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SUMMARY 
Abrupt changes in boundary conditions in viscous flow problems give rise to stress singularities. Ordinary 
finite element methods account effectively for the global solution but perform poorly near the singularity. In 
this paper we develop singular finite elements, similar in principle to the crack tip elements used in fracture 
mechanics, to improve the solution accuracy in the vicinity of the singular point and to speed up the rate of 
convergence. These special elements surround the singular point, and the corresponding field shape functions 
embody the form of the singularity. Because the pressure is singular, there is no pressure node at the singular 
point. The method performs well when applied to the stick-slip problem and gives more accurate results than 
those from refined ordinary finite element meshes. 
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1 .  INTRODUCTION 

The extrusion of a viscous jet from a die into an inviscid medium has been the focus of a plethora of 
theoretical, experimental and computational works because of its importance in polymer- 
processing operations and other industrial applications. Two characteristics of the 
extrudate-swell problem are the expansion of the jet at low Reynolds numbers and the presence of 
a stress singularity at the exit of the die. The problem is analytically intractable because of the non- 
linear boundary conditions on the free surface. Numerical methods, especially finite elements, 
have been used extensively to overcome this difficulty.'-4 

The stress singularity, which is the focus of this work, arises from the abrupt change in the 
boundary condition at the exit of the die; its analysis is very important for a good comprehension 
of the extrudate-swell phenomenon.' Generally speaking, singularities require special treatment 
in the numerical solution of singular problems. In finite element analysis, local refinement around 
the singular point is often employed in order to improve the accuracy. However, the accuracy and 
the rate of convergence are not in general satisfactory. Standard finite elements predict inaccurate 
stresses around the lip of the die; the stresses cannot be infinite at  the singular point as the local 
asymptotic solution demands. Furthermore, the stiffness matrix becomes large as the mesh is 
refined and therefore the computational cost increases. Silliman and Strived applied a slip 
boundary condition in the upstream vicinity of the contact line to alleviate the stress singularity, 
since the no-slip boundary condition may be not valid in this region. They do not adequately 
resolve the singularity as the slip coefficient goes to zero, but they determine that a wide range of 
slip coefficients give the same global behaviour. 
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Incorporating the nature of the singularity, obtained by an asymptotic analysis, in the 
numerical solution proves to be a very effective way to improve the accuracy in the neigh- 
bourhood of the singularity and to speed up the rate of convergence. This idea has been 
successfully adopted in solving mainly fracture mechanics problems by a variety of methods: finite 
differences,’ finite  element^,^.' boundary and global elements’09’ and spectral methods.’Z Two 
singular finite element approaches appear in the literature [ 111: 

1. Singular basis function approach. A set of supplementary basis functions chosen to reproduce 
the leading terms of the singularity solution is added to the standard finite element solution 
e x p a n ~ i o n . ~ ~ ’ ~  The singular functions are usually defined over several elements and can span 
the entire domain. 

2. Singular element approach. Special elements are used in a small region around the 
singularity, while conventional elements are used in the rest of the domain. The various 
proposed elements can be classified in three categories: 
(a) Embodied singularity elements-Special elements are employed around the singular 

point, and the corresponding field shape functions embody the form of the singular- 

(b) Embedded singularity elements-The leading terms of the singularity expansion are used 
to describe the full solution over a multinode element surrounding the singular point, 
and conventional elements are used elsewhere.I6 

(c) Singular isoparametric elements-Singular geometric transformations, defined on the 
elements surrounding the singular point, can provide finite element approximations with 
the desired singular behaviour. The transformation becomes singular by properly 
changing the position of the midnodes, e.g. quarter-point elements.”- 

There is a wealth of published work on singular finite element approaches owing to their success in 
fracture mechanics. A review is given by Gallagher” in which the various approaches are critically 
examined and their relative advantages and disadvantages are discussed. 

