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A B S T R A C T   

In this paper J.G. Oldroyd’s ideas leading to the modern understanding of wall slip phenomena are discussed. 
The procedure proposed by Oldroyd to analyze experimental data that imply the presence of slip is illustrated to 
(i) determine the slip velocity as a function of wall shear stress and (ii) to recover the true rheological parameters 
of the material in the absence of slip. The Oldroyd method is demonstrated by using capillary data for a Ther-
moplastic Vulcanizate (TPV) polymer melt and a bread dough.   

1. Introduction 

Wall slip has been considered by several scientists in the early stages 
of the development of Newtonian fluid mechanics including Bernoulli, 
Coulomb, Poiseuille, Girard, Maxwell, and Navier (see [1] for a sum-
mary). However, several classes of complex fluids exhibit phenomena 
inconsistent with the assumption of no-slip, including polymer melts 
[2–4], elastomers [5], polymer solutions [6–9], suspensions [10–12], 
dispersions [13–14], gels [15–17], colloidal dispersions/glasses [18], 
pastes [19] and foams [20–22]. The study of wall slip is extremely 
important as it can be used to determine the true rheology of fluids by 
correcting the data for slip effects and explaining the mismatch of 
rheological data obtained from various rheometers utilizing different 
geometries. Interfacial (slip) constitutive laws are also needed to simu-
late these flows either from a macroscopic, microscopic and/or molec-
ular point of view [23–25]. 

This article discusses the early work on slip of non-Newtonian fluids 
with particular emphasis on Oldroyd’s ideas on slip and his influence on 
our modern understanding of slip both from the mathematical and 
experimental perspectives [26]. Inspired by this work, we perform some 
additional calculations to illustrate several issues addressed particularly 
for the case of yield stress fluids, i.e., how slip effects may manifest 
themselves when the flow curves are determined in simple shear and 
capillary flow. 

The rest of the paper is organized as follows: The early literature on 
wall slip is reviewed in Section 2 along with Oldroyd’s slip method. This 
method is derived in Section 3. In Section 4 the application of Oldroyd’s 
method is demonstrated, by analysing capillary flow data for two cases 

(i) a thermoplastic vulcanizate polymer melt and (ii) a bread dough, to 
obtain both the rheological and wall slip parameters. Concluding re-
marks are finally provided in Section 5. 

2. Early work on slip of non-Newtonian fluids 

Apart from the consideration of slip effects for the case of Newtonian 
fluids in the 19th century which is summarized in Ref. [1], significant 
work has been reported in the 1930′s for the case of complex fluids, 
which is the year of beginning of the Journal of Rheology. Reiner [27] 
proved mathematically that if the fluidity (defined below) is plotted 
against the stress at the wall, and the flow curve is independent of the 
dimensions of the apparatus, irrespective of the flow law of the liquid 
under test, the no-slip boundary condition should apply. Consequently, 
Reiner [28] studied the capillary flow data of a 1.71% solution of 
nitro-cotton in di‑butyl phthalate, which is a non-Newtonian liquid [29]. 
Using his method, he concluded that this fluid appears to slide on a glass 
wall. Slip appeared to increase with the age of the solution. 

Schofield and Scott Blair [30–34] and Mooney [35] studied slip in 
capillary flow and demonstrated that the flow curve of soil pastes ex-
hibits slip effects or marked discrepancies at the wall. They concluded 
that these discrepancies can be accounted for by assuming that in the 
immediate proximity of the wall a modification of the plastic properties 
occurs, which imparts an additional velocity (slip) to the bulk of the 
material. By first subtracting this (slip) velocity, a viscosity constant is 
obtained independent of the dimensions of the tube. Schofield and Scott 
Blair derived explicit formulae to calculate the slip velocity from 
capillary experimental data [31]. In a subsequent paper [32], they 
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defined a depletion layer (very thin compared to the capillary diameter – 
approximated up to 10% of the diameter) close to the wall, where they 
concluded that the consistency (viscosity) of the material (soil pastes) 
should be much different than that in the bulk. At a later time, Schofield 
and Scott Blair [33] performed detailed measurements of the rate of flow 
of an aqueous paste of barium sulfate through tubes of various lengths 
and diameters in an attempt to study the influence of yield stress on slip. 
Their results showed that the rate of flow is independent of the length of 
the tube but depended on the capillary diameter, concluding that 
apparent slip persists at the proximity of the wall. Simple relations to 
address and explain discrepancies of flow curves due to the slip at the 
wall were derived by Schofield [34]. 

