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Flow instabilities of Herschel–Bulkley fluids
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Abstract

We investigate numerically the interactions of two-dimensional jets of Bingham plastic and Herschel–Bulkley
fluids with a vertical surface at a distance from the die exit. This problem simulates the early stages of filling of
a planar cavity. Our main objective is to explain the flow instabilities observed during the processing of semisolid
materials. The effects of the Reynolds and Bingham numbers and of the inlet boundary conditions on both the filling
and the stability of the jet are established by means of numerical time-dependent calculations.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Recent cavity-filling experiments with semisolid materials, e.g. aluminum slurries, have shown that
filling patterns are often irregular and unpredictable, pointing to the existence of flow instabilities which
limit the rate of production and affect the final quality of the parts being made.Fig. 1shows an experimental
observation of the so-called “toothpaste” effect which is a typical flow instability observed in semisolid
metal processing (SSMP). As the figure shows, even though the two arms are initially symmetric, after
the jet hits the closed end of the cavity, the left arm develops a wave-like pattern. The name “toothpaste”
comes from the similarity between this instability and the toothpaste behavior when forced out of its tube.
A similar jet profile is also shown inFig. 2. Obviously, such instabilities are undesirable, as they lead to
non-uniformities and increase defects such as the porosity in the final parts.

Investigations by Midson et al.[1,2] provide further evidence of these instabilities, and demonstrate
experimentally that slow filling yields the ‘best’ die filling behavior, with mostly laminar flow, and the
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Fig. 1. Flow instability in SSMP: toothpaste behavior. Filling from the center towards the arms (Courtesy of Aluminium Pechiney).

least amount of material folding. In general, the instabilities originate at the point where the filling front in
the form of a jet meets the wall of the cavity. Therefore, the jet-vertical wall flow arrangement represents
well the early stages of filling of a two-dimensional cavity.

Semisolid slurries are known to exhibit yield stress,τo, that is a strong increasing function of the solid
fraction, i.e. a decreasing function of the temperature[3]. The most commonly used model to describe
fluids with yield is the Bingham model[4,5]:

γ̇
¯̄

= 0 for τ ≤ τo, (1)

τ
¯̄

=
(
η+ τo

γ̇

)
γ̇
¯̄

for τ > τo, (2)

whereτ
¯̄

is the viscous stress tensor,γ̇
¯̄

the rate of deformation tensor, defined as

γ̇
¯̄

= 1
2[∇u + (∇u)T], (3)

Fig. 2. Flow instability in SSMP: toothpaste behavior. Filling from the right to the left (Courtesy of Aluminium Pechiney).
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u is the velocity vector, and T denotes the transpose of the velocity gradient tensor,∇u. In Eqs. (1)
and (2), τ andγ̇ are, respectively, the second invariants of the stress and rate of strain tensors, andη is
the viscosity of the deformed material. The rheological behavior of a Bingham fluid is characterized by
two different flow regimes: ifτ ≤ τo, the material behaves as a rigid solid, whereas, ifτ ≥ τo, it flows
with apparent viscosityηapp = η+ (τo/γ̇). The two distinct fluid regions, yielded(τ > τo) and unyielded
(τ < τo), are separated by the “yield surface” defined as the surface whereτ = τo.

The Herschel–Bulkley model is a generalization of the Bingham model that takes into account changes
in the effective viscosity with the applied shear rate through a power-law behavior:

η = κγ̇n−1, (4)

wheren andκ are, respectively, the power-law exponent and the consistency index.
In numerical modeling, in addition to the non-linearities in the governing equations, an inherent diffi-

culty of the Bingham and Herschel–Bulkley models is that they are discontinuous. Due to the presence
of γ̇ in the denominator ofEq. (2), at vanishing shear rates, the apparent viscosity becomes unbounded.
Also, while calculating the velocity field, the shape and location of the yield surface are unknown. This
introduces significant difficulties in the simulations of complicated problems that are only amenable to
numerical analysis. To overcome these issues, several modified versions ofEqs. (1) and (2)have been
proposed that approximate the rheological behavior of the fluid to be valid uniformly at all levels of stress
[6–9]. Papanastasiou[6] introduced a regularization parameterm that controls the exponential rise in the
stress at low rates of strain:

τ
¯̄

=
[
η+ τo

1 − exp(−mγ̇)
γ̇

]
γ̇
¯̄
. (5)

