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SUMMARY

A Galerkin=�nite element and a pseudo-spectral method, in conjunction with the primitive (velocity-
pressure) and streamfunction-vorticity formulations, are tested for solving the two-phase �ow in a tube,
which has a periodically varying, circular cross section. Two immiscible, incompressible, Newtonian
�uids are arranged so that one of them is around the axis of the tube (core �uid) and the other one
surrounds it (annular �uid). The physical and �ow parameters are such that the interface between
the two �uids remains continuous and single-valued. This arrangement is usually referred to as Core-
Annular �ow. A non-orthogonal mapping is used to transform the uneven tube shape and the unknown,
time dependent interface to �xed, cylindrical surfaces. With both methods and formulations, steady
states are calculated �rst using the Newton–Raphson method. The most dangerous eigenvalues of the
related linear stability problem are calculated using the Arnoldi method, and dynamic simulations are
carried out using the implicit Euler method. It is shown that with a smooth tube shape the pseudo-
spectral method exhibits exponential convergence, whereas the �nite element method exhibits algebraic
convergence, albeit of higher order than expected from the relevant theory. Thus the former method,
especially when coupled with the streamfunction-vorticity formulation, is much more e�cient. The �nite
element method becomes more advantageous when the tube shape contains a cusp, in which case the
convergence rate of the pseudo-spectral method deteriorates exhibiting algebraic convergence with the
number of the axial spectral modes, whereas the convergence rate of the �nite element method remains
una�ected. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: two-phase �ow; undulating tube; core-annular �ow; pseudo-spectral method; �nite
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1. INTRODUCTION

A number of technologically important applications are known in which two immiscible
�uids �ow concurrently inside a duct with one of them occupying the core of the duct
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and the other one the space between the �uid in the core and the surrounding solid wall.
In several of these applications, the �ow is rather slow, and the corresponding Reynolds
number is of the order of unity. In a �rst such example, hydrogen and hydrocarbons �ow
through millimeter-scale, tortuous passages created by catalytic particles stacked together to
promote reforming oil and its byproducts in certain trickle-bed reactors. It has been con-
jectured that in this process heavy oil wets the catalytic particles and hydrogen has to
di�use through it in order to reach the particles where reaction takes place. It is well
known that the di�erent �ow regimes a�ect greatly the reactor parameters, namely pres-
sure drop, heat and mass transfer coe�cients, reaction rate and liquid holdup. Therefore,
the prediction of the onset of these �ow regimes is critical in reactor design and opera-
tion [1]. To this end, they have been studied extensively both experimentally and theoreti-
cally using macroscopic or microscopic models of two-phase �ow [2]. Similarly, two �uids
�ow concurrently through corrugated and narrow passages in processes aimed at recover-
ing oil from sedimentary rocks by injecting primarily water or steam. Inevitably, the dis-
placing �uid follows the path of minimum resistance, i.e., away from solid surfaces and,
usually, it does not remove the part of the oil that adheres to corners and crevices in the
rock.
A popular approximation of the tortuous paths in a packed bed is a conduit of circular

cross section, the radius of which varies sinusoidally with the axial distance. This is the
so-called periodically constricted tube. Although this single tube geometry cannot describe
latitudinal dispersion in the bed or exchange of �uids between nearby conduits, it simulates the
converging–diverging character of the �ow in an actual packed-bed, which is important, and
cannot be described by a straight tube. This model has been used extensively for simulating
the single-phase �ow of Newtonian [3; 4] and non-Newtonian �uids [5]. However, studies
with two-phase �ow are very limited. Very recently, Kouris and Tsamopoulos [6; 7] have
studied the linear stability of the steady, two-phase �ow with and without employing the
lubrication approximation, respectively.
On the other hand, the linear and nonlinear theory for two-phase �ow is well developed