The main objective of the present work is to use the ideas developed in solid mechanics to 
solve singular problems in fluid mechanics, which are more complicated because, in addition to 
the velocity derivatives, the pressure-a primary unknown-is also singular. Another compli- 
cation arises in free surface problems in which we have curved boundaries and the form of the 
singularity is not exactly known. 

We have chosen to solve the stick-slip problem at this stage, using embodied singularity 
elements. The stick-slip problem is a limiting case of the extrudate-swell problem, equivalent to 
the creeping Newtonian planar jet at infinite surface tension; no expansion occurs in this case and 
the free surface is flat. The boundary conditions change suddenly from no slip along the wall to 
perfect slip along the planar ‘free’ surface. For this particular case, the non-linearity due to the free 
surface is eliminated and the stick-slip problem is amenable to analytical solution. The planar 
problem was solved analytically by Richardsonz1 using the Wiener-Hopf method, and by 
Sturges” using the eigenfunction method. Nevertheless, the local solution near the lip is just a 
special case of the general flow of a viscous fluid near a corner formed by a solid wall and a flat free 
surface; the local analysis is described by Michaelz3 and M ~ f f a t . ’ ~  The velocity components vary 
as the square root of the radial distance from the singular point, resulting in an inverse square root 
singularity for the stresses. 

The singular elements developed here are similar to those introduced by Tracey’ for the crack 
tip problem, which also exhibits an inverse square root singularity for stresses. Compared to the 
singular basis function approach or the embedded singularity elements, the embodied singularity 
elements can be included more easily in a general finite element code and do not require 

ity,9,14.1 5 
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knowledge of the angular dependence of the solution. Furthermore, they are compatible with the 
adjoining ordinary elements and can be extended to free surface flow problems, e.g. the 
extrudate-swell problem. 

Even though the singular isoparametric elements have been successful in dealing with crack 
problems in fracture mechanics' 7 v 1 9  and are equivalent to the embodied singularity elements in 
some cases, the latter are more appropriate for fluid flow problems for the following reasons. 
(a) Singular isoparametric elements cannot handle singular primary variables. The proposed 
elements can be constructed with no node at the singular point for the singular primary variables. 
(b) Singular isoparametric elements with curved sides are difficult to use without loss of accuracy. 
Consequently, they are not as effective as the embodied singularity elements for free surface 
problems. (c) In order to describe general power-type singularities with isoparametric elements, 
one has either to increase the number of nodes per element or to construct special field shape 
functions which in combination with the distortion of the physical element will yield the desired 
behaviour. With the embodied singularity elements one has to modify only the field shape 
functions. 

Singular elements can be applied to a general class of singular fluid mechanics problems, 
provided that the radial form of the local solution is known or can be obtained by an asymptotic 
analysis. Thus singular finite elements can be used to solve non-zero Reynolds number or non- 
Newtonian flows. For a non-zero Reynolds number the analysis is valid near the singularity, 
where the viscous effect is dominant, and the form of the local solution remains the same. Schultz 
and GervasioZ5 showed that the resulting local eigenproblcm can be solved if the slip surface is flat 
or the curvature of the free surface is integrable. An asymptotic analysis to obtain the radial form 
of the singularity is also possible for various viscoelastic flows such as the stick-slip flow of an 
Oldroyd-B or a second-order f l ~ i d . ~ ~ . ~ ~  Apelian et al.,27 in solving the stick-slip problem with a 
modified upper-convected Maxwell model, showed that the elastic contribution to the stress 
varies as r- l ' ' .  The developed elements can easily embody both the Newtonian and the elastic 
contributions by appropriately modifying the field shape functions.'* Therefore the method can 
be used in viscoelastic flows provided that the encountered stresses are integrable. 

As we will see in the following sections, the embodied singularity elements give results that are 
more accurate than those from conventional finite elements even if coarser meshes are used. The 
governing equations and the asymptotic solution are given in Section 2. The finite element 
formulation, the construction of the field shape functions and the numerical integration over the 
singular elements are discussed in Section 3. Finally, the results are presented and discussed in 
Section 4. 

