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Abstract

We solve the time-dependent, compressible Poiseuille and extrudate-swell flows of a shear-thinning fluid that
obeys the Carreau constitutive model, using finite elements in space and a fully-implicit scheme in time. Slip is
assumed to occur along the die wall following a non-monotonic slip equation that relates the wall shear stress to the
slip velocity and is based on experimental measurements with polyethylene melts. Thus, the resulting flow curve
is also non-monotonic, and consists of two stable positive-slope branches and a linearly unstable negative-slope
branch. The steady-state numerical results compare well with certain analytical solutions for Poiseuille flow. The
time-dependent calculations at fixed volumetric flow rates demonstrate the existence of periodic solutions in the
unstable regime, due to the combination of compressibility and slip. Self-sustained oscillations of the pressure-drop
and of the mass-flow rate are obtained. In the extrudate region, high-frequency, small amplitude waves are generated
on the free-surface, which also oscillates radially. The wavelength and the amplitude of the free-surface waves and
the amplitude of the oscillations in the radial direction are reduced, as the Reynolds number is decreased and
approaches the conditions of the experiments.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Slip at the wall is considered to be a key factor in polymer extrusion instabilities, such as the stick–slip
instability. A recent review article discussing wall slip and extrusion instabilities is provided by Denn
[1]. Recent work concerning numerical modeling of polymer extrusion instabilities observed beyond the
sharkskin regime, i.e. the stick–slip and gross-melt-fracture instabilities, has been reviewed by Achilleos
et al. [2] who discuss three different mechanisms of instability: (a) combination of nonlinear slip with
compressibility: (b) combination of non-linear slip with elasticity; and (c) constitutive instabilities. The
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objective of the present work is to investigate further the compressibility–slip instability by means of
numerical simulations.

The compressibility–slip mechanism has been tested by Georgiou and Crochet[3] in the Newtonian
case, with the use of an arbitrary non-monotonic slip equation relating the wall shear stress to the slip
velocity. These authors numerically solved the time-dependent compressible Newtonian Poiseuille flow
with non-linear slip at the wall, showing that steady-state solutions in the negative-slope regime of
the flow curve (i.e. the plot of the wall shear stress versus the apparent shear-rate or the plot of the
pressure-drop versus the volumetric flow rate) are unstable, in agreement with linear stability analysis.
Self-sustained oscillations of the pressure-drop and of the mass-flow rate at the exit are obtained, when
an unstable steady-state solution is perturbed, while the volumetric flow rate at the inlet is kept constant.
These oscillations are similar to those observed experimentally with the stick–slip extrusion instability.
Georgiou and Crochet[4] extended their calculations to the extrudate-swell problem to obtain oscillations
of the free-surface in the unstable regime. The amplitude and the wavelength of the free-surface waves
increase with compressibility.

In the present work, we proceed to more realistic numerical simulations of a shear-thinning fluid
with an empirical slip equation that is based on the experimental measurements of Hatzikiriakos and
Dealy[5,6] with a HDPE melt. We solve the time-dependent, compressible, axisymmetric Poiseuille and
extrudate-swell flows of a Carreau fluid with slip at the wall, using finite elements in space and finite
differences in time.

In Section 2, the governing equations and the slip equation are discussed. InSection 3, we present
the analytical solutions for the steady, incompressible Poiseuille flow with slip at the wall and for the
time-dependent, compressible Poiseuille flow with no-slip. The boundary and initial conditions and the
numerical method are briefly discussed inSections 4 and 5, respectively. InSection 6, we present and
discuss both steady state and time-dependent numerical results. Finally, inSection 7, we summarize the
conclusions.

2. Governing equations

The geometries of the axisymmetric Poiseuille and extrudate-swell flows are shown inFig. 1. Letting
p, v, andσ denote the pressure, the velocity vector, and the stress tensor, respectively, the continuity and
the momentum equations for time-dependent, compressible, isothermal viscous flow in the absence of
body forces are as follows:

∂ρ

∂t
+ ∇ · ρv = 0, (1)

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · σ , (2)

whereρ is the density. For compressible, generalized Newtonian flow with the bulk viscosity neglected,
the stress tensor is written as

