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a b s t r a c t

The annular Poiseuille flow a Newtonian fluid is studied assuming that slip occurs along the walls.
Different slip models relating the wall shear stress to the slip velocity are employed. In the case of
non-monotonic slip models with a maximum followed by a minimum, there exist linearly unstable
steady-state solutions with one or both the slip velocities along the inner and outer cylinders of the
annulus corresponding to the (unstable) negative-slope branch of the slip equation. The resulting flow
curve is non-monotonic with one or even two narrow unstable branches corresponding to the stick–slip
eywords:
ewtonian flow
oiseuille flow
nnulus
nnular extrusion
lip

instability regime. The sizes of these two unstable regimes are reduced as the radii ratio is reduced. It is
demonstrated that the second unstable branch may not be observed at all due to the presence of stable
steady-states. These results provide a partial explanation for the absence of the stick–slip instability in
annular extrusion experiments.

© 2008 Elsevier B.V. All rights reserved.
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. Introduction

Among the class of melt fracture extrusion instabilities, the
tick–slip instability (or oscillating melt fracture) is the only
ne that is associated with pressure and extrudate flow-rate
scillations, observed while the throughput is controlled. These
scillations result in extrudate surfaces that are characterized by
lternating rough and relatively smooth regions [1]. In general, the
tick–slip instability is observed with linear high-molecular weight
nd narrow-distributed polymers (see [1] and references therein)
t apparent shear rates above the sharkskin instability regime and
elow the gross melt fracture regime [2]. Most of the stick–slip

nstability experimental studies are performed by using capillary
ies with the exception of studies that make use of slits to per-
orm local velocity measurements [3,4]. No systematic observations
ave been reported on the occurrence of the stick–slip instability in
nnular dies. However, most important industrial dies utilize this

articular form in several applications, including film blowing, blow
oulding, wire coating, and pipe production. It is thus clear that

urther studies are needed to identify under which conditions the
tick–slip instability is obtained in annular extrusion.

∗ Corresponding author. Tel.: +357 22892208; fax: +357 22339061.
E-mail address: georgios@ucy.ac.cy (G.C. Georgiou).

377-0257/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.jnnfm.2008.10.008
Rosenbaum [5] and Rosenbaum et al. [6] have reported experi-
mental data for a linear metallocene PE in capillary extrusion and
identified clearly the occurrence of stick–slip instability. However,
their data for a crosshead die (annular die) showed a continuous
flow curve with no stick–slip region. More recently, Delgadillo-

elasquez et al. [7] studied the stick–slip extrusion instability by
using several capillary, slit and annular dies and identifying the
origin of the different behavior of linear polymers in different
geometries with regard to sharkskin and stick–slip instabilities.
They reported that while sharkskin and stick–slip instabilities occur
in capillary and slit extrusion, they are absent at high ratios of the
inside-to-outside diameter of the annular die. They also found that
the lack of an observable stick–slip flow regime with annular die
flow is due to an inherent difference in the converging flow section
in the entrance region of the die when compared to the slip and
capillary die geometries. Delgadillo-Velasquez et al. [7] explained
these phenomena in terms of the surface-to-volume ratio of the
extrudates which is high when sharkskin and stick–slip are absent.

A nice review of numerical studies of steady extrusion from
annular dies is provided in the recent paper by Karapetsas and
Tsamopoulos [8]. In these studies, emphasis is given on the effects

of the constitutive equation and geometry on the thickness and the
swelling ratios of the annular extrudate [8–10]. The objective of
the present work is to further investigate the origin of the differ-
ent behavior of linear polymers in annular dies as far as stick–slip

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:georgios@ucy.ac.cy
dx.doi.org/10.1016/j.jnnfm.2008.10.008
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nstability is concerned, and to study the effects of both linear
nd non-monotonic slip and the diameter ratio on the flow curves
btained in annular extrusion. The flow curve is defined as the
og–log plot of the wall shear stress versus the apparent wall shear
ate, or, equivalently, as the log–log plot of the pressure drop versus
he volumetric flow-rate.