The parameterm has dimensions of time. The Papanastasiou model can be generalized to the Herschel–
Bulkley fluid by specifyingη = κγ̇n−1. The Bingham-plastic behavior is approximated for relatively
large values ofm. According toEq. (5), for γ̇ ≈ 0, the apparent viscosity is finite, given byηapp ≈
(η+mτo). Papanastasiou validated this model on several simple flows, such as one-dimensional channel
flow, two-dimensional boundary layer flow, and extrusion flow[6]. The accuracy and effectiveness of
generalized models, such as the one described byEq. (5), in representing fluids with yield stress has
been demonstrated for various flows by Ellwood et al.[10], Mitsoulis et al.[11], Tsamopoulos et al.[12],
Blackery and Mitsoulis[13], Beaulne and Mitsoulis[14], Burgos and coworkers[9,15], Smyrnaios and
Tsamopoulos[16], and Alexandrou et al.[17].

The use of regularized models can be supported by experimental data reported by Ellwood et al.[10],
Keentok et al.[18] and Dzuy and Boger[19], which demonstrate that, in certain cases, a continuous model
provides a better approximation to experimental data than the ideal model. Therefore, it is postulated that
the ideal Bingham model may be only a theoretical idealization.

In a recent study, Alexandrou et al.[20] investigated the filling of a planar cavity with Bingham fluids
by means of time-dependent, finite-volume calculations using the Papanastasiou model. They examined
the relative importance of inertial, viscous and yield stress effects on the filling profiles. They identified
five characteristic filling patterns: “mound,” “disk,” “shell,” “bubble” and a “transition” between that
of “mound” and “bubble” patterns. A summary of these different flow behaviors is shown inFig. 3, in
which the flows are from the right to the left. These characteristic flow patterns highlight the important
role of the finite yield stress in Bingham fluids. Experimental studies confirmed the existence of the
numerically obtained patterns; the “mound,” “disk,” and “shell” patterns have been observed by Paradies
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Fig. 3. Summary of the flow patterns observed in 2-D die filling[20]. All flows are from the right to the left. (a)Re = 50,Bi = 0;
(b) Re = 0.05,Bi = 0.2; (c) Re = 50,Bi = 10; (d)Re = 50,Bi = 200; (e)Re = 12,Bi = 9.4.

and Rappaz[21] in semisolid processing. Recent experimental results by Koke et al.[22] also confirmed
these patterns by using model substances such as chocolate cream, calcium-carbonate/oil suspension,
tomato paste, ultrasonic gel and Newtonian silicone oil.

The main objective of the present work is to investigate by means of time-dependent finite-element
calculations the stability of jets of Bingham-plastic and Herschel–Bulkley fluids emanating from a die
and impinging on a vertical wall. As discussed above, this flow arrangement simulates also the early
stages of filling of a two-dimensional cavity. These flows are in reality the stable configurations of the
flows examined by Alexandrou et al.[20]. Since their results were obtained using a finite volume method,
for validation purposes, we also simulated the cases considered in[20]. In Section 2, the governing
equations and the boundary and initial conditions are presented. InSection 3, the numerical method is
briefly discussed. InSection 4, the numerical results are presented and discussed. Finally, inSection 5,
we provide a summary of the results and draw conclusions.

2. Governing equations and numerical method

The schematic of the flow problem is shown inFig. 4. The 2-D geometry is characterized by the inlet
section (lengthl and heightH). The material is injected in the die from the left side and hits the vertical
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Fig. 4. Geometry of the two-dimensional cavity and initial position of the jet.
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solid surface at a distanceL away. The flow is modeled using the conservation of mass and momentum
for an incompressible fluid:

∇ · u = 0, (6)

ρ

[
∂u

∂t
+ u · ∇u

]
= ∇ · σ

¯̄
, (7)

whereρ is the density of the fluid, andσ
¯̄

the total stress tensor, given by

σ
¯̄

= −p I
¯̄
+ τ

¯̄
.

Here,p represents the total pressure andI
¯̄

the unit tensor. The body force per unit volume due to gravity
has been neglected.