Mooney [35] derived explicitly formulae that can be used to analyze 
conveniently rheological data from capillary, and rotating cylinder ge-
ometries to calculate the wall slip as a function of wall shear stress (still 
used today!!!). Experimental data reported by Schofield and Blair [30, 
36] was analysed and demonstrated the robustness and validity of the 
Mooney method. Interestingly, most of these works [28–33,35,36] were 
published within a 2-year period (1930–1931) and as mentioned above 
are still used based on the same principles. For example, these methods 
have been used extensively for the case of polymers melts [25] polymer 
solutions [7–9] microgels [37], and other complex fluids [38,39]. 

2.1. Oldroyd’s work on slip 

Oldroyd [26] published a single theoretical paper on wall slip in 1949. 
Three cases were examined, that of a Newtonian, a shear thinning, and a 
Bingham fluid in Poiseuille flow. He has shown that a wall effect can be 
measured by an effective slip coefficient, which is a function of the wall 
stress. The mathematical argument is based on the following assumptions: 
(i) the flow is rectilinear with axial symmetry; (ii) there is no actual slip at 
the wall; and (iii) the functional relationship between stress and 
rate-of-strain is dependent on the normal distance from a solid boundary, 
in a thin layer of liquid near the boundary only. The last assumption is 
equivalent of stating that within the thin layer, the viscosity of a complex 
fluid changes due to particles (suspensions) or polymer chain migration 
(polymer solutions) due to configurational entropic effects. 

Oldroyd’s method is a variant of the pioneering analysis of Mooney 
[8,35], which in turn was based on the work of Schofield and Scott Blair 
[36] in the early 1930s. Much later in 1967, Jastrzebski [40] adjusted 
the principles introduced by Mooney and Oldroyd to accommodate 
experimental observations for pipe flows of certain slurries, where the 
apparent slip velocity was observed to depend not only on the wall shear 
stress but also on the pipe diameter. The Oldroyd-Jastrzebski method 
proved to be more appropriate than the classical Mooney method to 
slurries [41], foams [42–44] and food suspensions [45,46]. However, 
there is no physical reason to support the diameter dependence of the 
slip velocity. For this reason, the Mooney’s variant methods have been 
the subject of criticism [47,48]. Mooney’s procedure, for example, may 
lead to erroneous results, such as negative slopes and intercepts for 
certain complex fluids such as elastomers [5] and pastes [45,47,48]. 
Martin and Wilson [47] demonstrated that the use of the Jastrzebski 
interface condition yields incorrect flow curves and apparent slip ve-
locity and recommending that the method it should no longer be used. 
Nevertheless, the method is applied successfully in studies of energized 
fluids and foams used in hydraulic fracturing [49]. Modified versions of 
these methods have also been proposed for highly concentrated 
non-Brownian suspensions [50]. 

3. The Oldroyd’s slip method 

3.1. Derivation of the method 

In their analysis of steady-state axisymmetric Poiseuille flow of any 
fluid, Schofield and Scott Blair [30] noted that the velocity gradient in 
the radial direction can be written as follows: 

du
dr

= − 2f (τ(r)) = − 2f
(rτw

R

)
(1)  

where R is the tube radius, f is an odd function, τ = |τrz|, τw = GR/2 is the 
wall shear stress, and G is the imposed pressure gradient. (Τhe factor 2 in 
Eq. (1) has been added in order to be consistent with Oldroyd’s notation 
[26]). Eq. (1) is easily realized, noting that du/dr is the local shear rate 
for fully developed Poiseuille flow, that is obviously a function of the 
local shear stress. Integrating Eq. (1) under the assumption of slip, one 
gets 

u(r) = uw + 2
∫ R

r
f (ξ)dξ (2)  

where uw is the “effective” slip velocity. In the absence of slip, Eq. (2) is 
simplified to 

u(r) = 2
∫ R

r
f (ξ)dξ (3) 

Observing that r = Rτ(r)/τw and changing variables, Schofield and 
Scott Blair [30] expressed the velocity as a function of the shear stress: 

u(τ) = 2R
τw

∫ τw

τ
f (s)ds (4)  

Hence, they derived an expression for the volumetric flow rate as fol-
lows: 