The role of slip in polymer extrusion instabilities is well
stablished, especially for the stick–slip instability [2,11]. To our
nowledge, there are no reports in the literature concerning the
ffect of slip on annular extrusion. The theoretical explanations
uggested in the literature for the stick–slip instability are based
n the non-monotonicity of the flow curve, which exhibits a max-
mum and a minimum, and the fact that steady-state solutions
orresponding to the negative slope regime are linearly unstable
12]. These unstable solutions are thus not encountered in practice;
ressure and flow-rate oscillations are observed instead [1,12–14].
ence, the negative-slope regime of the flow curve corresponds to

he stick–slip instability. The transitions from the maximum of the
ow curve to the right positive-slope branch and from the min-

mum to the left positive-slope branch lead to a hysteresis cycle,
hich is used to describe the observed sudden flow-rate changes

n pressure-controlled experiments and the pressure and flow-rate
scillations in flow-rate-controlled ones [2]. The non-monotonicity
f the flow curve can be achieved by using non-monotonic slip laws.
uch laws relating the wall shear stress to the slip velocity and
xhibiting a maximum followed by a minimum, have been pro-
osed for polymer melts by El Kissi and Piau [15] and Adewale and
eonov [16]. Piau and El Kissi [17] also proposed a slip equation with
wo maxima and two minima for LLDPEs and PBs.

The compressibility/slip mechanism has been the most popular
xplanation for the stick–slip instability, and is the only one which is
onsistent with experimental observations. According to this mech-
nism, the periodic transitions between weak and strong slip at
he capillary wall (i.e., the jumps between the two branches of the
ow curve), which lead to the pressure and flow-rate oscillations
nd generate waves on the extrudate surface, are sustained by the
ompressibility of the melt in the reservoir. This is the mechanism
mployed in many one-dimensional phenomenological models for
he stick–slip instability (see [18] and references therein) and in
wo-dimensional finite-element simulations of the extrusion pro-
ess [19].

A full description of the Newtonian annular Poiseuille flow with
lip along the wall and the governing equations are presented in
ection 2. Three types of slip equations relating the wall shear
tress to the slip velocity are considered: (a) a linear (monotonic)
lip equation; (b) a non-monotonic piecewise linear slip equation
ith a maximum and a minimum; and (c) a non-monotonic three-

ranch slip equation consistent with experimental observations.
he numerical results for non-monotonic slip equations are pre-
ented and discussed in Section 3. The resulting flow curves indicate
hat the stick–slip instability regime is shifted to the right and its
ize is reduced as the radii ratio is reduced. This result may, at
east up to some degree, explain the absence of the stick–slip insta-
ility in annular extrusion. Our results are summarized in Section
.

. One-dimensional annular Poiseuille flow with slip

We consider the one-dimensional steady-state Poiseuille flow of
Newtonian fluid in an annulus of radii �R and R, with 0 < � < 1,
s shown in Fig. 1. It is assumed that slip occurs along the walls
ollowing a general slip equation relating the magnitude of the wall
hear stress, �w, to the slip velocity, uw:

w = F(uw) (1)
Fig. 1. Geometry and boundary conditions for the annular Poiseuille flow with slip
along the walls.

where F is a known function. Due to the fact that the wall shear
stresses at the inner and outer cylinders are not the same, the slip
velocities along the two walls are not equal. Let us denote the slip
velocities along the inner and outer walls by uw1 and uw2, respec-
tively. It is a simple exercise to show that the axial velocity uz and
the shear stress �rz are given by the following general expressions:

uz(r) = uw2 − uw1 − uw2

ln(1/�)
ln

r

R

+ 1
4�

(
−∂p

∂z

)
R2

[
1 −

(
r

R

)2
+ 1 − �2

ln(1/�)
ln

r

R

]
(2)

and

�rz(r) = −1
2

(
−∂p

∂z

)
r + �

[
1

4�

1 − �2

ln(1/�)

(
−∂p

∂z

)
R2 − uw1−uw2

ln(1/�)

]
1
r

(3)

where � is the constant viscosity and (−∂p/∂z) is the imposed pres-
sure gradient. It is also clear that the slip velocities obey the slip
equation, i.e.

