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Annular liquid jets at high Reynolds numbers
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SUMMARY

The �ow of annular liquid jets at high Reynolds numbers is analysed by means of the �nite element
method and the full-Newton iteration scheme. Results have been obtained for various values of the inner
to the outer diameter ratio and for non-zero surface tension, using extremely long meshes. The annular
�lm moves far from the symmetry axis at low values of the Reynolds number. At higher Reynolds
numbers, the �lm moves towards the axis of symmetry and appears close to very far downstream,
forming a round jet. Asymptotic results for the radius of the resulting round jet are provided. Copyright
? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Laminar annular liquid jets have been the subject of many studies in the past few decades,
since they appear in many polymer processing applications, such as the annular extrusion
for the manufacturing of pipes, the �lm blowing, the blow molding and the wire coating
processes [1; 2], as well as in chemical reactors, such as inertial con�nement fusion reactors
[3; 4]. Analyses accounting for both surface tension and gravity e�ects at non-zero Reynolds
numbers appeared very recently [5; 6].
Ramos [5] studied annular liquid jets at high Reynolds numbers and analysed them asymp-

totically for large and small capillary numbers, using a perturbation method based on a long
wavelength approximation. Housiadas et al. [6], numerically solved the steady Newtonian
annular extrusion �ow, and studied the e�ects of gravity and surface tension forces on the
shape of the extrudate, under the assumption that the closing length is large, i.e. the jet
closes far downstream from the exit plane of the computational domain. In their numerical
simulations, they used the �nite element method with the Newton–Raphson iterative scheme
for the calculation of the unknown positions of the inner and outer free surfaces, i.e. the
positions of the two surfaces are calculated simultaneously with the other unknown �elds
[6; 7]. Further references concerning annular extrusion and annular liquid jets are provided in
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References [5; 6; 8]. References concerning extrusion simulations in general can be found in
Reference [9].
The objective of the present work is to investigate, by means of numerical simulations,

the �ow of annular liquid jets at high Reynolds numbers for various values of the inner to
outer diameter ratio and non-zero surface tension. The governing equations and the boundary
conditions of the �ow are presented in Section 2, while the �nite element formulation is
presented in Section 3. The numerical results are presented and discussed in Section 4. At
high Reynolds numbers, the �lm moves towards the axis of symmetry and appears to close
very far downstream, forming a round jet. Asymptotic results for the radius of the resulting
round jet are provided in Section 5. Our conclusions are summarized in Section 6.

2. GOVERNING EQUATIONS

The geometry of the annular extrusion process is illustrated in Figure 1. Under the in�uence
of inertia and surface tension, the annular �lm closes at a distance from the die exit known
as the closing [10] or convergence length [4]. The exit plane of the computational domain
is taken upstream from the closing point, as shown in Figure 2. The �ow is assumed to be
steady, incompressible, isothermal, and Newtonian, and gravity is neglected. The governing
equations are non-dimensionalized by scaling lengths by the annulus gap size (R2−R1), where
R1 and R2 are the inner and outer radii of the annulus, respectively; the velocity vector, v, is
scaled by the average velocity U in the annulus, and the pressure, p, and the stress tensor,
�, by �U=(R2 − R1), where � is the constant viscosity. The resulting dimensionless forms of
the continuity and momentum equations are

∇ · v=0 (1)

Re v · ∇v=−∇p−∇ · � (2)

where

Re≡ �U (R2 − R1)
�

(3)

is the Reynolds number, and � is the density.
The boundary conditions of the �ow are shown in Figure 2. The kinematic condition on

the two free surfaces,

n · v=0 (4)

where n is the unit normal vector pointing outwards from a free surface, requires that these
remain material surfaces. From the momentum balance on any free surface, we get

n · T=−2H
Ca

n (5)

where

T=−pI − �=−pI+∇v+ (∇v)T (6)
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Figure 1. Schematic of the annular extrusion �ow. The vertical dotted line indicates
the exit plane of the computational domain.