2. GOVERNING EQUATIONS AND LOCAL SOLUTION 

The geometry, governing equations and boundary conditions for the stick-slip problem are 
depicted in Figure 1. The flow is governed by the Stokes equation and continuity: 

v-*r=o ( 1 )  

and 

v.v=o.  
Here T is the stress tensor for a Newtonian liquid, measured in units ofpU/H, p is the viscosity, U 
is the mean velocity in the channel and H is the channel half-width. The velocity V is scaled by U .  

The form of the singularity is known as a special case of the steady plane flow near a corner of 
angle o formed by a rigid boundary and a flat free surface, as shown in Figure I(b). This general 
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Figure 1. (a) The stick-slip problem. (b) Local analysis of the singularity 

flow was analysed in plane polar co-ordinates (r, 8) by Michaelz3 and M~f fa t . ' ~  For the stick-slip 
case, w=7t and there are two possible sets of solutions for the streamfunction $: 

$=ra+1aa[cos(~+1)8-cos(~-1)8] for A=$, $,$,. . . (3) 

$=ra++/?r[(1-l)sin(A+1)8-(A+l)sin(IZ-1)8], for .A=2, 3, 4,. . . , (4) 

and 

where ar and 
the contributions of (4) become zero and the y-component of velocity is given by 

are arbitrary constants. The velocity components are proportional to r'. For 8 = n 

~ = 2 a , ~ , y ' / ~  -2a312y3/2 + 2 ~ r , ~ , y ~ / ~  +o(y7l2). (5 )  

From the analytical solution the first constant is c11,2 = J(3/2n) =0-690 988. As indicated by 
Ingham and Kelmanson," the value a1,,=O581 given by Richardson" is wrong. Pressure and 
stresses are proportional to r'- ', and the inverse square root singularity is due to the first term of 
(3). The normal stress T,, on the slip surface is non-singular and represents a very severe test for the 
numerical calculations. It turns out that only the pressure contributions from the integer-power 
solutions are non-zero and the normal stress on the slip surface is of the form 

(6) Ton = c - 24b2y + 48&y2 + 80/?,y3 + O(y4), 

where c is a constant. 
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3. FINITE ELEMENT FORMULATION 

The finite element method is well e ~ t a b l i s h e d ~ ~ . ~ '  and therefore we emphasize only the aspects 
related to singular finite elements: construction of field shape functions and numerical integration 
over singular elements. 

The physical domain of the stick-slip problem, shown in Figure 1, extends three channel half- 
widths upstream and downstream, a distance sufficiently large to assure the validity of the 
imposed boundary conditions. Taking the outflow and inflow planes farther from 'the lip causes 
negligible changes in the predicted flow field. 

In the finite element discretization we use singular triangular-shaped elements in a small core 
around the singularity and ordinary rectangular elements in the rest of the domain, as illustrated 
in Figures 2 4 .  In the ordinary elements, the basis functions are biquadratic for the velocities and 
bilinear for the pressure. These elements are mapped on a 2 x 2 master element in (s, t )  co- 
ordinates with biquadratic shape functions. 

The construction of field shape functions, describing derivative singularities of the general form 
r"- (O< n < l), has been the central subject of various ~ o r k s . ~ ~ * ~ '  Hughes and Akin2' presented 
an algorithm for generating shape functions from an arbitrary starting set of independent 
functions. The generated functions are capable of representing different singular behaviours 
within the element. For the present problem, a simple Lagrange interpolation in terms of J r  is 
adequate for deriving the field shape functions. Figure 2 shows the rectangular master element 
with the (s, t) co-ordinates mapped approximately to the physical radial and circumferential co- 
ordinates respectively9 (see Appendix). The field shape functions must embody the singularity and 
be compatible with the adjacent ordinary elements. Hence the shape functions for the velocities 0' 
are of the general form 

Oi = N'(s)P'(t), (7) 