�rz(�R) = F(uw1) and �rz(R) = −F(uw2). (4)

Substituting into Eq. (3) and after some little algebra, one finds
that uw1 and uw2 satisfy the following two equations:

1
2

(1 − �2)

(
−∂p

∂z

)
R = �F(uw1) + F(uw2) (5)

and

2�

R
(uw1 − uw2) = �F(uw1) + F(uw2)

−2� ln(1/�)
1 − �2 [F(uw1) + �F(uw2)] . (6)

Integrating the velocity given by Eq. (2) over the annular cross
section and substituting the pressure gradient from Eq. (5) lead to
the following general expression for the volumetric flow-rate:

Q = �R2

[
uw2 − �2uw1 + 1 1 − �2

(uw1 − uw2)

]

2 ln(1/�)

+ �

4�
R3

[
1 + �2 − 1 − �2

ln(1/�)

]
[�F(uw1) + F(uw2)] . (7)
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.1. Linear slip

Let us assume that the slip equation is linear, i.e.

w = F(uw) = ˇuw (8)

here ˇ is a known slip parameter. Substituting into Eq. (6) and
olving for uw2, one gets

w2 = ˛uw1 (9)

here

= (2/A) − � + ((2� ln(1/�))/(1 − �2))
(2/A) + 1 − ((2�2 ln(1/�))/(1 − �2))

(10)

nd A is a dimensionless slip number defined by

≡ ˇR

�
. (11)

The variation of ˛ with the radii ratio is illustrated in Fig. 2 for
arious values of the slip number. It turns out that ˛ < 1, which
mplies that the outer slip velocity, uw2, is always smaller than the
nner slip velocity, uw1. As � approaches unity, uw2 approaches uw1,

hich is expected, since for small (1 − �) the flow is equivalent to
he plane Poiseuille flow, in which the velocity profile is symmetric.

oreover, in the limit of full slip (A = 0), ˛ = 1 and the velocity
rofile is flat.

Substituting Eqs. (8) and (9) into Eqs. (5) and (7) leads to

1
2

(1 − �2)

(
−∂p

∂z

)
R = ˇ(� + ˛)uw1 (12)

nd

= �(1 − �2)R2uw1

{
˛ − �2

1 − �2
+ 1

2
1 − ˛

ln(1/�)

A
[

1 + �2 1
] }
+
4 1 − �2

−
ln(1/�)

(� + ˛) . (13)

Combining the above two equations we get the generalized
agen–Poiseuille equation:

Fig. 2. Variation of ˛ for various values of the slip number A (linear slip).
an Fluid Mech. 159 (2009) 1–9 3

Q = �

2�
R4

(
−∂p

∂z

)
(1 − �2)

{
˛ − �2

A(˛ + �)
+ (1 − �2)(1 − ˛)

2A(˛ + �) ln(1/�)

+1
4

[
1 + �2 − 1 − �2

ln(1/�)

]}
. (14)

Scaling lengths by R, the velocity by the mean velocity V in the
annulus, and the pressure by �V/R, and using stars to denote the
dimensionless variables, we find that

u∗
w1 =

{
˛−�2

1 − �2
+ 1 − ˛

2 ln(1/�)
+A(�+˛)

4

[
1+�2

1 − �2
− 1

ln(1/�)

]}−1

. (15)

and

u∗
w2 = ˛u∗

w1. (16)

The dimensionless pressure gradient and the axial velocity pro-
file can be calculated in terms of u∗

w1 as follows:

(
−∂p

∂z

)∗
= 2A

� + ˛

1 − �2
u∗

w1 (17)

and

u∗
z(r) = u∗

w1

{
˛ − 1 − ˛

ln(1/�)
ln r∗ + A(� + ˛)

2(1 − �2)

×
[

1 − r∗2 + 1 − �2

ln(1/�)
ln r∗

]}
. (18)

The dependence of u∗
w1 on � is illustrated in Fig. 3 for various

values of A. In Fig. 4 representative velocity profiles for � = 0.1
and 0.5 are plotted. As already mentioned, the outer slip velocity is
always smaller than the inner slip velocity. For A = ∞, u∗

w1 = u∗
w2 =

0 and the well-known velocity profiles corresponding to no slip are
obtained. In the other extreme, for A = 0 (full slip), u∗

w1 = u∗
w2 = 1

and the velocity profiles are flat.