σ = −p(ρ)I + η(II d)(2d − 2
3I∇ · v), (3)

whereI is the unit tensor,d the rate-of-deformation tensor, defined as

d = 1
2[(∇v)+ (∇v)T], (4)
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Fig. 1. Boundary conditions for the time-dependent, compressible, axisymmetric Poiseuille (a) and extrudate-swell (b) flows of
a Carreau fluid with slip at the wall.

whereη is the viscosity which is a function of the second invariant, IId , of d, and the superscript T
denotes the transpose. Based on the excellent superposition of the data obtained from capillaries of
various length-to-diameter ratios, Hatzikiriakos and Dealy[5] concluded that the pressure had a small
effect on the viscosity of the HDPE melt used. The pressure dependence of the viscosity is thus neglected
in this work.

For a power-law fluid,

η = K(2IId)
n−1, (5)

whereK is the consistency index, andn the power-law constant. An important limitation of the above
model is the prediction of infinite zero-shear-rate viscosity. This results in severe convergence difficulties
in regions of the flow field where IId is very small. (These include regions that are generally easy to solve,
such as regions of uniform flow.) This problem is avoided by using the Carreau model which generalizes
the power-law model as follows:

η = η∞ + (η0 − η∞)[1 + λ2(2IId)
2](n−1)/2, (6)

whereη0 is the zero-shear-rate viscosity,η∞ the infinite-shear-rate viscosity, andλ is a time constant for
which we haveη0λ

n−1 = K. In this work, we use the valuesn = 0.44 andK = 0.0178 MPa sn , provided
by Hatzikiriakos and Dealy (resin A at 180◦C) [6]. We also assume thatη0 = 0.03 MPa s andη∞ = 0.
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The above equations are completed by an equation of state relating the pressure to the density. We use
the first-order expansion:

ρ = ρ0[1 + β(p− p0)], (7)

whereβ is the isothermal compressibility, andρ0 the density at the reference pressurep0. Hatzikiriakos
and Dealy[6] provide the valueβ = 9.923× 10−4 (MPa)−1.

2.1. The slip equation

We use the following three-branch multi-valued slip model

vw =



a1σ

m1
w , 0 ≤ vw ≤ vc2

a3σ
m3
w , vc2 ≤ vw ≤ vmin

a2σ
m2
w , vw ≥ vmin

(8)

wherevw is the relative velocity of the fluid with respect to the wall,σw the shear stress on the wall,
vc2 the maximum slip velocity atσc2, andvmin is the minimum slip velocity atσmin. The third branch is
the power-law slip equation suggested by Hatzikiriakos and Dealy[6] for the right branch of their flow
curve. The first branch results from the slip equation they propose for the left branch of their slope curve
after substituting all parameters for resin A at 180◦C and taking the normal stress as infinite. (Taking the
normal stress equal to zero results in a slip curve which almost overlaps with the third branch.) Finally,
the second negative-slope branch, which corresponds to the unstable region of the flow curve for which
no measurements have been possible, is just the line connecting the other two branches. Thus,

m3 = ln(vc2/vmin)

ln(σc2/σmin)
and a3 = vc2

σ
m3
c2

.

The values of all the slip equation parameters are shown inTable 1. A plot of the slipEq. (8)is shown in
Fig. 2.

Table 1
Values of the slip model parameters

Parameter Value

a1 ((MPa)−m1 cm/s) 125.09
m1 3.23
a2 ((MPa)−m2 cm/s) 1000
m2 2.86
a3 ((MPa)−m3 cm/s) 5.484× 10−3

m3 −4.434

σc2 (MPa) 0.27
σmin (MPa) 0.19
vc2 (cm/s) 1.82
vmin (cm/s) 8.65
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Fig. 2. The non-monotonic slip law based on the experimental data of Hatzikiriakos and Dealy for a high density polyethylene
melt [5,6].