Q = 2π
∫ R

0
u(r)rdr = 2π

∫ τw

0
u(τ) Rτ

τw

Rdτ
τw

=
2πR2

τ2
w

∫ τw

0
τdτ⋅

2R
τw

∫ τw

τ
f (s)ds ⇒ Q =

4πR3

τ3
w

∫ τw

0
τdτ

∫ τw

τ
f (s)ds (5)  

The latter expression indicates that, for any material, Q/(πR3) depends 
only on the wall shear stress τw. After an integration by parts, Eq. (5) 
may also be written as follows 

Q =
2πR3

τ3
w

∫ τw

0
τ2f (τ) dτ (6)  

In fact, Oldroyd [26] worked with the apparent fluidity, φ, as defined by 
Poiseuille’s formula, 

φ =
4Q

πR3τw
(7)  

Combining Eqs. (6) and (7) yields that the fluidity is a function of shear 
stress 

φ(τw) =
8
τ4

w

∫ τw

0
τ2f (τ) dτ (8)  

or 

φ(τw) = F(1 / τw) (9)  

where 

F(ξ) = 8ξ4
∫ 1/ξ

0
x2f (x) dx (10)  

Oldroyd [26] pointed out that if the curve φ(τw) is unique, then the shear 
rate at the wall can be calculated and the stress/shear rate relationship 
can be deduced by means of the function f , which can be extracted from 
experimental data. Indeed, one can solve for this function as follows: 

F(1/ξ)=
8
ξ4

∫ ξ

0
x2f (x)dx ⇒ ξ4F(1/ξ)= 8

∫ ξ

0
x2f (x)dx ⇒

d[ξ4F(1/ξ)
dξ 

= 8ξ2f (ξ) ⇒ 
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f (ξ) =
1

8ξ2
d[ξ4F(1/ξ)]

dξ
(11)  

Oldroyd [26] underlined that a ‘very sharply defined smooth curve’ is 
needed for the numerical differentiation of Eq. (11). He also acknowl-
edged the fact that Rabinowitch and Mooney also derived a similar 
formula involving differentiation of a known functional relationship. 

Oldroyd provided the functions f and F for Newtonian fluids, Bing-
ham plastics and bi-viscosity fluids [26]. Moreover, he analysed the 
characteristics of the (φ, 1/τw) curve. In the case of a Herschel-Bulkley 
fluid described by 
{

γ̇ = 0, τ ≤ τ0
τ = τ0 + kγ̇n, τ > τ0

(12)  

where τ0 is the yield stress, k is the consistency index, and n is the power 
law exponent, the functions f and F are as follows: 

f (ξ) =

⎧
⎨

⎩

0, ξ ≤ τ0

1
2

(ξ − τ0

k

)1/n
, ξ > τ0

(13)  

and 

F(ξ)=

⎧
⎪⎨

⎪⎩

0, ξ≥1/τ0

4ξ1− 1/n

(3+1/n)k1/n(1− τ0ξ)1/n
{

1−
τ0ξ

2n+1

[

1+
2nτ0ξ
n+1

(1+nτ0ξ)
]}

, ξ<1/τ0

(14)  

3.2. Wall effects 

Oldroyd [26] emphasized the importance of taking wall slip into 
account: “… a single observed curve showing an increase of φ with 1 /τw at 
large τw may be a manifestation of a wall effect rather than an indication 
either that the viscosity increases with the rate of shear at large rates of shear 
or that the flow is non-laminar.” 

In the presence of slip the (φ,1/τw) curve also depends on the tube 
radius. Mooney [35] and then Reiner [28] demonstrated that Eq. (9) is 
extended to 

φ(τw,R) = F(1 / τw) +
4uw

Rτw
(15)  

where uw is an effective slip velocity, which is a function of the wall 
shear stress. Oldroyd [26] proposed an alternative approach avoiding 
the assumption of an effective slip velocity. More specifically, he 
assumed that Eq. (1) holds in the bulk and that in a layer adjacent to the 
wall the thickness ε of which is independent of R, the rate of strain also 
depends on ε and on the distance from the wall, i.e. 

du
dr

= − 2f
(rτw

R

)
+ g

(rτw

R
,R − r, ε

)
, R − ε ≤ r ≤ R (16)  

Integrating the two branches of the velocity and taking the no-slip 
condition into account leads to 