for �ows in straight tubes, where capillarity, inertia and viscosity and, secondarily, density
strati�cation are the dominant contributions to the �ow stability [8–10]. Unfortunately, the
pores between sedimentary rocks and the interstices in packed beds do not provide a pathway
of uniform cross section, and it is conceivable that this geometric non-uniformity may induce
or modify already possible instability. For this reason, we have undertaken a systematic study
of the e�ect of the conduit’s periodically varying cross section on the �ow �eld and its
stability. As mentioned above, the most often used periodic shape is the sinusoidally varying
tube. However, the space between touching particles does not vary as smoothly. For this
reason, we examine here the e�ect of a more general periodic shape, which depends on a
geometric parameter, the limiting values of which reduce it to either the sinusoidal shape
or a ‘singular’ shape. This geometric ‘singularity’ provides an additional test to the chosen
numerical methods of solution.
The numerous physical and �ow parameters that arise in this study necessitate the devel-

opment of an e�cient and robust numerical method for performing the required calculations.
Here, the steady solution, the most unstable eigenvalues as well as the dynamic response
of the core-annular �ow in a periodically constricted tube are obtained after solving the
governing equations of motion using di�erent formulations (primitive and streamfunction-
vorticity) and numerical methods (pseudo-spectral and �nite element). A non-orthogonal
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mapping is employed to transform the time-dependent (physical) domain of each �uid to
a �xed (computational) one, where the transformed variables are approximated by polyno-
mial expansions. Because of this mapping, the tube and the interface radii arise explicitly
in the bulk equations, thus increasing their complexity. In all formulations and solutions,
the �ow �eld and the unknown �uid=�uid interface are calculated simultaneously, accel-
erating in this way the convergence of the iterative scheme. This requires computing the
Jacobian matrix that describes the sensitivity of the residuals of the mass and momentum
balances and of the boundary conditions to changes in the �eld variables and the interface
location.
Spectral methods may be viewed as an extreme development of the class of discretiza-

tion schemes for di�erential equations known generically as the method of weighted resid-
uals, the key elements of which are the trial functions (the approximating functions) and
the test functions (weight functions). The trial functions are used as the basis functions
for a truncated series expansion of the solution. The test functions are used to ensure that
the di�erential equation is satis�ed as closely as possible by the truncated series expan-
sion. This is achieved by minimizing the residual, i.e., the error in the di�erential equation
produced by using the truncated expansion instead of the exact solution, with respect to
a suitable norm. An equivalent requirement is that the residual satis�es a suitable orthog-
onality condition with respect to each of the test functions. The choice of the trial func-
tions is one of the features, which distinguishes spectral from �nite element methods. The
trial functions for spectral methods are in�nitely di�erentiable global functions. In the case
of the �nite element method, the domain is divided into small elements and a low-order
trial function is speci�ed in each element. The trial functions are thus local in character,
and well suited for handling complex geometries. In the case of the Galerkin=�nite ele-
ment method (FEM) the test functions are the same as the trial ones, while in the case
of the pseudo-spectral method the test functions are translated Dirac delta functions cen-
tered at special collocation points. The error in approximating a function governed by a
di�erential equation in terms of an in�nite sequence of orthogonal trial functions decays
faster than any inverse power of the highest retained mode on condition that both the
function and all its derivatives are in�nitely smooth. This characteristic is usually referred
as ’spectral accuracy’ of the method. On the other hand, the �nite element method ex-
hibits algebraic convergence but its convergence rate is not deteriorated even if the tube
shape approaches a singular form and thus, its use becomes much more advantageous com-
pared to the behavior of the spectral method. Here, the spectral expansion of each depen-
dent variable consists of Fourier modes in the axial direction and Chebyshev polynomi-
als in the radial one, while low-order Lagrangian basis functions are used in the case of
the FEM.
The remainder of this paper is organized as follows. The governing equations, which de-

pend on eight dimensionless parameters, are presented in Section 2. Next, the necessary trans-
formations using both the streamfunction-vorticity and the primitive formulation are given in
Section 3. The numerical method of solution of the model equations in space and time as well
as the application of two non-orthogonal body-�tted coordinate transformations using both the
pseudo-spectral and the �nite element method are described in Sections 4 and 5, respectively.
The results are presented in Section 6, where the convergence rate with mesh re�nement and
the e�ciency of each tested numerical scheme are discussed. Finally, conclusions are drawn
in Section 7.
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2. GOVERNING EQUATIONS