In order to construct dimensionless flow curves, i.e. plots of

the pressure gradient versus the volumetric flow-rate, an arbi-
trary velocity scale (instead of the mean velocity in the annulus)
is employed. Moreover, for the sake of simplicity, stars are dropped

Fig. 3. The dimensionless slip velocity u∗
w1 for various values of the slip number A

(linear slip).
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Fig. 5. The pressure gradient versus the volumetric flow-rate in the case of linear
slip for (a) � = 0.1 and (b) � = 0.9.
ig. 4. Dimensionless velocity profiles for (a) � = 0.1 and (b) � = 0.5 and various
alues of the slip number A (linear slip).

ereafter. From Eq. (14) we find that

−∂p

∂z

)
= Q/(1 − �2)

[(˛ − �2)/(A(˛ + �))] + [((1 − �2)(1 − ˛))/(2A(˛ + �)
× ln(1/�))] + [(1/4)(1 + �2 − {(1 − �2)/ ln(1/�)})]

.

(19)

The flow curves for different slip numbers and � = 0.1 and 0.9
re given in Fig. 5. Naturally, the slope of the flow curve increases
ith A (as slip is reduced) and � (as the annular gap is reduced). In
log–log plot (Fig. 6) the flow curves are parallel lines of slope 1
hich are translated to the left as A and/or � are increased.

.2. Non-monotonic slip

Let us consider a generic non-monotonic slip equation with
maximum followed by a minimum, as shown in Fig. 7. It is
ell known that solutions with slip velocities corresponding to
he negative-slope regime of the slip equation are linearly unsta-
le and associated with the stick–slip instability [1,12,14]. Hence,
hen at least one of the two slip velocities is in the unstable

egime, the steady-state solutions of annular Poiseuille flow are
nstable. Fig. 6. Flow curves for � = 0.1 and 0.9 in the case of linear slip.
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Fig. 8. The piece-wise linear non-monotonic slip equation (Model 1).

tion Hatzikiriakos and Dealy [21] proposed for the left branch of
their flow curve after substituting all parameters and taking the
normal stress as infinite. The right positive-slope branch is the
power-law slip equation suggested by the same researchers for the
right branch of their flow curve. Finally, the negative-slope branch,

Table 1
Values of the parameters in the original non-monotonic slip Model 2.

Parameter Value

˛1 ((MPa)−m1 cm/s) 125.09
m1 3.23
˛2 ((MPa)−m2 cm/s) 1000
m2 2.86
˛ ((MPa)−m3 cm/s) 5.484 × 10−3
ig. 7. Multiple steady-state solutions in the case of a non-monotonic slip equation.
hen the inner slip velocity uw1 is specified, then the outer slip velocity uw2 is the

ntersection of the slip equation and the straight line defined by Eq. (22).

Let us also assume that the inner slip velocity uw1 is given. From
he dimensionless form of Eq. (6), one can then easily deduce that

w2 = F(uw2) = [2 ln(1/�) − 1 + �2]�F(uw1)+2(1 − �2)(uw1−uw2)
1 − �2 − 2�2 ln(1/�)

(20)

In other words, uw2 can be found as the intersection of the slip
unction:

= F(uw) (21)

nd the straight line:

= [2 ln(1/�) − 1 + �2]�F(uw1) + 2(1 − �2)(uw1 − uw)
1 − �2 − 2�2 ln(1/�)

(22)

hich is of the negative slope:

m = − 2(1 − �2)
1 − �2 − 2�2 ln(1/�)

(23)

recall that uw1 is given). Hence for certain values of uw1 and �
here might be three solutions for uw2, as illustrated in Fig. 7. If uw1
s in the unstable regime, then all three steady-states are unstable.
therwise, only one of the three steady-states is unstable.

We will consider two different cases of non-monotonic three-
ranch slip equations, referred to here as (slip) Models 1 and 2.
odel 1 is the simplest possible piecewise linear slip equation

nvolving a minimal number of material parameters:

w =

⎧⎨
⎩

A1uw, 0 ≤ uw ≤ u1

A1u1 + A2u2 − A1u1

u2 − u1
(uw − u1), u1 ≤ uw ≤ u2

A2uw, u2 ≤ uw

(24)

here A1 and A2 are the slip numbers corresponding to the two
ositive-slope branches and u1 and u2 define the range of the
egative-slope branch of the slip equation, as illustrated in Fig. 8.

