimental results of Jones and Walters [5]. The flow patterns are similar 
to those obtained for the Newtonian case with Wl and W2. Shear thinning 
leads to the appearance of the downstream vortices at relatively low Re. 
Figure 28 compares the calculated values of AP/Q for different gap 
thicknesses with the experimental data given in Ref. 5. AP/Q increases 
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AP’ 

250 

200 

150 

. 5.25mm 

1.5 

I 1 I 
0 10 20 30 40 

Re 
Fig. 25. Calculated dimensionless pressure drops for a Newtonian liquid and various gap 
thicknesses: 0, experimental data for D = 2.5 mm; o, experimental data for D = 3.5 mm. 

slightly with D. The simulation curves agree rather well with the experimen- 
tal points indicating that the three-dimensionality effect is not too severe. 
(Notice that end effects are ignored in our simulations.) The calculated 
Q,/Q are compared with the experimental data of Jones and Walters [5] in 
Fig. 29. They determine Q, from the flow-visualization pictures by following 
the divided streamline down to a region where a Poiseuille-flow profile can 

QSIQ 

D = 3.5 mm 

I 
10 

Re 

2.5 mm 

1.5 mm 

I 
15 20 

Fig. 26. Calculated values of QJQ for the Newtonian liquid and various gap thicknesses. 
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(4 

Fig. 27. Numerical simulation of the flow of the 1.500 ppm X fluid in W1 with the 
Bird-Carreau model: (a) Re = 0.001 (Q = 0.5 cm3 s-l); (b) Re = 27.2 (Q = 50 cm3 s-l); (c) 
Re = 46.7 (Q = 75 cm3 s-‘); (d) Re = 72.4 (Q = 103 cm3 s-l). 

be assumed. As in the Newtonian case, Q,/Q increases as the volumetric 
flow rate increases. Among the different gap thicknesses examined, D = 2.0 
mm gives the best agr~ment with the experiments in~cating that the 
effective gap thickness may be smaller than 2.5 mm although it must be 
conceded that the procedure of determining Q, from photographs is not 
very precise. 

Figure 30 contains perhaps the most important simulations of the present 
work obtained with the constant viscosity Oldroyd-B model for creeping 
flow, i.e. for the purely viscoelastic case. Here, we observe that the dimen- 
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20 Q 

A P/Q 
Pa/( cc/s) - 

10 - 

D=2.5 mm 1.5 mm 

0 I I 

1 

0 10 20 30 

Q (cc/s) 

Fig. 28. (AP/Q, Q) results with the Bird-Carreau model for the 1500 ppm X fluid in Wl; o, 
experimental data of Jones and Walters [5]. 

sionless pressure drop initially decreases with the Weissenberg number, We, 
but then increases, in qualitative agreement with the experimental results for 
the Boger fluids discussed in Section 2 and in line with the drag observations 
of Walters and Barnes [lo]. Note that this general finding is independent of 
the size of the mesh. Meshes 2 and 3 give practically the same results and the 

QslQ w) 6 f Dc2.5 / 
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Fig. 29. Calculated values of Q,/Q with the Bird-Carreau model for the 1500 ppm X fluid in 
Wl; o, experimental data of Jones and Walters [5]. 
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Fig. 30. Calculated values of A P * with the Oldroyd-B model at zero Re (geometry Wl). 

solution is assumed to have converged, at least for the relatively low We 
considered here. At higher We the stress boundary layers around the 
cylinders grow stronger and the radius of convergence of the method 
becomes very small and it is impractical to continue. Further refinement is 
necessary if results at higher We are desired. In addition to mesh refine- 
ment, another test for the numerical findings is to decrease the streamline 
upwinding coefficient in order to ensure that the minimum is not a conse- 
quence of the artificial stress diffusivity. Indeed, when we reduce the 
streamline upwinding coefficient, A P * decreases slightly but the minimum 
is preserved in all cases. 

The computed streamlines for zero Re are shown in Fig. 31 for different 
We. At low We, the flow field is, of course, similar to that of the creeping 
Newtonian case and is not significantly affected as we increase We, in 
accordance with the experimental observations with the Boger fluids in Figs. 
15 and 16. (A more careful examination reveals that the upstream divided 
streamline initially moves farther from the wall and then starts shifting to 
the opposite direction, whereas the downstream divided streamline remains 
essentially unaffected.) The numerical results beyond the critical flow region 
where the minimum occurs have been most interesting. Figure 31 shows that 
the flow characteristics are similar to those obtained experimentally with the 
P fluids in Figs. 17 and 18. The fluid appears to be reluctant to pass through 
the narrow channels and this is attributed to extensional-viscosity effects 
which become very important at high We. Similar results are obtained if we 
keep the elasticity number constant and increase the Reynolds number 
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Fig. 31. Streamlines obtained with the Oldroyd-B model at zero Re (geometry Wl). 
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Fig. 32. Calculated AP* with the Oldroyd-B model in geometry Wl; o, experimental data 
with B112. 
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instead. The elasticity number, defined by 

We 49A 
E=x=pA2, (1% 

provides a ratio of elastic vs. inertial effects and is independent of the flow 
rate. The value of E for B112 in Wl is 0.768. Figure 32 shows that a 
minimum of A P * is again encountered as we increase Re, in qualitative 
agreement with the experimental data of Fig. 13. Notice that, when plotting 
A P * against Re, the discrepancies between simulations and experiments are 
exaggerated at low Re. In contrast to the creeping flow solution and the 
experiments, the reluctance of the fluid to pass through the narrow channels 
is manifested before we reach the critical flow region in which AP * 
becomes minimum. Again, if results at higher Re are desirable, mesh 
refinement is in order. 

3.4. Conclusion 

A finite-element technique has been used to simulate Newtonian and 
non-Newtonian flow in the model geometries. The agreement between 
experiment and theory is quite satisfactory in all cases. The calculations with 
the Oldroyd-B model are able to simulate qualitatively the observed effects 
of viscoelasticity on the flow characteristics. 

4. General conclusions 

From a comprehensive computational and experimental investigation of 
the flow in a channel obstructed by an antisymmetric array of cylinders, we 
may make the following general observations: 

(i) The qualitative agreement between experiment and theory may be 
considered to be satisfactory, within the acknowledged limitations of pres- 
ent-day viscoelastic simulations. 

(ii) For the examined flow conditions and when the Reynolds number is 
low, the flow rate is higher the closer the cylindrical obstacles are to the 
walls of the channel (i.e. the smaller the gap D). 

(iii) The resistance to flow for constant-viscosity Boger fluids initially 
decreases with flow rate and then increases as the flow rate is further 
increased. This increase may be associated with the extensional-viscosity 
characteristics of the Boger fluids. The extensional-viscosity effect is stronger 
in geometry W2 (i.e. for the higher value of 0). 

(iv) So far as flow visualization is concerned, there is evidence of a 
three-dimensional effect for both Newtonian and elastic liquids. However, it 
is still meaningful to compare the experimental flow characteristics in the 
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central plane with the numerical simulations based on a strictly two-dimen- 
sional flow. 

(v) Downstream vortices are in evidence at high Reynolds numbers in all 
cases and an upstream vortex can appear under some conditions. 

(vi) The acknowledged reluctance of highly elastic liquids to pass through 
narrow converging channels is clearly in evidence in some of the experiments 
and the calculations as well. 
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