0 velocity node 
ORDINARY 0 pressure node MASTER 
ELEMENT 

SINGULAR 
MASTER 

ELEMENT 
Y 

Figure 2. Ordinary and singular elements 
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MESH I ,  24 ELEMENTS 

MESH II. 96 ELEMENTS 

MESH I ,  32 ELEMENTS 

MESH 11, 104 ELEMENTS 

MESH 111, 392 ELEMENTS 

Figure 4. Singular element meshes 

with P varying quadratically with t to maintain compatibility with the adjoining elements. Three 
velocity nodes are thus needed in the t-direction. At s =  - 1, P= 1 and the three velocity nodes 
collapse to one node with only two degrees of freedom for the two velocity components. To 
include the first two contributions from both (3) and (4), five velocity nodes are needed in the 
s-direction and N‘  takes the form 

N‘(s) = a + b( 1 + s ) ” ~  + c( 1 + s) + d( 1 + s)~’’ + e(1 + s)’. (8) 
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Requiring that Ni(sj)=dij and using Lagrange interpolation with respect to the square root of the 
radial co-ordinate gives 

N 1  = ( I  - J.4 c1 - J($X) l [ !  - J(2x)l c1 -J(4x)l, 

where x = ( 1  + s)/2 and the nodes are numbered sequentially in the s-direction. 
For the pressure shape functions Yi we use a lower-order representation: 

Y = M'( s)Q'( t ) ,  (9) 
with Q varying linearly with t (two pressure nodes in t-direction) and Mi having the same form as 
dNi/ds: 

Mi(s)  = a'( 1 + s)- ''' + b' + c'( 1 + s)~'~ + d (  1 + s). (10) 

Four pressure nodes are needed in the s-direction and because pressure is singular no node is 
placed at s =  - 1 (Figure 2). Using Lagrange interpolation gives 

with the nodes numbered sequentially in the s-direction. Note that the constructed shape 
functions satisfy the conditions E@* = 1, CYi= 1 and are linearly independent. The master element 
is mapped to the triangular physical element by means of ordinary polynomial shape functions of 
the fourth order in the s-direction and the second order in the t-direction. 

Applying the Galerkin principle, we weight the momentum and continuity equations by the 
velocity and pressure basis functions. After applying Green's theorem we have 

T.V@'dR=O, i = l ,  2,.  . . , Nu, (1  1 )  

and 
V.VY'dR=O, i =  1 , 2 , .  . . , N p ,  i 
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where R and S are the domain and its boundary, n is the unit normal vector pointing outward from 
the boundary, and Nu and N p  are the numbers of velocity and pressure nodes respectively. The 
total number of unknowns is 2Nu+ N p .  Equations (11) and (12) consist of a system of linear 
equations efficiently solved by standard subroutines, e.g. frontal methods. 

Standard 3 x 3 Gaussian quadrature is used for the integration over the ordinary elements. As 
noted by various investigators,14332733 a standard quadrature rule of low order is inappropriate for 
the integration over the singular elements. Special quadrature rules for singular elements with r" 
behaviour, with the quadrature points and weights varying with the exponent n, are described by 
Solecki and Swed10w.~~ However, for the square root behaviour examined here, the substitution 

J(l+s)= 5 (13) 

transforms the encountered integrands into simple polynomials in the <-domain, and therefore 
standard Gauss-Legendre quadrature suffices for an exact integration. This treatment is 
equivalent to modifying the standard Gauss weights w p  and points y p  as follows: 

and 

(1 5 )  G G  wi=wi (yi + I ) ,  

for the integration along the radial direction. We use a 5 x 3 modified Gaussian quadrature for 
integration over the singular elements. 

4. RESULTS AND DISCUSSION 

The stick-slip problem was solved using both ordinary and singular finite elements. Five ordinary 
meshes and three singular meshes, shown in Figures 3 and 4, were constructed for this purpose. 
The first three ordinary meshes (I, 11, 111) were uniform and consisted of 24, 96 and 384 square 
elements. The last two meshes (IV, V) were obtained by refining only the row and columns around 
the tip; they consisted of 450 and 520 elements. To generate the singular meshes, we modified the 
uniform ordinary meshes: eight ordinary square elements were replaced by eight singular 
triangular-shaped elements and eight ordinary transition elements in the circular pattern shown in 
Figure 4. Of course, uniform meshes are by no means optimum for the stick-slip problem, but in 
this work they appear to be more appropriate for comparisons between singular and ordinary 
finite elements. 