Model 2 is the non-monotonic three-branch slip equation
mployed by Georgiou and co-workers [19,20] based on the exper-
mental data of Hatzikiriakos and Dealy [21]. The notation of the
atter authors is kept here for this piecewise power-law slip model:
w =

⎧⎪⎨
⎪⎩

˛1�m1w , 0 ≤ uw ≤ uc2

˛3�m3w , uc2 ≤ uw ≤ umin

˛2�m2w , uw ≥ umin

. (25)
Fig. 9. The non-monotonic three-branch slip Model 2 (log–log plot).

The difference of Model 2 from Model 1 is that the three branches
are straight segments in a log–log plot instead of a linear plot, as
illustrated in Fig. 9, where some of the model parameters are also
defined. The left positive-slope branch results from the slip equa-
3

m3 −4.434
�c2 (MPa) 0.27
�min (MPa) 0.19
vc2 (cm/s) 1.82
vmin (cm/s) 8.65
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Fig. 10. Steady-state solutions for � = 0.9 with the piecewise linear slip Model 1: (a)
the unique solutions for uw2 when uw1 = 0.5 and 0.85 are found as the intersections
of the straight lines defined by Eq. (22) with the slip equation; (b) the corresponding
velocity profiles. The dashed lines show the unstable regime for wall slip velocities;
A1 = 4, A2 = 1, u1 = 0.4 and u2 = 0.6.

Fig. 11. Regimes of multiple and simple steady states with the piecewise linear slip
Model 1; A1 = 4, A2 = 1, u1 = 0.4 and u2 = 0.6.
an Fluid Mech. 159 (2009) 1–9

which corresponds to the unstable region of the flow curve for
which no measurements have been possible, is just the straight
line connecting the other two branches in a log–log plot. Thus,

m3 =
ln

(
uc2/umin

)
ln

(
�c2/�min

) and a3 = uc2

�m3
c2

.

The dimensionless form of Eq. (25) is

uw =

⎧⎪⎨
⎪⎩

A1�m1w , 0 ≤ uw ≤ uc2

A3�m3w , uc2 ≤ uw ≤ umin

A2�m2w , uw ≥ umin

. (26)

The dimensionless numbers that appear in this equation are
defined as follows:

ai�
mi Vmi
Ai ≡
Rmi

, i = 1, 2, 3, (27)

and the dimensionless values of uc2 and umin correspond to

�∗
c2 ≡ �c2R

�V
and �∗

min ≡ �minR

�V
, (28)

Fig. 12. Multiple steady-state solutions for � = 0.1 with the piecewise linear slip
Model 1: (a) the three solutions for uw2 when uw1 = 0.85 are found as the inter-
sections of the straight line defined by Eq. (22) and the slip equation; (b) the
corresponding velocity profiles. The dashed lines show the unstable regime for wall
slip velocities; A1 = 4, A2 = 1, u1 = 0.4 and u2 = 0.6.
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espectively. The dimensional parameters of the above slip equation
re given in Table 1.

. Numerical results

In order to study the phenomena caused by non-monotonic slip,
e first considered the piecewise linear slip Model 1 with A1 = 4,

2 = 1, u1 = 0.4 and u2 = 0.6. Recall that steady-states with one or
oth slip velocities in the interval (0.4, 0.6) are linearly unstable. As
xplained below, in the case of annuli with a small gap, e.g. with
= 0.9, there are no multiple solutions. In Fig. 10 a, we plot slip
odel 1 with the straight lines defined by Eq. (22) when uw1 = 0.5

nd 0.85. Since there are no multiple solutions, the straight lines

ntersect the slip equation once. The unique velocity profiles for
he two values of uw1 are shown in Fig. 10 b. The first is unstable,
ince the two slip velocities, uw1 and uw2, are in the unstable regime
f the slip equation, whereas the second velocity profile is stable.

ig. 13. The outer slip velocity uw2 as a function of the inner slip velocity uw1 cal-
ulated using the piecewise linear slip Model 1 with A1 = 4, A2 = 1, u1 = 0.4 and
2 = 0.6. The dashed lines show the unstable regime for wall slip velocities.

ig. 14. Flow curves for � = 0.1 and 0.9 obtained using the piecewise linear Model
with A1 = 4, A2 = 1, u1 = 0.4 and u2 = 0.6. The dashed lines show the flow curves

n the case of linear slip with A = A1 = 4.
an Fluid Mech. 159 (2009) 1–9 7

In both cases, slip is so strong that the velocity profiles are almost
plug.