In what follows, we use the symbol ˆ to denote dimensional quantities, t̂ to denote time and
employ cylindrical coordinates (r̂; �̂; ẑ). We consider the core-annular �ow (CAF) of two
incompressible, immiscible, Newtonian �uids in a pipe of circular cross-section, the radius,
R̂2, of which is assumed to vary periodically in the axial direction according to the following
equation:

R̂2(ẑ)=
R̂max + R̂min

2
− R̂max − R̂min

2
cos(�(ẑ)); 06�62� (1)

where the function �(ẑ) is determined by the following implicit expression

�+ � sin(�)=2�
ẑ
L̂

(2)

According to Equations (1) and (2) the tube radius varies between the values R̂min and R̂max
within an axial distance L̂, and in a way that depends on the parameter � as follows. When
�=0, the variable � coincides with 2�ẑ=L̂ and, as a result, the tube radius varies sinusoidally
with the axial distance generating the widely used undulating tube geometry. On the other
hand for �→ 1 a cusp develops at ẑ= L̂=2, where the derivative of the radius with respect
to ẑ develops an in�nite jump, generating a ‘singular’ geometry, used to test and compare
further the chosen methods of solution.
The two �uids are layered in such a way so that the �rst �uid (core �uid) with viscos-

ity and density (�̂1; �̂1) occupies the region 06r̂6R̂1(�̂; ẑ; t̂), while the second �uid (an-
nular �uid) with viscosity and density (�̂2; �̂2) occupies the region R̂1(�̂; ẑ; t̂)6r̂6R̂2(ẑ).
The equations that govern their motion, neglecting gravity, are the mass and momentum
balances:

∇ · Û i =0 (3)

�̂i
DÛ i

Dt̂
=−∇P̂i +∇ · �̂

i
(4)

The shape of the �uid=�uid interface is determined by the kinematic condition

DR̂1
Dt̂

= Û i(R̂1(�̂; ẑ; t̂); �̂; ẑ; t̂) (5)

where R̂1 = erR̂1(�̂; ẑ; t̂)+ezz is the position vector and ∇(·); D(·)=Dt̂ are the gradient operator
and the substantial derivative in cylindrical coordinates, respectively. The extra stress tensor
of each Newtonian �uid, i, is given by �̂

i
= �̂i(∇Û i + ∇Û T

i ). In addition to being bounded
at the centerline, continuous across the �uid=�uid interface and zero on the solid wall, the
resulting velocity �eld should also satisfy the interfacial stress balance, which is expressed by
the following vector equation:

(−‖P̂‖ − 2Ĥ T̂ )n+ ‖�̂‖=0 on r̂= R̂1(�̂; ẑ; t̂) (6)
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where −2Ĥ =∇ · n|r̂=R̂1 is twice the mean surface curvature of the �uid=�uid interface, T̂
is the coe�cient of surface tension, n is the unit vector normal to the surface r̂= R̂1(�̂; ẑ; t̂)
pointing from �uid 1 to �uid 2 and ‖·‖=(·)2−(·)1 denotes the jump of the bracketed quantity
across r̂= R̂1(�̂; ẑ; t̂). In addition to the previously mentioned conditions, periodicity in both
the azimuthal and axial directions is imposed on the velocity �eld, the stress tensor of both
�uids as well as the �uid=�uid interface. We also require that the volume of the core �uid
remains constant in time. The last condition that should be imposed for a well-de�ned set of
equations is either the total volumetric �ow rate of the two phases or the pressure loss. We
prefer to impose the total �ow rate and then compute the pressure loss along the computational
domain, checking in this way the convergence of the steady solution. Whether the pressure
loss or the total volumetric �ow rate is imposed, the eigenvalues of the linearized equations
of motion are exactly the same, which means that in either case both the total �ow rate and
the radially averaged pressure of a linear disturbance equal zero. However, this result does
not hold in nonlinear dynamic simulations, since by keeping the total �ow rate constant, a
wavy interface develops in the nonlinear regime, which on physical grounds should increase
the required pressure drop needed to keep the total �ow rate constant (see Reference [11]).
Imposing the �ow rate of each phase leads to an ill-de�ned problem.
The above equations have been made dimensionless by scaling the radial direction by the

maximum radius, R̂max, of the pipe and the axial distance by L̂=2�. The characteristic axial,
Ŵo, radial, Ûo, and azimuthal, V̂o, velocities are de�ned as follows:

Ŵo= R̂
−2
max

(∫ R̂1

0
r̂Ŵ1 dr̂ +

∫ R̂2

R̂1
r̂Ŵ2 dr̂

)
; Ûo= V̂o=

R̂max
L̂=2�

Ŵo (7)

The pressure as well as the stress components in either phase is scaled by the inertia of the
core �uid, �̂1Ŵ

2
o and the time by L̂=(2�Ŵo). In the streamfunction-vorticity formulation, the

scales for the streamfunction and the vorticity are �̂o= ŴoR̂2max and �̂o= Ŵo=R̂max, respectively.
The introduction of the above scales into Equations (1)–(6) gives rise to seven dimensionless
numbers: the aspect ratio, �=2�R̂max=L̂, the constriction ratio, �= R̂min=R̂max, the geometric
parameter �, the viscosity ratio, �= �̂2=�̂1, the density ratio, �= �̂2=�̂1, the Reynolds number,

Re=(�̂1ŴoR̂max�)=�̂1 and the inverse Weber number, W = T̂ =(�̂1Ŵ
2
o R̂max). An additional di-

mensionless parameter that should be imposed is the volume fraction occupied by the core
�uid, denoted as: V = V̂1=V̂T , where V̂1 and V̂T are the volume occupied by the core �uid and
the total volume of the tube, respectively.

3. ALTERNATIVE FORMULATIONS OF THE PROBLEM

3a. Streamfunction-vorticity formulation

In axisymmetric �ow, the streamfunction, �̂i, and the vorticity, �̂i, of each �uid, are de�ned
by

Ûi=−1
r̂
@�̂i
@ẑ
; Ŵi=

1
r̂
@�̂i
@r̂
; and �̂i=

@Ŵi
@r̂

− @Ûi
@ẑ

(8)
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respectively. By cross-di�erentiating and subtracting the two components of the momentum
balance, the pressure gradient is eliminated. The resulting dimensionless equations are:

r�i; rr −�i; r +�2r�i; zz − r2�i = 0 (9)

�iRe r2�i; t + (�iRe�i; z + �i)(�i − r�i; r) + �iRe r�i; r�i; z
−�ir2(�i; rr +�2�i; zz) = 0 (10)

R1@t(R1) + R1; z�1; r|r=R1 + �1; z|r=R1 = 0 (11)

where (�1; �1)= (1; 1) and (�2; �2)= (�; �); Equation (11) is the transformed kinematic con-
dition.
The boundary conditions along the centerline and the solid wall expressed in terms of the

streamfunction and the vorticity of each �uid become:

�1 =−1; �1; r =�1 =0 on r=0 (12)

�1 −�2 =�1; r −�2; r =0 on r=R1 (13)

�2 =�2; r =0 on r=R2 (14)

In addition to satisfying the boundary conditions mentioned in the previous section, Equa-
tions (12)–(14) also impose that the total dimensionless volumetric �ow rate equals unity.
Since the normal stress balance in Equation (6) involves the pressure, it is essential to dif-
ferentiate Equation (6) with respect to the axial distance using the chain rule in order to
introduce derivatives of the pressure, which are eliminated using Equation (4). In order to
further simplify the boundary conditions at the axis of symmetry and the solid surface we
introduce the transformations:

�1 = r2 1 − 1 (15)

�2 = (r − R2) 2 (16)

Consequently, we should only impose the following:

1; r =0 on r=0 (17)

R21 1 − (R1 − R2) 2 =1; 2R1 1 − 2 + R
2
1 1; r − (R1 − R2) 2; r =0 on r=R1 (18)