Figure 2. Geometry and boundary conditions of the annular extrusion �ow.

is the total stress tensor, and I is the unit tensor; Ca is the capillary number, de�ned by

Ca≡ �U
�

(7)

where � denotes the surface tension, and 2H is the mean curvature of a free surface, given by

−2H= hzz
[1 + h2z ]3=2

− 1
h
√
1 + h2z

(8)

Note that the subscripts z and zz denote �rst- and second-order di�erentiation of h with
respect to z.
Along the solid walls, both the velocity components vanish. At the inlet plane, taken at a

distance L1 upstream the die exit, the �ow is assumed to be fully developed, i.e. vr is zero
and vz is given by the standard solution for Poiseuille �ow in an annulus. Finally, at the
outlet plane, taken at a distance L2 downstream from the die exit, the �ow is assumed to be
approximately uniform, and thus,

Tzz=−p− �zz= 1
Ca

(
1
h2

− 1
h1

)
and vr=0 (9)
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where �zz is the normal stress component. (Note that the subscript zz denotes here the zz stress
component.) The above out�ow boundary conditions have been shown to lead to satisfactory
results up to a certain fraction of the length L2, provided that the latter is su�ciently large [6].

3. FINITE ELEMENT FORMULATION

The annular extrusion �ow problem has been solved using �nite elements. The unknown
positions of the inner and outer free surfaces, respectively, are calculated simultaneously with
the pressure and velocity �elds, using the Newton method (i.e., without the use of Picard
iterations). The �ow domain is discretized by means of curvilinear (biquadratic), quadrilateral
isoparametric elements. The pressure, p, and the velocity, v, are approximated by means of
bilinear, �j, and biquadratic, �j, basis functions

�p=
Np∑
j=1
pj�j and �v=

Nv∑
j=1
vj�j (10)

where bars denote the approximations of the unknown �elds, Np and Nv are the numbers
of pressure and velocity notes, respectively, and pj and vj denote the values of �p and �v at
the jth node. The standard Galerkin method is used, i.e. the continuity the momentum equa-
tions are weighted over the �ow domain � with the bilinear and biquadratic basis functions,
respectively, and the divergence theorem is applied to the total stress term of the momentum
equation. Thus, the discretized continuity and momentum equations are as follows:

∫
�
∇ · �v�i dV = 0; i=1; : : : ; Np (11)

∫
�
[Re�v · ∇�v�i + �T · ∇�i] dV −

∫
@�
n · �T dS = 0; i=1; : : : ; Nv (12)

where n is the outward unit normal to the boundary @�. The unknown positions, h1 and h2, of
the free surfaces of the annular extrudate are expanded in terms of quadratic basis functions,
Xj, conforming to the isoparametric transformation:

�h1=
Nh∑
j=1
h1jXj and �h2=

Nh∑
j=1
h2jXj (13)

where Nh is the number of free surface nodes, and h1j and h2j the nodal values of �h1 and
�h2, respectively. The functions Xj are also used to weight the kinematic condition on the two
free surfaces, denoted here by @�1 and @�2:∫

@�1
n · �vXi dS=0; i=1; : : : ; Nh (14)

and ∫
@�2
n · �vXi dS=0; i=1; : : : ; Nh (15)
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The boundary conditions on the two free surfaces and the out�ow plane are imposed by
substituting the stress components, as given by Equations (5) and (9), respectively, in the
boundary integral of Equation (12). Equations (11), (12), (14) and (15) constitute a non-
linear system of Np + 2Nv + 2Nh equations, which is solved using the Newton method and a
standard frontal subroutine. In the extrudate region, the r-co-ordinates of the mesh nodes are
updated at each iteration, according to the newly found positions of the inner and outer free
surfaces. For this purpose, the spine technique is employed, i.e. the nodes move in the radial
direction so that the ratios of the widths of the elements to the thickness of the annular �lm
remain constant.