Q = 2π
∫ R

0
r2f

(rτw

R

)
dr + 2π

∫ R

R− ε
r2g

(rτw

R
,R − r, ε

)
dr ⇒  

φ =
4Q

πR3τw
=

8
τ4

w

∫ τw

0
ξ2f (ξ) dξ + G(τw,R, ε)

or 

φ(τw,R, ε) = F(1 / τw) + G(τw,R, ε) (17)  

Following Mooney [35], Oldroyd assumed that the wall layer thickness 
is very small compared to the tube radius (ε≪R), in order to simplify the 
above expression: 

φ(τw,R) = F(1 / τw) + G(τw,R) (18)  

By means of a change of variables, Oldroyd reduced Eq. (18) to the 
relation 

φ(τw,R) = F(1 / τw) +
4ζ(τw)

R
(19)  

where 

ζ(τw) =
2
τw

∫ ε(τw)

0
g[ε(τw), τw, x] dx (20)  

may be viewed as the effective slip coefficient. The advantage of Eq. (19) 
is that both F and ζ are independent of R. This is equivalent to Reiner’s 
formula (Eq. (15)) if the effective slip velocity satisfies 

uw = τwζ(τw) (21)  

It is clear that (1/R,φ) data fall on a line of slope 4ζ(τw) intercepting the 
φ axis at F(1 /τw) for a given value of τw. Oldroyd [26] pointed out that 
“the limiting value of ζ at large τw may be supposed finite and is zero if uw is 
bounded when τw increases”. This is consistent with the experimental 
findings of Chakrabandhu and Singh [46] for coarse food suspensions at 
high temperatures. 

As already noted, Oldroyd’s approach is a variant of Mooney’s 
method [35]. With the latter method, one plots instead (1/R, τwφ) data 
and thus the slope of the resulting line is 4uw (see Eq. (15)). Jastrzebski 
[40] reported that for slurries the apparent slip velocity also depends on 
the pipe radius, i.e. 

uw =
τwζ(τw)

R
(22)  

and, thus, in the Oldroyd-Jastrzebski method Eq. (19) is replaced by 

φ(τw,R) = F(1 / τw) +
4ζ(τw)

R2 (23)  

Finally, Crawford et al. [51] generalized Jastrzebski’s method intro-
ducing an adjustable exponent d, so that the slip velocity is given by 

uw =
τwζ(τw)

Rd (24)  

4. Application of Oldroyd’s method 

Oldroyd’s method has been applied on capillary flow data for two 
cases (i) a Thermoplastic Vulcanizate (TPV melt) and (ii) wheat dough. 
The analysis of these experimental results to calculate the slip velocity 
and the true rheological parameters are presented next. 

4.1. Capillary slip flow of a thermoplastic vulcanizate melt 

Fig. 1 presents capillary flow data for a TPV melt at 190 ◦C, for two 
different capillary diameters: D1 = 0.889mm, D2 = 0.432mm[52,53]. 
The capillary length to diameter ratio (L/D) in both cases was 14. Only 
seven data points have been obtained in each case for shear rates ranging 
from 5 to 1000 s− 1 (see Fig. 1). We will demonstrate now that using the 
Oldroyd method and this minimal set of experimental data plotted in 
Fig 1, we can recover the slip velocity and the true rheological param-
eters of the fluid to a certain extend. 

The two data sets were fitted to power-law models of the form 

γ̇i = aiτbi
w , i = 1, 2 (25)  

where the subscript stands for the number of the experiment, to obtain 
the optimal parameter values: a1 = 3.36⋅107MPa− b1 s− 1, b1 = 5.03, a2 =

2.21⋅107MPa− b2 s− 1, and b2 = 4.44. The fitted lines are compared with 
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the experimental data in Fig. 1. 
A uniform distribution of wall shear stress values in the range of 

interest, i.e. for values of τw from 0.03 to 0.15 MPa, was then selected 
and the corresponding shear rates were calculated by means of Eq. (25). 
The apparent fluidity for each data set was found by means of 

φi(τw,Ri) =
γ̇i

τw
=

aiτbi
w

τw
= aiτbi − 1

w , i = 1, 2 (26)  

Since the fluidity is known for the two values of the radius, both F(1 /τw)

and ζ(τw) can be calculated from Eq. (19) for all the selected values of 
the wall shear stress τw: 

F(1 / τw) =
a1R1τb1 − 1

w − a2R2τb2 − 1
w

R1 − R2
(27)  

and 

ζ(τw) =
R1R2

4(R1 − R2)

(
a2τb2 − 1

w − a1τb1 − 1
w

)
(28)  