The set of governing equations (Eqs. (6) and (7)) are non-dimensionalized using the following scales:

x∗
i = xi

H
, t∗ = t

H/Uo
, u∗ = u

Uo
, p∗ = p

τo
, τ

¯̄
∗ = 1

τo
τ
¯̄
, σ

¯̄
∗ = 1

τo
σ
¯̄
, (8)

where the asterisks denote the non-dimensional variables, andUo is the average inlet velocity. With the
above scalings, the imposed volumetric flow rate is equal to unity. The non-dimensionalized governing
equations become:

∇ · u∗ = 0, (9)

and

Re

[
∂u∗

∂t∗
+ u∗ · ∇u∗

]
= Bi ∇ · σ

¯̄
∗, (10)

whereRe andBi are the Reynolds and Bingham numbers, respectively, defined by

Re = ρU
(2−n)
o Hn

κ
and Bi = τoH

n

κUn
o

, (11)

in the case of a Herschel–Bulkley fluid, and by

Re = ρUoH

η
and Bi = τoH

ηUo
(12)

in the case of a Bingham fluid.
The dimensionless form of the regularized Herschel–Bulkley constitutive relation is:

τ
¯̄
∗ =

[
1

Bi
γ̇∗(n−1) + [1 − exp(−m∗γ̇∗)]

γ̇∗

]
γ̇
¯̄
∗, (13)

whereγ̇
¯̄
∗ is the dimensionless rate of strain tensor,γ̇∗ denotes its second invariant, andm∗ the dimen-

sionless growth exponent:

γ̇
¯̄
∗ = 1

Uo/H
γ̇
¯̄
, γ̇∗ = γ̇

(Uo/H)2
, m∗ = mUo

H
. (14)
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Fig. 5. Boundary conditions.

2.1. Boundary and initial conditions

The boundary conditions for the flow problem studied here are shown inFig. 5. Along the two walls
of the die and the vertical wall, the velocity is set to zero (no slip). Along the two free surfaces, surface
tension is neglected, and thus the normal and tangential stress components vanish:

n · τ
¯̄

= 0, (15)

wheren is the outward unit normal vector to a free surface. Another condition at the two free surfaces is
the kinematic one,

∂h

∂t
+ ux

∂h

∂x
− vy = 0, (16)

which provides the additional equation required for the calculation of the unknown positions of the two
free surfaces,h1(x, t) andh2(x, t).

At the entrance plane, taken at a distancel from the die exit, they-velocity component is set to zero.
In all the runs thex-velocity is assumed to be (at all times) the parabolic solution corresponding to the
fully-developed channel flow of a Newtonian fluid, such that the dimensionless volumetric flow rate
Q = 1. As explained below, for the unsteady cases the symmetry of the velocity profile is altered initially
for a short time�t in order to simulate the instabilities. Note also that since the velocity distribution
of fully developed channel flow of Herschel–Bulkley fluids is not exactly parabolic, the inlet length is
fixed at a distancel from the die exit in order to allow the profile to develop fully prior to reaching the
exit. The selected lengthl = 5, is found to be sufficiently long to ensure that the flow prior to the exit
is indeed fully developed. As discussed later inSection 4, in order to simulate the toothpaste effect, a
brief artificial disturbance is introduced to disrupt the symmetry of the flow leading to an asymmetric,
piecewise-parabolic profile.

The initial condition corresponds to the steady-state solution of the same flow in the case of flat free
surface and in the absence of the vertical wall, i.e. the solution of the die-swell flow problem. The
time-dependent calculations are initiated by introducing the vertical wall by setting the exit velocity to
zero,Fig. 5.
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3. Finite element formulation

The continuity and momentum equations are discretized in space, using the classical mixed-Galerkin
finite element method with nine-velocity-node and four-pressure-node quadrilateral elements, and inte-
grated in time using fully-implicit finite differences. The unknown positions of the two free surfaces are
calculated simultaneously with the velocity and pressure fields. Quadratic basis functions are introduced,
in order to expand the unknown positions,h1 andh2, of the two free surfaces and to weight the kinematic
condition. At each time step, the resulting non-linear discretized system of equations is solved using the
Newton–Raphson method. At each Newton iteration, the finite-element mesh is automatically restruc-
tured according to the new positions of the two free surfaces using the spine technique while the number
of elements is kept the same. More details about the numerical method are given in refs.[23,24].