The solution of the stick-slip problem obtained with the finest singular mesh is illustrated in 
Figure 5, where we plot the velocity and pressure contours and the streamlines. The results clearly 
depict the rearrangement of the flow from a Poiseuille flow to a uniform flow regime. 

The singular and ordinary finite element results far from the singular point are in good 
agreement. Both methods predict essentially the same centreline pressure (Figure 6); it varies 
linearly with the axial distance inside the die and goes smoothly to zero in the jet. However, the 
results around the singularity differ dramatically. We focus on two important quantities: the 
normal stress along the wall and the slip surface, and the velocity along the slip surface. 

The normal stresses predicted with the ordinary finite element meshes I, 111 and V are plotted 
in Figure 7. We observe that the normal stress oscillates spuriously around the singularity; the 
oscillations on the wall are of smaller frequency and greater amplitude than those on the slip 
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V VELOCITY CONTOURS 
/ 

W VELOCITY CONTOURS 
(4 

PRESSURE CONTOURS (b) 

STREAMLINES 

E 

(4 
Figure 5. Solution of the stickdip problem: (a) y-velocity; (b) z-velocity; (c) pressure; (d) streamlines 

FIXIFIL DISTFINCE, y/H 

Figure 6. Predicted centreline pressure with singular and ordinary elements 

surface. As we refine the mesh, the oscillations move towards the singular point and their 
amplitude increases. 

By using singular finite elements, we practically eliminate these oscillations. The normal stress 
obtained with the coarsest singular mesh is smooth and agrees well with the analytical solution 
(Figure 8). Note that the coarsest mesh gives virtually the same normal stress results as the finest 
mesh, indicating that relatively coarse meshes may be used with singular finite elements. However, 
some oscillations of very small amplitude still occur very close to the singularity with the finer 
meshes. These oscillations are not restricted to the singular elements but also appear in the 
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OF€ - MESHES I. 111. v 3, 

-2.0 -1.0 0.0 1.0 2.0 
FlXIFlL DISTRNCE. y/H 

Figure 7. Predicted normal stress at z=1 with ordinary elements for planar stick-slip problem: - - -, mesh I; 
- - - -, mesh 111; -, mesh V 

SFE - MESH I vs THEORY 2 ,  

-2.0 -1.0 0.0 1.0 2.0 
R X I R L  D X R N C E .  y/H 

Figure 8. Normal stresses at z= 1:  -, singular elements, mesh I; - - -, theory 

surrounding ordinary elements; this may be due to the fact that the pressure and viscous stress 
grow large with opposite signs, which gives rise to a numerical error. 

No matter what the cause of the oscillations is, the main disadvantage of the embodied 
singularity elements is apparent: by refining the mesh, we reduce the size of the singular elements 
over which the singularity is given special attention. Nevertheless, this probiem may be partially 
resolved by restructuring the mesh so that the size of the singular elements is fixed and 
independent of mesh refinement (e.g. by using more ordinary transition elements or by using 
triangular instead of rectangular ordinary elements). 