2.2. Non-dimensionalization

To non-dimensionalize the governing equations, we scale the lengths by the radiusR, the velocity by
the mean velocityV in the capillary, the pressure and the stress components byη0λ

n−1Vn/Rn, the density
by ρ0, and the time byR/V. With this scaling, the continuity and momentum equations become

∂ρ

∂t
+ ∇ · ρv = 0, (9)

and

Reρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · σ , (10)

where all variables are now dimensionless, andReis the Reynolds number defined as

Re≡ ρ0R
nV 2−nλ1−n

η0
. (11)

The dimensionless form of the stress tensor for a Carreau fluid is

σ = −pI + [1 +Λ2(2IId)
2](n−1)/2(2d − 2

3I∇ · v), (12)

where

Λ ≡ λV
R
. (13)

The equation of state also becomes

ρ = 1 + Bp, (14)
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Table 2
Typical values of the dimensionless numbers

Dimensionless number Value

n 0.44
Λ 349.2

m1 3.23
A1 0.0583
m2 2.86
A2 0.929
m3 −4.43
A3 4.04
σ∗

c2 1.738
σ∗

min 1.223

Re 1.43× 10−5

B 1.54× 10−4

whereB is the compressibility number,

B ≡ βη0V
n

λ1−nRn
. (15)

The dimensionless form of the slip equation is

vw =



A1σ

m1
w , 0 ≤ vw ≤ vc2

A3σ
m3
w , vc2 ≤ vw ≤ vmin

A2σ
m2
w , vw ≥ vmin

(16)

where

Ai ≡ aiη
mi
0 V

min−1

λmi(1−n)Rmin
, i = 1,2,3, (17)

and the dimensionless values ofvc2 andvmin correspond to

σ∗
c2 ≡ σc2R

nλ1−n

η0Vn
and σ∗

min ≡ σminR
nλ1−n

η0Vn
, (18)

respectively. It should be noted that the volumetric flow rate is scaled byπR2V. Typical values of the
dimensional numbers are tabulated inTable 2. These have been calculated by taking the value 500 s−1

for the apparent shear-rateγ̇, which forR = 3.81× 10−2 cm2 yieldsV = Rγ̇/4 = 5.24 cm/s.

3. Analytical solutions for steady Poiseuille flow

3.1. Incompressible Poiseuille flow with slip

For the incompressible flow of a Carreau fluid with the slip law given by

σw = σw(vw), (19)
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it is easily shown that the steady-state solution is given by

vz(r) = vw + n

n+ 1

(
−1

2
∇P

)1/n

(1 − r(1/n)+1), (20)

where∇P is the pressure gradient satisfying

−∇P = 2σw(vw). (21)

The dimensionless volumetric flow rate is given by

Q = vw + n

n+ 3

(
−1

2
∇P

)1/n

. (22)

3.2. Compressible Poiseuille flow with no-slip

The analytical solution of compressible Poiseuille flow of a Carreau fluid with no-slip at the wall can
be obtained forRe= 0, with the assumption that the derivatives of the velocity across the die (i.e. in the
r-direction) are much greater than in the direction of the flow (i.e. in thez-direction). The flow domain
is defined by−∞ < z ≤ 0 and 0≤ r ≤ 1, and the pressurep is set to zero atz = 0. For a compressible
fluid, the pressure gradient is a function ofz and so is the volumetric flow rate. The mass-flow rate,Ṁ,
is, of course, constant. One finds that

p(z) = −1 + [1 − 2(n+ 1)((1/n)+ 3)nBṀnz]1/(n+1)

B
(23)

and

vz(r, z) = 3n+ 1

n+ 1

Ṁ

[1 − 2(n+ 1)((1/n)+ 3)nBṀnz]1/(n+1)
(1 − r(1/n)+1). (24)

4. Boundary and initial conditions

The boundary conditions for the Poiseuille and extrudate-swell flows are shown inFig. 1. Along the
axis of symmetry, we have the usual symmetry conditions. Along the wall, the radial velocity is zero,
whereas the axial velocity satisfies the slipEq. (16). At the inlet plane, we assume that the radial velocity
component,vr, vanishes. In order to calculate the inlet condition forvz, let us assume that the density is
a weak function ofr and thatvz, is of the following form:

vz = (c1r(1/n)+1 + c2r + c3)v∗w + (c4r(1/n)+1 + c5r + c6)Q,
wherev∗w is the unknown slip velocity at the inlet. The latter assumption is obviously true for the incom-
pressible case. As shown in the previous section, it is also true for the compressible case, when inertia is
neglected and the velocity gradients across the die are much greater than in the direction of the flow. For
round Poiseuille flow, the velocityvz at the inlet should satisfy the following conditions:

Q =
∫ 1

0
2vzr dr; ∂vz

∂r
= 0 at r = 0; vz = v∗w at r = 1.
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It turns out that

vz = F(r, v∗w,Q) = 1

n+ 1
[(3n+ 1)r(1/n)+1 − 2n]v∗w + 3n+ 1

n+ 1
(1 − r(1/n)+1)Q. (25)

The additional equation required for the calculation of the inlet velocity at the wall is provided by the
fact thatv∗w satisfies the slip equation. It turns out that(

3n+ 1

n

)n
(v∗w −Q)n = σw(v

∗
w). (26)

Provided thatvw, is a monotonic function ofQ, one can easily calculate the velocity profile at the inlet
for any value ofQ.

In the case of Poiseuille flow, we assume that the radial velocity component vanishes at the outlet plane.
The numerical results show that this assumption is reasonable at least for the relatively low compressibility
numbers considered here. In the case of the extrudate-swell flow, we use the weaker conditionσrz = 0.
In both flows, the total normal stress is assumed to be zero,σzz = 0.

Finally, on the free-surface, we assume that surface tension is zero and impose vanishing normal and
tangential stresses. Additionally, the unknown positionh(z, t) of the free-surface satisfies the kinematic
condition:

∂h

∂t
+ vz ∂h

∂z
− vr = 0. (27)

4.1. Initial conditions

In the case of Poiseuille flow, we use as initial condition the steady-state solution corresponding to
a given volumetric flow rateQ at the inlet that we perturb by$Q = 0.001Q at t = 0. In the case
of the extrudate-swell flow, we start with the steady-state solution of the stick–slip flow (i.e. with flat
free-surface) and release the free-surface att = 0.

5. The numerical method

We use the finite element formulation for solving this free-surface flow problem. The unknown position
of the free-surface is calculated simultaneously with the velocity and pressure fields (full-Newton method).
Furthermore, the density is eliminated by means of the equation of state (14). We use the standard
biquadratic–velocity (P2–C0) and bilinear–pressure (P1–C0) elements with a quadratic representation for
the positionh of the free-surface. For the spatial discretization of the problem, we use the Galerkin forms
of the continuity, momentum and kinematic equations. For the time discretization, we use the standard
fully-implicit (Euler backward-difference) scheme.

6. Numerical simulations

The lengthL1 of the capillary was taken to be equal to 20 (as in the experiments of Hatzikiriakos and
Dealy[6]). For the extrudate region, we considered two different lengths,L2 = 5 and 20, depending on
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the wavelength of the free-surface oscillations. The finite element meshes were refined near the wall and
the exit of the capillary. The mesh withL2 = 5 consisted of 243× 13 elements. With the exception of
ReandB, the values of the dimensionless parameters are those shown inTable 2.

6.1. Steady-state simulations

To check the validity of the boundary condition at the inlet, we compared the numerical results with
the analytical solution for steady, incompressible Poiseuille flow with slip at the wall, which is given in
Section 3. As shown inFig. 3a, the flow curve forRe= B = 0 is non-monotonic due to the form of the
slip equation. Results have been obtained for different values of the volumetric flow rate; in all cases, the
calculated velocity profiles coincide with the analytical solution. Such profiles are shown inFig. 3b. An
interesting observation is that, as the volumetric flow rate is increased, the velocity profile becomes rather
plug. This agrees with experimental observations in the stick–slip and gross-melt-fracture regimes[2].

Fig. 3. (a) Flow curve for incompressible flow with slip at the wall; (b) velocity profiles at the indicated points of the flow curve;
Re= B = 0, n = 0.44.
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Fig. 4. Analytical (solid lines) vs. numerical (broken lines) steady-state results along the centerline for compressible flow with
no-slip at the wall: (a) axial velocity; (b) pressure;Re= 0, n = 0.44,Ṁ = 1.

Comparisons with the analytical solution in the case of steady, compressible Poiseuille flow without
slip are shown inFig. 4, for different values of the compressibility numberB, Re = 0 andṀ = 1.
The axial velocity and the pressure along the centerline are plotted inFig. 4a and b, respectively. Some
discrepancies are observed near the exit but only at very high values ofB, due to the outflow boundary
condition. However, these high values ofB correspond to markedly compressible flow; in the case of
B = 0.1, density doubles in less than five radii upstream the exit, which is unrealistic. The runs for this
extreme case were just used as a check to the numerical scheme and the assumptions we have made. Note
that the pressure-drop is reduced as compressibility increases.