4. Numerical results

As stated earlier, in this work, we concentrate on a problem equivalent to that of the early stages of die
filling, i.e. the interaction of a Herschel–Bulkley fluid jet and a vertical surface at a distanceL from the
die exit and we study the interplay between inertia, viscous drag and yield stress, or as expressed in terms
of force per unit depth,Fi ≡ ρU2

oH , Fv ≡ ηUo, andFτo ≡ τoH , respectively. The Reynolds number
represents theFi/Fv ratio, while the Bingham number indicates theFτo/Fv ratio. The effects ofRe and
Bi are investigated using the two-dimensional geometry shown inFig. 4.

The parameterm in the regularized model is set to a value ofm = 1000, which is found to be
sufficiently high to insure converged results with respect tom. A more pertinent study of the effect ofm
on the accuracy of the results can be found in[9,15]. The reported results are also mesh and time-step
independent. A typical finite element mesh used in the simulations is shown inFig. 6. This is refined around
flow singularities and in regions where gradients are large (i.e. around the die exit and the end-wall).

Fig. 7 shows results forn = 1 (Bingham plastic) and conditions similar to those in[20]. The five
typical flow behaviors reported in[20] and shown inFig. 3, i.e. the “shell”, “disk”, “mound”, “bubble”
and “transition” patterns, have been reproduced here as well, providing thus further supporting evidence
on their existence. Note that case (a) corresponds to the early stages when the jet hits the wall. Further,
simulation of this flow is not possible with the present code. It should be noted that, unlikeFig. 3, the flows
are from the left to the right. The corresponding flow parameters for these typical patterns are tabulated

Fig. 6. Geometry and finite element mesh.
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Fig. 7. Summary of the flow patterns observed for theL = 10 geometry. Yielded (light-color) and unyielded (dark-color) regions
are highlighted. The flows are from the left to the right.

in Table 1. Fig. 7 also shows the topography of the yielded and unyielded regions. We observe that
only the “bubble” and “transition” patterns exhibit significant unyielded zones. Therefore, the first three
patterns correspond to the behavior of a viscous fluid. The “bubble” and “transition” patterns, though, are
expected to be influenced by the yield stress effects. As it will be demonstrated below, flow instabilities
are primarily connected to these two patterns.

Note here that numerical simulations of flows that in real life are unstable may fail to predict flow
instabilities, due to the almost perfect symmetry of numerical results, and due to the fact that numerical
errors take a long time to grow to a magnitude that can trigger instabilities. Therefore, it is customary to
introduce an artificial disturbance to disrupt the symmetry of the flow. This artificial instability is typically
very small, and it is applied for a short duration. Here, a disturbance is introduced in the flow by imposing
at the inlet the asymmetric velocity profile ofFig. 8 for a short time�t. For t ≥ �t, the inlet velocity
is kept constant and symmetric. In both the symmetric and asymmetric cases, the volumetric flow rate is
kept constant at all times. The flow field and the jet stability are found to be independent of the magnitude
and the duration of the asymmetry.

Typical jet-wall interactions obtained numerically forL = 10 are shown inFigs. 9 and 10, as sequences
of ‘snapshots’ of the jet profile, wheret is the non-dimensional time. In both cases, the inlet velocity
profile is disturbed fromt = 0 until t = �t = 1.5. Fig. 9 shows the jet behavior at a low Reynolds
number(Re = 1) and at a moderate Bingham number(Bi = 3). For an undisturbed, symmetric velocity
profile at the inlet, these conditions lead to a “bubble” pattern. In the case of the disturbed velocity

Table 1
Parameters used for the flow patterns inFig. 7(L = 10)

Re Bi Flow Pattern

500 10 Shell
6 0.1 Disk
0.5 0.1 Mound
1 3 Bubble

10 1.7 Transition
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Fig. 8. The shape of the perturbed inlet velocity profile that is introduced for a short duration, 0≤ t ≤ �t.

profile, the emanating jet grows as a “bubble” up to a dimensionless timet ≈ 7. After this time, the
disturbance triggers an instability which forces the jet to bend, very much like the buckling of a slender
solid column. This flow behavior is very similar to what it is observed experimentally and is described
as the “toothpaste” effect. For the discussion that follows such behavior is labeled as “unstable”.

The flow shown inFig. 10is obtained forRe = 5 andBi = 1. For both symmetric and asymmetric
flow conditions the jet grows in a manner consistent with a “transition” pattern. Therefore, the initial
disturbance has no impact on the stability of the jet, and no noticeable difference can be observed between
the symmetric and asymmetric cases. In the discussion below this flow behavior is labeled as “stable.”