The normal stress results were used to choose the order and the number of the singular elements 
and to check whether ordinary transition elements are necessary around the singular elements. In 
addition to the aforementioned pattern with eight 13-node singular elements and eight transition 
elements, three alternative mesh patterns were also examined: (i) eight 7-node singular elements 
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with eight ordinary transition elements, (ii) four 13-node singular elements with four ordinary 
transition elements and (iii) eight 13-node singular elements with no ordinary transition elements. 
All the examined mesh patterns are shown in Figure 9. The predicted normal stresses were better 
than those obtained with ordinary elements in all cases. However, the results with the alternative 
mesh patterns examined were characterized by some oscillations, which disappear with mesh 
refinement. The most severe oscillations occur with the 7-node singular elements (Figure 10). This 

( C )  (d) 

Figure 9. Examined mesh patterns around the singular point 

7NODE vs I3NODE 

' -2.0 -1.0 0.0 1 .o 2.0 

A X I R L  DISTFINCE. y/H 

Figure 10. Computed normal stresses with 7-node (- - -) and 13-node (-) singular elements (mesh I) 
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is due not only to the lower order of the element but also to the fact that some terms of the basis 
functions become zero in accordance with the analytical solution. Consequently, only one term 
survives to express the radial dependence of the normal stress. 13-node elements overcome this 
difficulty. The mesh pattern with eight 13-node singular elements and eight ordinary transition 
elements appeared to give satisfactory results and adequately captured the 8 dependence of the 
local solution. After some preliminary tests, the radius of the singular elements was taken to be 1.2 
times the size of the original ordinary square. 

To assure that the improved solution is due to the singular basis functions and not to the 
different shapes and mesh patterns used with the singular elements, we solved the problem by 
replacing the 13-node singular elements with 13-node ordinary elements. Comparison of the 
computed normal stresses (Figure 11) indicates that the singular basis functions are important for 
an improved solution. 

As with the use of singular basis functions,8 the condition number of the stiffness matrix 
becomes larger if singular elements are used. Table I summarizes how the condition number 
changes with the mesh and type of element. The condition number, computed using the 
LINPACK subroutine DGBCO, was sufficiently small for all our double-precision computations. 

The second quantity we examined was the velocity on the slip surface. The computed nodal slip 
surface velocities from ordinary mesh IV and singular mesh I1 are shown in Figure 12, along with 
the asymptotic solution. The singular finite element values agree well with the analytical solution; 

13-node singular elements 

-2.0 -1.0 0.0 1.0 2.0 
R X I R L  DISTFINCE. y/H 

Figure 11. Computed normal stresses with 13-node ordinary (- - -) and singular (-) elements (mesh I) 

Table I. Inverse condition number of the stiffness matrix for 
various elements and meshes 

Mesh Element 

I 
I1 
111 
I 
I1 

I1 
r 

Ordinary 9-node 
Ordinary 9-node 
Ordinary 9-node 
Singular 7-node 
Singular 7-node 
Singular 13-node 
Singular 13-node 

~~ 

l/cond (A) 

3.234 x 
1.015 x 

2.394 x lo-' 
7.236 x 

7.505 x lo-' 

4.009 x 10- 5 

2.456 x 10- 7 
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Figure 12. Comparison of predicted slip surface velocities near the singularity: -, asymptotic solution; 0, singular 
mesh 11; 0, ordinary mesh IV 

Table 11. Computed singularity expansion coefficients 

Method u1/2 u3/2 u 5 / 2  

Ordinary elements 0.67170 0.19812 -0.02297 
Singular elements 0.69 173 0.27168 0.050 13 
Ingham and Kelmansonlo 0.69108 026435 0.04962 
Analytical solution 069099 - - 

the ordinary element results differ slightly and converge to the analytical solution with mesh 
refinement. Again, the coarse singular element meshes give more accurate results than refined 
ordinary meshes. 

For another comparison with the analytical solution, we estimated the first expansion 
coefficients using a least-squares fit of equation (5)  to the eight nodal slip surface velocities closest 
to the singularity. Estimates of the first three expansion coefficients are given by Ingham and 
Kelmanson" who used a singular boundary integral method to solve the planar stick-slip 
problem. The estimated parameters for mesh I11 are listed in Table I1 along with the extrapolated 
values given in Reference 10. The agreement with the analytical solution is satisfactory despite the 
fact that the least-squares fit was not rigorous with regard to the number and the weight of the 
nodal points. 