It is easily deduced that a necessary and sufficient condition for
having multiple steady states in the case the negative-slope branch
of a non-monotonic slip equation is a straight line of slope −m∗ is
m∗ > m, where m is the slope of the straight line defined by Eq. (22).
Hence, the critical radii ratio �∗ below which multiple solutions are
admissible is the solution of

m∗ = 2(1 − �∗2)
1 − �∗2 − 2�∗2 ln(1/�∗)

. (29)

As illustrated in Fig. 11, multiple steady states exist only for low val-
ues of the radii ratio (below �∗). Moreover, since m ≥ 2, if the slope
of the unstable branch of the slip equation is less than 2, there exist
no multiple solutions, irrespective the value of �. It should be noted
that in the extreme, practically unattainable case when � = �∗ and
uw1 assumes a certain theoretical value, the straight line defined by
Eq. (22) coincides with the negative-slope branch of the piecewise
linear slip equation, which implies the existence of infinitely many
unstable (and thus not observable) steady-state solutions. In Fig. 12
we present results obtained with � = 0.1. For uw1 = 0.85 (i.e. for
a stable value of the inner slip velocity) there exist three possible
solutions for uw2, only one of which falls in the unstable regime
(Fig. 12a). The two stable as well as the unstable velocity profiles
are shown in Fig. 12 b.

In Fig. 13, the inner slip velocity uw1 is plotted versus the outer
slip velocity uw2 for both � = 0.1 and 0.9. It is observed that for high
values of � the plot is a straight line and both the inner and outer slip
velocities (which are close to each other) fall in the unstable regime
almost simultaneously, since the velocity profile is almost symmet-
ric. This is expected, since as � → 1, the plane Poiseuille flow is
approached in which the velocity profile is symmetric. At reduced
values of � the velocity profile is more asymmetric so that uw2 is sta-
ble for all values of uw1 in the unstable regime. More importantly,
the range of uw2 values corresponding to unstable uw1 is rather
narrow, which implies that the range of volumetric flow-rates cor-
responding to such solutions is narrow as well. It is also clear that
in a range of higher values of uw1, there correspond three solutions

for uw2, of which only one is unstable.

The above observations have direct impact on the flow curves,
which are given in Fig. 14. For high values of �, due to the non-
monotonicity of the slip equation, there exists a rather wide
unstable regime in which the slope of the flow curve is negative,

Fig. 15. Non-monotonic slip Models 2a and 2b.
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Fig. 16. Multiple steady-state solutions for � = 0.1 with the non-monotonic slip
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Table 2
Dimensionless parameters of non-monotonic slip Models 2a and 2b.

Dimensionless number Model 2a Model 2b

m1 3.23 3.23
A1 0.0583 0.0583
m2 2.86 2.86
A2 0.929 0.929
m3 −4.43 −4.43

and a minimum three steady-state solutions are allowed in a certain
range of volumetric flow-rates. Such a case is illustrated in Fig. 16
a, where slip Model 2b is used with uw1 = 1.25 and � = 0.1. The
three velocity profiles are shown in Fig. 16 b. It should be noted
odel 2b: (a) the three solutions for uw2 when uw1 = 1.25 are found as the inter-
ections of the straight line defined by Eq. (22) and the slip equation; (b) the
orresponding velocity profiles. The dashed lines show the unstable regime for wall
lip velocities.

.e. a stick–slip regime. For low values of �, however, we observe
hat the negative-slope regime of the flow curve is rather narrow.
his corresponds to steady velocity profiles in which only uw1 lies in
he unstable regime of the slip equation. At a higher regime of volu-

etric flow-rates, to the same stable value of uw1 there correspond
hree steady-states. Since only one of these solutions is unstable,
ne of the two stable solutions is observed in practice, and, hence,
his regime is considered stable. Therefore, when non-monotonic
iecewise linear slip occurs along the walls and � is below a criti-
al value, there exists only a very narrow instability regime in the
ow curve, which may not be observed in practice. The size of this
egime is reduced further by reducing �. As shown below, a second
nstability regime may appear if the negative-slope branch of the
lip equation is not linear. This corresponds to a regime where uw1
s stable and only one unstable solution for uw2 is allowed.
Let us now proceed to the results obtained with the more realis-
ic slip Model 2. In addition to the original model, a modified version
ith a narrower unstable range and a steeper negative-slope branch
as also been employed, by using different values of the critical wall
hear stresses �min and �c2 and keeping the slopes of the two stable
A3 4.04 4.04
�c2 1.738 2
�min 1.223 1

branches constant. The original and the modified versions of the
model, referred to respectively as Models 2a and 2b, are plotted in
Fig. 15. The corresponding values of the dimensionless parameters
are tabulated in Table 2.