2 =0 on r=R2 (19)

The advantage of these transformations is that we only have to use four boundary conditions,
Equations (17)–(19), instead of seven, Equations (12)–(14), since three of them are satis�ed
implicitly. As a result, Equations (17) and (19) are imposed as boundary conditions at the
centerline and the solid wall, respectively, while Equations (18) are imposed as boundary
conditions on the �uid=�uid interface, all related to the streamfunction. In their �nal form, the
interfacial force balances involve �rst derivatives of vorticity and they are imposed as boundary
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conditions to the vorticity equation on the �uid=�uid interface, while at the centerline and the
solid wall (Equation (9)), is imposed as a boundary condition to the vorticity equation [12].
The application of the constant volume of core �uid is related to the periodic boundary

conditions. In order to make this clear we integrate Equation (11) over the computational
length to obtain:

d
dt

(∫ 2�

0
R21 dz

)
+ 2

∫ 2�

0
d(�1|r=R1)= 0 (20)

Upon applying the periodic boundary condition, we obtain
∫ 2�
0 R21 dz=constant. Thus, the

volume of the core �uid remains constant in time and, because it is an integral form of the
kinematic equation along the considered tube length, the kinematic condition is dropped at
one of the grid points in the interface and Equation (20) is imposed instead.

3b. Primitive formulation

When the system of Equations (3)–(5) is solved subject to the appropriate boundary conditions
in the primitive formulation, we perform the following transformation, irrespective of the
adopted numerical method of solution:

Pi=pi +�Pz (21)

This transformation [4; 13] is used in order to decompose the original pressure term Pi into a
periodic part pi and a term (�Pz) that varies linearly with the axial distance. In this way, we
make explicit the pressure drop per unit length, �P, which is calculated by satisfying that the
total volumetric �ow rate, which in dimensionless form reduces to

∫ R1
0 rW1 dr+

∫ R2
R1
rW2 dr=1,

remains constant [14]. The imposition of the constant volume of the core �uid is implemented
in the same way as explained in the streamfunction-vorticity formulation (Equation (20)).
It is worth mentioning that, in the case of stability with respect to non-axisymmetric distur-

bances, di�erent boundary conditions should be imposed on the perturbation functions (denoted
by the subscript p) at the axis of symmetry, depending on the wavenumber in the azimuthal
direction, k. There are di�erent ways to obtain the appropriate boundary conditions at the
centerline. One may use the Frobenious method or may start from requiring that the velocity
�eld is single-valued at the centerline [15]. Finally, one may take the limit of the momentum
and continuity equations as the radial distance goes to zero, and then recover the conditions
that guarantee the boundedness of the velocity �eld by using L’Hospital’s rule. Following any
of these routes, the resulting conditions at the centerline are:

Radial velocity: k �=1; U1;p=0; k=1; U1; p + iV1;p=0
Azimuthal velocity: k=1; @rV1;p=0; k �=1; V1;p=0
Axial velocity: k=0; @rW1;p=0; k �=0; W1;p=0

(22)

4. NUMERICAL IMPLEMENTATION

The steady axisymmetric eigenvalue problem is solved using three methods: (i) a pseudo-
spectral method in the streamfunction-vorticity formulation, denoted by SVFSM; (ii) adopting
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again a pseudo-spectral method in the primitive formulation, PFSM; and (iii) using the �nite
element method in primitive formulation, PFFEM. In order to properly discretize the physical
domain and correctly impose the interfacial boundary conditions onto the �uid=�uid interface
and the solid wall, the following coordinate normalization is implemented, irrespective of the
numerical method of solution:

Fluid 1: x1 = 1−2 r
R1(�; z; t)

; x2 = �; x3 = z; �= t (23)

Fluid 2: x1 =−1 + 2 r − R1(�; z; t)
1− R1(�; z; t) ; x2 = �; x3 = z; �= t (24)

This non-orthogonal, body-�tted coordinate transformation (r; �; z; t)→ (x1; x2; x3; �) has been
employed in order to map the a priori unknown, time-dependent regions occupied by each �uid
onto the �xed x1 =−1 plane, while the centerline and the solid wall are mapped onto the x1 = 1
plane. Thus, the bounds of the new independent variables are −16x161; 06x2; x362�, and
�¿0. Of course, this transformation is valid only when the function R1 =R1(�; z; t) is single
valued and it breaks down when folding of the interface occurs.