In Fig. 5, we show the (steady state) flow curves corresponding to both slip and no-slip withRe =
1.43× 10−5 andB = 1.54× 10−4. Due to the small values ofReandB, the flow curve is practically the
same as that forRe= B = 0 (Fig. 3). The reduction of the pressure-drop due to slip is appreciable at higher
volumetric flow rates, especially beyond the left positive-slope branch. Here,−∇P is the pressure-drop
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Fig. 5. Flow curves forRe= 1.43× 10−5 andB = 1.54× 10−4.

along the wall (the pressure-drop along the plane of symmetry is slightly lower). Since the volumetric
flow rate,Q, is not constant in the direction of the flow,−∇P is plotted versus the mass-flow rateṀ. It
should be noted, however, thatṀ = Q at the exit.

A consequence of slip, known from both experiments[7] and simulations[4], is the reduction of the
swelling. This reduction is enhanced as the volumetric flow rate is increased, as illustrated inFig. 6, where
we plot the steady free-surface profiles calculated for five different values of the volumetric flow rate,
corresponding to the various regimes of the flow curve. (These points are indicated on the flow curve of
Fig. 5.) A slight swelling reduction is also observed in the no-slip case. This is due to the increase of the
actual Reynolds number[8].

Fig. 6. Free-surface profiles for the five volumetric flow rates (0.5, 1.0, 1.5, 1.96, 4.0) indicated inFig. 6; Re= 1.43× 10−5,
B = 1.54× 10−4.
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6.2. Time-dependent simulations

As already mentioned, steady-state Poiseuille flow solutions are perturbed by slightly changing the
value of the corresponding flow rateQ to 1.001Q. Different possibilities have been examined and the
main conclusions can be summarized as follows.

(a) If the flow is incompressible and no-slip is applied along the wall, the steady-state solution corre-
sponding to the new volumetric flow rate is instantaneously obtained.

(b) If the flow is incompressible and slip is present, the time-dependent solution moves gradually to the
new steady state without the appearance of any oscillations, even when the imposed volumetric flow
rate is in the negative-slope regime.

(c) If the flow is compressible and no-slip occurs at the wall, the solution moves to the new steady state
without any oscillations.

(d) If the flow is compressible and slip is present, the behavior of the time-dependent solution depends
on whether the new value ofQ corresponds to a positive-slope branch or to the negative-slope branch
which is unstable. In the first case, the new steady state is obtained without any oscillations, whereas,
in the second case, the solution is oscillatory and, after a transition period, becomes periodic. All the
results presented later have been obtained in the unstable regime.

We first obtained solutions forRe= 0.1,B = 1.541× 10−4 and various values ofQ. This value of the
Reis purposely chosen to be much higher than the experimental one (1.43× 10−5), in order to enhance
the oscillations. InFigs. 7–9, we visualize the solutions obtained withQ = 1.1, 1.5 and 1.9, by plotting
the evolution of the pressure-drop, the evolution of the mass-flow rates at the inlet and the outlet, and the
trajectory of the time-dependent solution on the flow curve plane. In all cases, self-sustained oscillations
of the pressure-drop and the mass-flow rate are obtained after a transition period which becomes longer
as one moves from the maximum to the minimum of the flow curve. These oscillations are similar to
those observed experimentally in the stick–slip extrusion instability regime.

The establishment of the periodic solution is marked by the limit cycle reached on the flow-curve
plane. Note that the pressure-drop oscillations are extended above the maximum and below the minimum
of the steady-state flow curve, whereas the mass-flow-rate oscillations are extended to the left of the
maximum and to the right of the minimum. As a result, the limit cycle does not follow any parts of
the positive-slope branches of the flow curve, which is in disagreement with experimental observations
[6,9]. This drawback is most probably due to the omission of the barrel from the simulations; it is also
exhibited by the one-dimensional model of Greenberg and Demay[10], which does not include the barrel
region. Note that most one-dimensional phenomenological relaxation/oscillation models require as input
the experimental (steady state) flow curve. These models are based on the compressibility/slip mechanism
and describe oscillations of the pressure and the volumetric flow rate in the stick–slip instability regime
(see[11–13]and references therein).