As already discussed, with slip equations exhibiting a maximum
Fig. 17. Flow curves for � = 0.1 and 0.9 obtained with the non-monotonic slip Mod-
els 2a and 2b.
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hat the intermediate solution is linearly unstable, since the outer
lip velocity uw2 corresponds to the negative-slope regime of the
lip equation [12,14].

In Fig. 17 we give the calculated flow curves for � = 0.1 and 0.9
sing Models 2a and 2b. No multiple solutions have been obtained
ith Model 2a irrespective of the value of �. The corresponding flow

urves are characterized by a stick–slip regime the size of which is
educed as � is decreased. With Model 2b, however, multiple solu-
ions are admitted below a critical value of �, e.g. for � = 0.1. For
his particular case, there are two narrow stick–slip regimes, due to
he nonlinearity of the negative-slope branch of the slip equation.
n the first regime uw1 falls into the unstable regime and in the sec-
nd uw2 is unstable while uw1 is stable; in both cases, the unstable
olutions are unique. By comparing all curves, one can conclude
hat the size of the unstable regime is reduced as � is reduced.
he instability regime is much smaller in the case of Model 2b,
hich proved to admit multiple steady-state solutions. Our calcu-

ations indicated that the range of multiple steady states increases
s the radii ratio � is reduced. As � is reduced the stick–slip regimes
ove to the right (i.e. to higher flow rates) and their sizes are

educed. These observations may explain, at least partially, the fact
hat the stick–slip instability is not observed in annular extrusion
xperiments.

. Conclusions

The annular Poiseuille flow of a Newtonian fluid has been stud-
ed assuming that slip occurs along the walls. In addition to the
tandard linear slip equation, two non-monotonic slip equations
xhibiting a maximum and a minimum, have also been consid-
red. Due to the asymmetry of the velocity profile the slip velocities
t the inner and outer cylinders of the annulus are not the same.
he shape of the flow curve depends on the radii ratio, �, and the
orm of the slip equation. The flow curve is always monotonic in
he case of linear slip. Using a non-monotonic slip equation results
n a non-monotonic flow curve with one or two narrow unstable
egative-slope branches that correspond to the stick–slip extrusion

nstability regime.
In general, when � is relatively high, the flow curve exhibits

negative-slope stick–slip branch which corresponds to steady-
tate solutions with at least one of the two slip velocities being
n the unstable regime of the slip equation. This stick–slip insta-
ility regime is shifted to the right and its size is reduced as � is
ecreased. For low values of �, the flow curve may exhibit two
arrow negative-slope branches. The first of them corresponds to
teady-state solutions with unstable inner slip velocity and sta-
le outer slip velocity, while in the second one the opposite is
rue. Again, the sizes of the two unstable regimes are reduced
s � is decreased. It has been demonstrated that for certain non-

onotonic slip equations multiple steady states are allowed below
critical value of �. More specifically, to a given stable value of the

nner slip velocity there correspond three values of the outer slip
elocity, only one of which is in the unstable regime. Due to the
xistence of the other two stable steady-state solutions, the sec-

[

[

an Fluid Mech. 159 (2009) 1–9 9

ond stick–slip instability regime may be eliminated and the flow
curve may exhibit only a vertical jump. These observations may
explain the absence of the stick–slip instability in annular extrusion
experiments when � is small.

In the present study, we have considered the Newtonian flow
in order to demonstrate more clearly the effects of slip. In a more
realistic simulation of the stick–slip instability, using a generalized-
Newtonian or a viscoelastic constitutive equation will be more
appropriate. An interesting question that arises is whether there
exists a selection mechanism for the two stable steady-states when
the corresponding unstable steady-state is perturbed. This is the
subject of our current investigations.
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