4a. Pseudo-spectral method

When the pseudo-spectral method is used (SVFSM and PFSM), every dependent variable
is approximated using Chebyshev polynomials in the x1 direction and Fourier modes in the
x3 direction so that the periodic boundary conditions in the axial direction are satis�ed im-
plicitly. The grid points in the x1 direction are de�ned as the extreme of the highest-order
Chebyshev polynomial that we use (M), while the grid points in this direction are given by:
x1; m= cos(�(m− 1)=(M − 1)); 16m6M . The grid points in the x3-direction are taken to be
equidistant, i.e. x3; n=2�(n− 1)=N; 16n6N . So, every dependent variable is approximated
as a sum of products of Chebyshev polynomials, Ci(x1), and Fourier modes, Fj(x3),

f(x1; x3)=
M∑
i=1

N∑
j=1
aijCi(x1)Fj(x3) (25)

The unknowns, aij , are computed by direct satisfaction of the di�erential equations at the
collocation points. Whereas the use of the streamfunction-vorticity formulation alleviates the
problem of dealing with the incompressibility constraint, the solution of the Navier–Stokes
equations in the primitive variables requires special treatment of the pressure variable. Canuto
et al. [16] suggest that the pressure variable needs a special treatment, when the �ow do-
main involves inhomogeneous directions, which is the case with the radial direction here.
More speci�cally, they report that the spectral expansion of the pressure should be at least
one order lower than the expansion used for the velocity �eld, and the pressure should be
computed at collocation points staggered with respect to those at which the radial and ax-
ial momentum balances are enforced. This is necessary because the pressure term arises in
the evolution equations of the velocities in the form of �rst derivatives only and not in the
continuity equation. Therefore, the use of the same approximation for both the pressure and
the velocity will lead to an underdetermined set of equations. In particular, there are two
parasitic modes that enter the discrete set, when all variables are approximated by polynomi-
als of the same order: the constant term in the representation for pressure, and the highest
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order polynomial which has zero �rst derivative in all the internal collocation points, but
not at the boundaries. Thus, these two modes cannot a�ect either the momentum equations
or the continuity equation and, as a result, they remain undetermined. Of course, the use
of a staggered mesh can circumvent this problem at the expense of increased programming
complexity, since apart from projecting each variable at the collocation points of the other
variables, the boundaries need special treatment in order to impose the relevant boundary
conditions.
We choose to approximate the pressure and the velocity components with Chebyshev poly-

nomial expansions of the same order. The two parasitic modes for the pressure in each phase
cannot be calculated using the continuity equation as explained above and, thus, we are obliged
to drop this equation at the centerline, at the interface between the two �uids as well as at the
solid surface. Instead of them, we enforce the radial momentum equation, which would not be
used otherwise, because it is substituted by the no-penetration condition at the solid wall and
the appropriate conditions at the centerline and the interface. In addition, at one collocation
point at the solid wall and the entrance of the tube we impose the pressure datum, p2 = 0.
Thus, the inconsistencies are removed, and the set of equations is no longer underdetermined.
Canuto et al. [16] suggest that when a non-staggered mesh is used then conditions consistent
with the incompressibility constraint should be enforced at the boundaries as well. This is
similar to what we have done.
We have checked a posteriori the numerical error with which the omitted continuity equa-

tions are satis�ed and we have found it to be always slightly higher (∼ 10−8) than the
prede�ned error, set for the rest of the equations, and to decrease with mesh re�nement.
Moreover, we have checked independently both the steady solutions and the axisymmetric
eigenvalues computed using this formulation with those using the SVFSM and PFFEM and
have found complete agreement in all cases. We have performed further testing by computing
non-axisymmetric eigenvalues assuming straight tube geometry and the results have always
been in complete agreement with the ones that we report in the following sections.