The limit cycles inFigs. 7–9illustrate some well-known characteristics of the stick–slip flow insta-
bility. Once pressure reaches its maximum, the volumetric flow rate increases rapidly to its maximum
value (spurt). Then, pressure starts decreasing reaching its minimum value, and the volumetric flow
rate decreases. Once the minimum of the volumetric flow rate is reached, pressure increases again,
and the cycle repeats in a time-periodic manner. ForQ = 1.5 and for Reynolds numbers ranging
from 0.1 to 0.001, the maximum mass-flow rate was found to range from 9 to about 15 times the
minimum value. Hatzikiriakos and Dealy[6] reported that with resin A at 160◦C the mass-flow rate
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Fig. 7. Transient Poiseuille flow of a Carreau fluid withn = 0.44, Re= 0.1 andB = 1.541× 10−4 when the steady state at
Q = 1.1 is slightly perturbed: (a) pressure-drop; (b) mass-flow rates at the inlet and the outlet (Ṁo); (c) trajectory of the solution
on the flow curve plane.
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Fig. 8. Transient Poiseuille flow of a Carreau fluid withn = 0.44, Re= 0.1 andB = 1.541× 10−4 when the steady state at
Q = 1.5 is slightly perturbed: (a) pressure-drop; (b) mass-flow rates at the inlet and the outlet (Ṁo); (c) trajectory of the solution
on the flow curve plane.
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Fig. 9. Transient Poiseuille flow of a Carreau fluid withn = 0.44, Re= 0.1 andB = 1.541× 10−4 when the steady state at
Q = 1.9 is slightly perturbed: (a) pressure-drop; (b) mass-flow rates at the inlet and the outlet (Ṁo); (c) trajectory of the solution
on the flow curve plane.
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Fig. 10. Variations of the amplitude of the pressure-drop (a), mass-flow rate at the outlet (b), and the period (c) of the oscillations
with Q; transient Poiseuille flow of a Carreau fluid withn = 0.44,Re= 0.1 andB = 1.541× 10−4 with the steady state atQ
slightly perturbed.
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Fig. 11. Transient Poiseuille flow of a Carreau fluid withn = 0.44,Re= 0.01 andB = 1.541× 10−4 when the steady state at
Q = 1.5 is slightly perturbed: (a) pressure-drop; (b) mass-flow rates at the inlet and the outlet (Ṁo); (c) trajectory of the solution
on the flow curve plane.
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Fig. 12. Transient Poiseuille flow of a Carreau fluid withn = 0.44,Re= 0.001 andB = 1.541× 10−4 when the steady state at
Q = 1.5 is slightly perturbed: (a) pressure-drop; (b) mass-flow rates at the inlet and the outlet (Ṁo); (c) trajectory of the solution
on the flow curve plane.
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Fig. 13. Evolution of the free-surface during a cycle after the periodic solution is established. The broken line shows the unstable
steady-state position of the free-surface;n = 0.44,Re= 0.1,B = 1.541× 10−4 andQ = 1.5.
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suddenly increases by a factor of about 8. Given that the material parameters we used correspond
to a higher temperature (180◦C) and the minimum value depends on the shape of the negative-slope
branch of the slip equation, the agreement of the numerical results with the experiments is quite
satisfactory.

As illustrated inFig. 10, both the amplitude and the frequency of the oscillations increase withQ. The
increase in the amplitude of both the pressure-drop and the mass-flow-rate oscillations is also deduced
from the increasing size of the limit, cycles inFigs. 7–9. The results inFigs. 7–10show that the amplitude
and the frequency of the oscillations depend on the shape of the flow curve, which, in turn, is intrinsically
linked to the form of the slip equation, especially in the unstable negative-slope regime. As already
mentioned, due to the lack of experimental data in this regime, our slip equation has been constructed
by connecting with a straight line the two positive-slope branches of the experimental slip curves, which
evidently poses a severe limitation on our simulations.