The corresponding slip velocities are then calculated by means of Eq. 
(21): 

uw =
R1R2

4(R1 − R2)

(
a2τb2

w − a1τb1
w

)
(29) 

Slip data are nicely fitted to a power-law slip equation 

τw = βus
w (30)  

yielding β = 0.039MPass/mms = 0.00735MPass/ms and s = 0.24. The 
predictions of Eq. (30) essentially coincide with the points calculated by 
means of Eq. (29), indicating that the power-law slip model describes 
very well the slip data in the range of the experimental wall shear 
stresses. These are compared with the data points reported by Ghahra-
mani et al. [53] in Fig. 2, where the slip velocity uw is measured in mm/s. 
Note that the dashed line labelled as Ghahramani et al. [52,53] has 
utilized also parallel plate data at lower wall shear stresses (Fig. 2). The 
Oldroyd method predicted the experimental slip data remarkably well. 

Since F is known (given by Eq. (27)), it is straightforward to obtain 
the function f(ξ) by means of Eq. (11): 

f (ξ) =
1

8(R1 − R2)

[
a1R1(b1 + 3)ξb1 − a2R2(b2 + 3)ξb2

]
(31)  

It is clear that the above expression holds only if f(ξ) ≥ 0. Therefore, it 

should be ξ ≥ ξ∗, where 

ξ∗ =
[

a2R2(b2 + 3)
a1R1(b1 + 3)

]1/(b1 − b2)

= 0.126MPa (32)  

provides a first estimate of the yield stress τ0. Essentially the same es-
timate is obtained by fitting the predictions of Eq. (31) to the Herschel- 
Bulkley model (13), which also gives k= 1.335 × 10− 4MPasn for the 
consistency index and n = 0.77 for the power-law exponent. The pre-
dictions of the fitted model are compared with the points calculated by 
means of Eq. (31) in Fig. 3. It is interesting to note that slip brings down 
the flow curve even well below the yield stress level. This implies that 
even if the fluid does not yield for stresses below its true yield stress, it 
can slip as a purely elastic solid. The predicted flow curve is compared 
with the experimental data in Fig. 4. While the true yield stress of this 
material is 0.09 MPa obtained from linear viscoelastic measurements 

Fig. 1. Fitting of the experimental data on a TPV melt to Eq. (25).  
Fig. 2. Comparison of the calculations of the slip Eq. (30) (Oldroyd method) 
shown as a continuous solid line with the slip experimental calculations of 
Ghahramani et al. [53]. The dashed line labelled as “present model” is the line 
passing through all experimental points including those from parallel plate 
(simple shear) calculated by Ghahramani et al. [53]. The agreement 
is remarkable. 

Fig. 3. Fitting the function f(ξ) for the Herschel-Bulkley (HB) model to the 
predictions of Eq. (31). 
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[52,53], the value calculated by means of Oldroyd’s analysis is 0.126 
MPa, which is about 35% higher. However, considering the use of only 
two sets of capillary data (capillary data inherently possess a repro-
ducibility of ±10%) of different diameter without the application of the 
Bagley correction (assumed small), the recovery of the Herschel-Bulkley 
parameters (comparison in Fig. 4) may be considered quite satisfactory. 
Moreover, applying the Oldroyd’s method has resulted in slip velocity 
estimates, which agree well with those obtained with the more elaborate 
slip analysis by Ghahramani et al. [52,53]. 

As a concluding remark for the slip flow of yield stress fluids that 
follow the Herschel-Bulkley rheological law and others, one has to 
consider two regimes, the unyielded regime, where τw ≤ τ0, and the 
yielded regime, where τw > τ0. In the former regime, the velocity is flat, 
the fluid slips as a purely elastic solid i.e. uz(r) = uw, and thus γ̇A = 4uw 
/R. Hence, the slip velocity can be calculated from 

uwi =
γ̇A,iRi

4
, i = 1, 2 (33)  

By means of slip Eq. (30) one gets 

γ̇A,i =
4
Ri

(τw

β

)1/s
, τw ≤ τ0 (34)  

In the yielded regime, the apparent shear rate is given by 

γ̇A,i =
4
Ri

(τw

β

)1/s
+

4
3 + 1/n

(τw − τ0

k

)1/n

×

{

1 −
1

(2n + 1)
τ0

τw

[

1 +
2n

(n + 1)
τ0

τw

(

1 + n
τ0

τw

)]}

, τw > τ0

(35) 

The above expression can be useful in analyzing capillary experi-
mental data for yield stress fluids. 