5. CONCLUSIONS 

Singular finite elements have been developed for the stick-slip problem in order to improve the 
solution in the neighbourhood of the singularity. These elements are similar in principle to the 
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crack tip elements used in fracture mechanics; however, in fluid flow problems the pressure, a 
primary unknown, is singular. Compared to ordinary finite elements, the singular elements give 
more accurate results for relatively coarse meshes. Good approximations to the leading singular 
coefficients have also been obtained. The method can be readily applied to other problems in fluid 
mechanics for which the radial form of the singularity can be obtained by a local analysis. As 
mentioned in Section 1, the method is not restricted to creeping and Newtonian flows, but is also 
applicable to non-zero Reynolds number and non-Newtonian flows provided that the encoun- 
tered stresses are integrable. 

From some preliminary results,34 it appears that the removal of the pressure node from the 
singular point plays a crucial role in the improvement of the solution. Singular finite elements, 
with an approximate singularity exponent independent of the free surface shape and location, can 
be used to study singular free surface problems. They can also be used for problems with non- 
integrable singularities by approximating the singular quantities by r - +‘, where 0 < E + I .  These 
issues are currently under investigation. 
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APPENDIX: MAPPING FOR SINGULAR ELEMENTS 

As in T r a ~ e y , ~  we demonstrate that the s-co-ordinate for the element shown in Figure 2 is 
approximately mapped to the radial direction, and the t-co-ordinate is mapped to the circum- 
ferential angle. Suppose that the global radius of the element is given by R and the total global 
angle subtended by the element is p. By directly applying the standard polynomial shape functions 
for an element, we find that 

(16) 
B t 
2 2 

+t)+cos-(I -tZ)-cosB-(l - t )  

and 

where the simplifications use small-angle approximations. Then the determinant of the Jacobian 
matrix is 

i.e. the differential area of the singular element is r dr d€J = I J I ds dt. 

REFERENCES 

1. R. E. Nickell, R. I. Tanner and B. Caswell, ‘The solution of viscous incompressible jet and free-surface flows using finite 

2. K. J. Ruschak, ‘A method for incorporating free boundaries with surface tension in finite element fluid-flow simulators’, 

3. B. J. Omodei, ‘Computer solutions of a plane Newtonian jet with surface tension’, Comput. Fluids, 7, 79-96 (1979). 
4. G. C. Georgiou, T. C. Papanastasiou and J. 0. Wilkes, ‘Laminar Newtonian jets at high Reynolds and high surface 

element methods’, J .  Fluid Mech., 65, 189-205 (1974). 

Int. j .  numer. methods eng., 15, 639-647 (1980). 

tension’, AIChE J . ,  34, 1559-1562 (1988). 



THE STICK-SLIP PROBLEM 1367 

5. P. Andre and J.-R. Clermont, ‘Numerical simulation of the die swell problem of a Newtonian fluid by using the concept 
of stream function and a local analysis of the singularity at the corner’, J. Non-Newtonian Fluid Mech., 23, 335-357 
(1987). 

6. W. J. Silliman and L. E. Scriven, ‘Separating flow near a static contact line. Slip at a wall and shape of a free surface’, 
J. Comput. Phys., 34, 287-313 (1980). 

7. J. R. Whiteman, ‘Numerical solution of steady state diffusion problems containing singularities’, in R. H. Gallagher, 
J. T. Oden, C. Taylor and 0. C. Zienkiewicz (eds), Finite Elements in Fluids, Vol. 2, Wiley 1985. 

8. G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1973. 
9. D. M. Tracey, ‘Finite elements for determination of crack tip elastic stress intensity factors’, Eng. Fract. Mech., 3, 

10. D. B. Ingham and M. A. Kelmanson, Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic 

11.  M. Kermode, A. McKerrell and L. M. Delves, ‘The calculation of singular coefficients’, Comput. Methods Appl. Mech. 

12. N. Y. Lee, W. W. Schultz and J. P. Boyd, ‘Spectral solutions for flows with corner singularities’, APS Division of Fluid 

13. L. S .  D. Morley, ‘Finite element solution of boundary-value problems with non-removable singularities’, Phil. Trans. 