Fig. 11shows a complete map of the jet profiles as a function of the Reynolds and Bingham numbers
for the range 0.5 ≤ Re ≤ 50, 0< Bi ≤ 40. This map clearly shows the regions where “stable” and

Fig. 9. Toothpaste behavior,Re = 1, Bi = 3,L = 10. The disturbance is imposed fromt = 0 until t = 1.5.
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Fig. 10. Stable jet behavior,Re = 5, Bi = 1,L = 10. The disturbance is imposed fromt = 0 until t = 1.5.

Fig. 11. Stability of the jet when hitting a vertical surface(L = 10), the Reynolds and Bingham numbers being the control
parameters.(�) “mound” pattern;(�) “disk” pattern;(�) “bubble” pattern;(�) “transition” pattern. The hollow symbols (�

and�) represent the cases discussed in detail and pictured on the map. The estimated boundary between the stable and unstable
behaviors has been sketched in. Stable and unstable behaviors are, respectively, below and above this limiting line.
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“unstable” patterns occur. The estimated boundary between these two zones is sketched in order to
demarcate the range ofRe andBi which they correspond to. On this map, the symbols�, �, � and�

represent, respectively, the “mound,” “disk,” “bubble” and “transition” patterns. The hollow symbols (�

and�) represent the cases discussed in detail (Figs. 9 and 10). As speculated, while the “bubble” pattern
leads to unstable jet behavior, “shell,” “disk” and “mound” patterns are stable and most of the “transition”
cases lead to stable jet profiles. The “bubble” pattern is very sensitive to flow instabilities, that prevent
this pattern to develop. These numerical results explain why experimental observations of the “bubble”
pattern are not as common as the other patterns. It is concluded from the results that the instabilities are
the result of the finite yield stress and the way yielded and unyielded regions interact with each other.

The effect of the distance between the die exit and the vertical wall is established by using three different
lengthsL = 10, 15 and 20.Fig. 12highlights this effect on the stability of the jet forRe = 1 andBi = 0.7.
The jet behavior is either stable and symmetric(L = 10) or unstable and toothpaste-like (L = 15 and
20). This demonstrates that the longer the distance of the wall from the slit exit, the more likely it is to
observe the toothpaste instability.Fig. 13summarizes this behavior for the three lengths used. The map
shows the estimated boundaries between stable and unstable jet behavior.

Fig. 12. Stability of the flow (Re = 1, Bi = 0.7) for three different jet lengths: (a)L = 10; (b)L = 15; (c)L = 20.
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Fig. 13. Estimated stability limits for different jet lengths:L = 10 (solid line),L = 15 (dashed line) andL = 20 (dash-dotted
line).

Fig. 14. Estimated stability limits for different power-law coefficients:n = 1 (solid line),n = 0.5 (dashed line) andn = 1.5
(dash-dotted line).
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The results shown so far are for Bingham fluids(n = 1). The effect of the power-law exponent is
studied by considering two new cases: one corresponding to a shear-thinning fluid(n = 0.5) and another
to a shear-thickening fluid(n = 1.5). For both cases, the distance of the wall from the exit is set toL = 15.
Fig. 14shows the corresponding stability diagrams. Again, limiting lines separate stable and unstable
behaviors. A shift between the three limiting lines can be observed: the smaller the power-law index, the
more unstable the flow is. In other words, a shear-thinning behavior is more sensitive to instabilities than
a shear-thickening one. It appears also that the power-law index becomes less important (actually it is not
important at all) for large values ofBi. This is due to the fact that for largeBi the flow behaves more like
a solid as very little of the fluid deforms.

5. Conclusions

The numerical simulations presented in this study verify the importance of the finite yield stress in
Herschel–Bulkley flows. The results confirm the existence of five characteristic flow patterns (“shell,”
“disk,” “mound,” “bubble” and “transition”) that have been observed both experimentally and numerically.
By controlling flow parameters, one may be able to a priori fix the jet behavior which leads to desirable
quality and properties of the final parts.

In actual Herschel–Bulkley flows, the injection process is very sensitive to flow instabilities which may
lead to irregular and unpredictable filling patterns. This undesired behavior is likely to happen at distinct
combinations of flow parameters. Stability maps of the injection process have been drawn as a function of
these parameters. It is concluded that the most unstable pattern is that of “bubble” and to a lesser degree
that of the “transition” pattern, primarily due to the effects of the yield stress.
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