4. NUMERICAL RESULTS AND DISCUSSION

We used meshes of di�erent lengths and degrees of re�nement, in order to con�rm the validity
of the numerical results. All meshes were graded, with the element dimensions becoming
progressively smaller towards the exit and the walls of the annulus. In this section, we present
calculations obtained with the two longest meshes corresponding to L1=50, and L2=6400 and
20 000, respectively. Useful data for these two meshes are provided in Table 1; Nz and Nr
denote the numbers of elements in the axial and radial directions, respectively.
Results have been obtained for three di�erent values of the ratio

�≡ R1
R2

(16)

of the inner to the outer diameter of the annulus: 0.5, 10/11, and 20=21. We �rst studied
the case in which surface tension is zero (i.e., Ca=∞). In Figure 3, we show the calculated
�lm pro�les for �=0:5 and various Reynolds numbers. We observe that the �lm moves
slightly away from the axis of symmetry at small values of the Reynolds number. However,
as the Reynolds number is increased, the �lm starts moving towards the symmetry axis. This
behaviour agrees with experimental observations [11]. In Figure 4, we compare the �nal values
of the internal and external radii of the annular �lm obtained with Mesh 1 (L2=6400) and
Mesh 2 (L2=20000). Small di�erences appear for Reynolds numbers above 1000, with the
prediction of the shorter mesh being slightly above that of the longer one.
The e�ect of the Reynolds number on the shape of the annular �lm is more pronounced

when � is higher. This is illustrated in Figures 5 and 6, where we show results for �=10=11
and 20=21, respectively. The comparison of the �nal values of the internal and external �lm
radii calculated with the two meshes reveals that the calculations are converged only for
moderate Reynolds numbers: up to Re=30 for �=10=11 and up to Re=20 for �=20=21.
It is worthy to note here that these values of the Reynolds number would have been much
higher, if a di�erent length scale were used, i.e., R1 instead of (R2 − R1). (In such a case,

Table 1. Data for two of the meshes used in the present work.

Number Number
Mesh L2 Nz Nr of elements of unknowns

1 6400 373 10 3730 36855
2 20000 455 16 7280 69481
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Figure 3. Annular �lm shapes for various Reynolds numbers, �=0:5 and zero surface tension, obtained
with L2=20 000. The broken lines show the annular �lm at zero Reynolds number.

Re must be multiplied by 10 and 20 for �=10=11 and 20=21, respectively.) Another remark
is that the numerical solutions obtained with the shorter mesh at high Reynolds numbers do
not di�er practically from those obtained with the longer mesh up to a distance downstream
from the exit of the die which is roughly equal to 2000 (see Figure 7).
The outwards motion of the �lm at low Reynolds numbers is much more appreciable for

higher values of �, i.e., for �=20=21 (Figure 6). A consequence of this motion is the reduction
of the �lm thickness, due to mass conservation. This reduction is counterbalanced by the �lm
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Figure 4. Final value of the internal and external radii of the annular �lm with L2=6400 (broken line)
and 20 000 (solid line); �=0:5, zero surface tension.

swelling when � is small (see, e.g., Figure 3), and is more dramatic for higher values of �.
Evidently, for even higher values of � the reduction of the thickness will result in the break
up of the �lm, which means that such a �ow is not realizable in practice. However, the
break up of the �lm may be delayed up to higher diameter ratios in case of non-zero surface
tension, since the latter pushes the �lm towards the symmetry axis, or in the presence of
gravity (acting in the direction of the �ow) [6].
The contractive action of the surface tension is illustrated in Figure 8, where annular �lm

shapes obtained for �=10=11, Re=10 and 30, and various capillary numbers are plotted. We
observe that surface tension reduces the closing length of the annular �lm considerably. As
illustrated in Figure 9 where we zoom near the exit of the die, initially, the shape of the
annular �lm is almost independent of the capillary number, since the three shapes in Figures
8a and b coincide. This result agrees with the asymptotic solutions provided by Ramos [5].
Similar observations have been made for di�erent values of the diameter ratio � and other
values of the Reynolds number.