14. D. M. Tracey and T. S. Cook, ‘Analysis of power type singularities using finite elements’, Int. j. numer. methods eng., 11, 

15. H. G. Askar, ‘Special elements for point singularities’, Comput. Methods Appl. Mech. Eng., 63, 271-280 (1987). 
16. G. C. Sih (ed.), Methods of Fracture I. Methods of Analysis and Solutions of Crack Problems, Nordoff, Leyden, 1973. 
17. R. D. Henshell and K. G. Shaw, ‘Crack tip elements are unnecessary’, Int. j .  numer. methods eng., 9,495-507 (1975). 
18. R. Wait, ‘Singular isoparametric finite elements’, J. Inst. Math. Applic., 20, 133-141 (1977). 
19. R. S. Barsoum, ‘Triangular quarter-point elements as elastic and perfectly-plastic crack-tip elements’, Int. j .  numer. 

20. H. Gallagher, ‘Finite element analysis for crack tip problems’, in Proc. Symp. on Finite Element Method, Science Press, 

21. S. Richardson, ‘A ‘stick-slip’ problem related to the motion of a free jet at low Reynolds numbers’, Proc. Camb. Phil. 

255-265 (1971). 

Problems, Springer-Verlag, Berlin, 1984, pp. 21-51. 

Eng., 50, 205-2 15 (1985). 

Mechanics 40th Annual Meeting, Eugene, OR, 1987. 

R. SOC. Lond. A,  275, 463488 (1973). 

1225-1233 (1977). 

methods eng., 11, 85-98 (1977). 

Beijing, China, 1982, pp. 102-149. 

SOC.. 67. 477489 (1970). 
22. 
23. 
24. 
25. 

26. 

27. 

28. 

29. 
30. 
31. 

32. 

33. 

34. 

L. D. Sturges, Ph.b.  Thesis, University of Minnesota, 1977. 
D. H. Michael, ‘The separation of a viscous liquid at a straight edge’, Mathematika, 5, 82-84 (1958). 
H. K. Moffat, ‘Viscous and resistive eddies near a sharp corner’, .I. Fluid Mech., 18, 1-18 (1964). 
W. W. Schultz and C. Gervasio. ‘An analysis of the singularity in the die swell problem’, 10th Znt. Congr. on Rheology, - 
Sydney, 1988. 
R. R. Huilgol and R. I. Tanner, ‘The separation of a second-order fluid at a straight edge’, J. Non-Newtonian Fluid 
Mech., 2, 89-96 (1977). 
M. R. Apelian, R. C. Armstrong and R. A. Brown, ‘Impact of the constitutive equation and singularity on the 
calculation of stick-slip flow: the modified upper-convected Maxwell model (MUCM)’, J. Non-Newtonian Fluid 
Mech., 27, 299-321 (1988). 
T. J. R. Hughes and J. E. Akin, ‘Techniques for developing “special” finite element shape functions with particular 
reference to singularities’, Int. j .  numer. methods eng., 15,733-751 (1980). 
K. J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1982. 
A. J. Baker, Finite Element Computational Fluid Mechanics, McGraw-Hill, New York, 1983. 
M. Okabe, ‘Fundamental theory of the semi-radial singularity mapping with applications to fracture mechanics’, 
Comput. Methods Appl. Mech. Eng., 26, 53-73 (1981). 
J. S. Solecki and J. L. Swedlow, ‘On quadrature and singular finite elements’, Int. j .  numer. methods eng., 20, 395-408 
(1984). 
M. Stern, ‘Families of consistent conforming elements with singular derivative fields’, Int. j. numer. methods eng., 14, 
409421 (1979). 
G. C. Georgiou, W. W. Schultz and L. Olson, ‘Singular finite elements for fluid flow problems’, APS Diuision of Fluid 
Mechanics 41st Annual Meeting, Buffalo, NY, 1988. 