4.2. Capillary flow of bread dough 

Fig. 5 depicts capillary flow data of a bread dough using three sets of 
capillary dies of different diameters at 25 ◦C reported by Sofou et al. 
[54]. The diameter dependence of the flow curve implies the presence of 
slip. Sofou et al. [54] analyzed the data and found that the Mooney 
analysis cannot be applied as it yields negative true shear rates after 
correcting the data for slip effects. Instead they used a modified Mooney 

method proposed by Geiger [55] that assumes the slip velocity is a 
function of the die diameter, an assumption that has no physical basis. In 
this section we reanalyze these data by means of the Oldroyd method. 

First, it is noted that typical bread doughs possess particles sizes as 
small as 200 mm (0.2 mm) [56] whose dimensions are similar to the 
smallest diameter used in the experiments (0.432 mm). Therefore, this 
set of data should be excluded from the analysis. For multiphase systems 
it is essential to consider the depletion layer formed at the wall, which 
the Oldroyd method includes by considering its thickness ε. Thus, the 
effective diameter to perform the analysis of capillary data is Deff = D −

2ε. We consider in this analysis various values of εaround 300 μm (0.3 
mm), that is 1.5 times the particle size (a reasonable assumption) to 
match the experimental results [54]. The results are summarized in 
Table 1 and are also plotted in Fig. 6 for three selected values of ε that 
best describe the experimental data [54]. It seems that a value of ε =

0.29 − 0.30 mm best matches the experimental results, resulting also in 
a yield stress of 0.243–0.398 kPa that includes the experimental value of 
0.298 kPa reported in [54]. In conclusion, the Oldroyd method (i) yields 
the true rheological parameters reported in [54], (ii) calculates the slip 
velocity in the form of τw = βus

w with slip velocity independent of 
diameter (the exponent s is independent of the depletion layer thickness 
ε), and (iii) gives an estimate of the depletion layer consistent with the 
particle size. 

5. Conclusions 

In this paper, J.G. Oldroyd’s ideas leading to the modern under-
standing of wall slip phenomena have been discussed. Specifically, we 
have discussed and illustrated the procedure proposed by Oldroyd to 
analyze experimental data that imply the presence of slip. The Oldroyd’s 
method can help to determine the slip velocity as a function of wall shear 
stress and moreover recover the true rheological parameters of the 
material in the absence of slip (true rheological response of the fluid 
under consideration). The method is demonstrated by using capillary 
data for two different systems, namely a Thermoplastic Vulcanizate 
(TPV) polymer melt and a bread dough. The recovered rheological pa-
rameters were compared with those obtained from linear viscoelastic 
measurements (absence of slip) and found to be in good agreement. In 
the case of multiphase systems such as the bread dough, the Oldroyd 
method also yields a good estimate of the depletion layer thickness to 
match the experimental results and a slip velocity law that is 

Fig. 4. The predicted flow curve using the Oldroyd’s method (dashed line) 
compared with the experimental data corrected for the effect of slip (contin-
uous line). 

Fig. 5. The Bagley-corrected apparent flow curve of Robin Hood Bread Dough 
obtained from dies of various diameters at 25 ◦C. The diameter dependence of 
these flow curves indicate that slip occurs at the wall [54]. 
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independent of the die diameter. Finally, expressions are provided for 
slip analysis of capillary rheological data of Herschel-Bulkley fluids 
based on Oldroyd’s method. 
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Table 1 
Estimates of the slip (τw = βus

w) and rheological parameters of Herschel-Bulkley (τw = τo + kγ̇n) for various values of the depletion layer thickness ε.  

Depletion Thicknessε, mm  Slip coefficientβ,kPass/ms  Slip exponents  Yield stressτo, kPa  Consistency indexk, kPasn  Power law exponent,n  

0.28 100.8 0.372 0.621 4.27 0.585 
0.29 104.5 0.372 0.398 4.20 0.509 
0.30 108.5 0.372 0.243 4.13 0.470 
0.31 113.1 0.372 0.165 4.01 0.449 
0.32 118.4 0.372 0.109 3.90 0.435 
0.35 140.8 0.372 0.029 3.60 0.412  

Fig. 6. Comparison of the constitutive equations obtained with ε = 0.29, 0.30,
0.31 mm with the experimental data of Sofou et al. [54]. 
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