Fig. 14. Representative free-surface waves for different Reynolds numbers (a–c). The broken line shows the unstable steady-state
position of the free-surface:n = 0.44,B = 1.541× 10−4 andQ = 1.5.
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To study the effect ofReforQ = 1.5, we obtained solutions forRe= 0.01 and 0.001, which are shown
in Figs. 11 and 12, respectively. We observe that as the Reynolds number is reduced, the amplitude of the
pressure-drop oscillations is reduced while that of the mass-flow-rate oscillations is increased. Moreover,
the frequency of the oscillations is increased considerably. As a result, much smaller time-steps must
be employed for these runs. This together with the expected very small amplitude of the pressure-drop
oscillations prevent us from pursuing simulations for smaller values of theRe, such as the experimental
value 1.43× 10−5.

The time-dependent simulations of the extrudate-swell flow were obtained by starting with the steady-
state solution corresponding to a flat free-surface (stick–slip flow) and letting the free-surface move
at t = 0. In the unstable regime, waves appear on the free-surface, in addition to the pressure-drop
and mass-flow-rate oscillations. InFig. 13, we show representative free-surface profiles obtained with
Re= 0.1,B = 1.541×10−4 andQ = 1.5 during one complete cycle (from a pressure-drop maximum to
the next one), after the periodic solution is established. In addition to the motion of the free-surface waves
in the flow direction, the free-surface oscillates in the radial direction as well. Swelling is minimized at
pressure-drop maxima. This result is in agreement with the experiments of Pérez González et al.[14],
who worked with polyethylene melts and observed that severe contractions in the extrudate diameter
occur at pressure maxima.

Finally, the effect ofReon the free-surface waves is illustrated inFig. 14, where we show representative
free-surface profiles obtained withB = 1.541× 10−4, Q = 1.5 andRe = 0.1 with L2 = 20, and
Re= 0.01 and 0.001, withL2 = 5. The amplitude and the wavelength of the free-surface waves and the
amplitude of the oscillations in the radial direction are reduced asReapproaches zero. Another important
observation is that swelling is enhanced by the oscillations, since the free-surface oscillates well above
and not, about its unstable steady-state position. Due to the small size of the free-surface oscillations, no
simulations have been attempted for smaller values of the Reynolds number.

7. Conclusions

We used finite elements to simulate the time-dependent, compressible Poiseuille and extrudate-swell
flows of a Carreau fluid, assuming that slip occurs along the die wall following a non-monotone slip
law that is based on the experimental findings of Hatzikiriakos and Dealy[5,6] for certain polyethylene
melts. The steady-state numerical results compare well with the analytical solutions for incompressible
Poiseuille flow with slip and for the compressible Poiseuille flow without slip, and predict the expected
reduction of the swelling as slip is enhanced.

The time-dependent calculations at fixed volumetric flow rates in the unstable negative-slope regime
of the flow curve demonstrate that combination of compressibility and slip results in periodic solutions,
i.e. in self-sustained oscillations of the pressure-drop and of the mass-flow rate, as is the case with
the stick–slip extrusion instability. The free-surface is characterized by high-frequency, small amplitude
waves traveling in the flow direction and oscillates in the radial direction. The wavelength and the
amplitude of the free-surface waves and the amplitude of the oscillations in the radial direction are
reduced, as the Reynolds number goes to zero.

The limitations of the present work indicate directions for future research. The slip equation we em-
ployed may be based on experimental data but the added negative-slope branch is arbitrary. In addition,
the slip equation is not dynamic nor it accounts for the effect of pressure on slip. Another limitation of the
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present simulations comes form the axisymmetry assumption. The experimental data concern, in most
cases, extrudates with asymmetric waves, i.e. the actual extrudate is three-dimensional. Finally, including
the reservoir is necessary in order not only to account for the compression and decompression of most
part of the fluid but also to account for the effect of upstream instabilities which is known to be crucial
(see[2]). For example, experiments show that the period of the pressure-drop oscillations decreases as
the volume of the melt in the reservoir increases[6,9,15]. With the large amount of the compressible
melt in the reservoir region taken into account, numerical simulations will be possible at low Reynolds
numbers corresponding to the experiments. Moreover, the inclusion of the reservoir region is necessary
for obtaining limit cycles following the steady-state branches of the flow curve, i.e. for obtaining pressure
and extrudate flow rate oscillations characterized by abrupt changes, as is the experiments. Only such
abrupt changes can lead to extrudates with alternating relatively smooth and sharkskin regions, which is
the basic characteristic of the stick–slip instability.
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