5. ASYMPTOTIC RESULTS FOR THE OUTER JET DIAMETER

The theoretical limits of the outer jet diameter at in�nite Reynolds number h2;∞, are obtained
by taking mass and momentum balances between the exit of the die, where the �ow is assumed
to be fully developed, and at a plane very far downstream in the �lm region, where the �ow
is taken as plug. With such an analysis, the asymptotic limits of the extrudate-swell ratio at
in�nite Reynolds number are predicted for the round and planar Newtonian jets. In the former
case this limit is

√
3=2 [12], whereas in the latter is 5

6 [13].
By using the dimensionless form of the continuity equation, one obtains

uz;∞(h22;∞ − h21;∞)=1− �2 (17)
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Figure 5. Annular �lm shapes for various Reynolds numbers, �=10=11 and zero surface tension,
obtained with L2=20 000. The broken lines show the annular �lm at zero Reynolds number.

where the subscript ∞ denotes the out�ow quantities at the asymptotic limit, and � is the
ratio of the inner to the outer die radius. (The dimensionless outer radius is equal to unity.)
From the conservation of momentum, we may write

u2z;∞(h
2
2;∞ − h21;∞)=2

∫ 1

�
u2z r dr (18)
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Figure 6. Annular �lm shapes for various Reynolds numbers, �=20=21 and zero surface tension,
obtained with L2=20 000. The broken lines show the annular �lm at zero Reynolds number.

where the velocity uz is given by [14]

uz=2
(
1− r2 − 1− �2

ln �
ln r

)/(
1 + �2 +

1− �2
ln �

)
(19)
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Figure 7. Shapes of the annular �lm with L2=6400 (broken line) and 20 000 (solid line);
�=20=21, zero surface tension.

Combining Equations (11) and (12) gives

h22;∞ − h21;∞=
(1− �2)2
2
∫ 1
� u

2
z r dr

(20)

By substituting Equation (13) into Equation (14) and by integrating, we �nd that

h22;∞ − h21;∞=F(�) (21)
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Figure 8. Surface tension e�ect for: (a) Re=10; and (b) Re=30; �=10=11.

where

F(�)≡ 3(1− �2)[(1 + �2) ln �+ (1− �2)]2
4(1 + �2 + �4) ln2 �+ 9(1− �4) ln �+ 6(1− �2)2 (22)

Due to the presence of two unknowns, h1;∞ and h2;∞, the above analysis does not provide
any information as to whether the two free surfaces level o� without closing or the jet
closes far downstream, as indicated by the numerical calculations. However, if we assume
that the jet closes far downstream, i.e., h1;∞ is zero, then the radius of the resulting round
jet is h2;∞=

√
F(�). In Figure 10a,

√
F(�) is plotted versus �. In Figure 10b, we plot the

same quantity scaled by the gap size (1 − �). Note that as �→ 0,
√
F(�)=(1 − �) tends

to
√
3=2, which is the asymptotic ratio for the round jet. Of course, in this case h1;∞ is

zero. As for the other limiting case of �→ 1, one may expect the very thin annular jet to
behave as a planar jet remaining horizontal and reaching the corresponding asymptotic ratio
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Figure 9. Surface tension e�ect is not important near the exit: (a) Re=10 and Ca=∞; 30 000 and 3000;
and (b) Re=30 and Ca=∞; 20 000 and 2800; �=10=11.

of 5
6 . Our calculations showed that the jet exhibits such a behaviour initially but closes to

a round jet in�nitely far downstream, the asymptotic radius of which is equal to
√
F(�).

Despite the fact that this value appears to vanish as �→ 1, it is many times bigger than the
annular gap size (1− �), as illustrated in Figure 10. This limiting case is only of theoretical
interest, since the thin annular �lm is physically expected to break up at high Reynolds
numbers.

6. CONCLUSIONS

We have used �nite elements to solve the steady �ow of an annular Newtonian jet at high
Reynolds numbers, and obtained results for various values of the inner to the outer diameter
ratio and non-zero surface tension. The numerical simulations have shown that at low values
of the Reynolds number, the annular �lm moves far from the symmetry axis, whereas, at
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Figure 10. The behaviour of the function F(�).

higher Reynolds numbers, the �lm moves towards the axis of symmetry and appears to close
very far downstream, forming a round jet. The radius of the latter, which is a function of
the diameter ratio, has been calculated in the limit of in�nite Reynolds number, using an
asymptotic analysis.
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