4b. Finite element method

When the Galerkin �nite element method is used, PFFEM, the computational domain is par-
titioned uniformly into quadrilateral elements. A mixed formulation is applied for the approx-
imation of the velocity and the pressure �elds [17]. In particular, the independent variables
and the velocity �eld of each �uid are represented by biquadratic, the pressure by bilinear
and the �uid=�uid interface by quadratic Lagrangian basis functions, i.e.:

pi(x1; x3) =
∑
j
pji L

j(�; 	); U i(x1; x3)=
∑
j
U j
iQ

j(�; 	)

R1(x3) =
∑
j
Rj1q

j(�); −16�; 	61
(26)

The momentum and continuity equations for each �uid are weighed with the biquadratic,
Qj(�; 	), and bilinear, Lj(�; 	), basis functions, respectively, and then integrated over the
volume that each �uid occupies. The kinematic equation is weighed with the quadratic basis
functions, qj(�), and then integrated along the axial distance. The resulting two dimensional
integrals are evaluated using nine Gauss points and the one-dimensional ones using the three-
point Gaussian quadrature. The momentum equation involves the divergence of the stress
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tensor and requires application of the divergence theorem within each element in order to
reduce the order of the velocity derivatives from two to one. The resulting line integrals
on �uid boundaries are either omitted in order to impose essential conditions (no slip, no
penetration at the solid wall, condition at the centerline and periodicity) or computed by
the interfacial stress balance. The mean curvature has to be specially treated as it involves
products of the interface position with its second derivative. Using the methodology proposed
by Ruschak [18] and applied by Poslinski and Tsamopoulos [19], the mean curvature on the
interface is split into two parts. The �rst term is the derivative of the tangent vector (t) of the
interface with respect to its arc length (s), while the second part is composed of the normal
vector multiplied by the inverse of the second principal radius R=R1

√
1 + �2R21; zz.

−2Hn=−dt
ds
+
n
R

(27)

In this form the curvature operator is introduced in the momentum equations through the
following:∮
S
n · (�

1
− �

2
)Qj ds=W�

∫
(R1; zqj + R1qjz)

ez +�R1; zer√
1 + �2R21; z

dz +W
∫
er − �R1; zez√
1 + �2R21; z

qj dz

+
∫
(er − �R1; zez)(p1 − p2)qj dz

(27a)

The left-hand-side of Equation (27a) is the surface integral of the stress di�erence between
the two �uids, which results from the application of the Gauss theorem on the momentum
equations. As dictated by the interfacial force balance this term is replaced by the right-hand-
side the �rst two terms of which account for capillarity, while the third one accounts for the
pressure jump across the interface.

5. NUMERICAL SOLUTION

The Newton–Raphson technique is utilized in order to solve the resulting non-linear system of
algebraic equations irrespective of the method used to convert the di�erential equations into
algebraic ones. In the case of the �nite element method, the entries of the Jacobian matrix are
calculated using analytical expressions. The Jacobian matrix has an arrow-shaped structure,
which is taken into account in order to minimize the storage requirements and to accelerate
the computations during Gauss elimination [19]. Our solver is a combination of the one used
by Poslinski and Tsamopoulos [19] with the commercially available BLAS routines, which
leads to a 25 per cent reduction of the execution time. The convergence criterion is that the
Euclidean norm of the residuals is less than 10−11. In the case of the spectral method, the
entries of the matrix are computed numerically using one-sided �nite di�erences, the step
of which is given by 0:5× 10−8 max(1; abs(ai)), where (ai) is the ith unknown. The steady
solutions are computed using a dense matrix solver because the resulting Jacobian matrix is
now fully populated. The convergence criterion in this case is that the maximum residual is
less than 10−10.
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Upon computing the steady solution, denoted by the subscript s, its stability is examined.
To this end, we perturb the steady solution allowing for 2D or 3D disturbances,


 i(x1; x3; �)
�i(x1; x3; �)
R1(x3; �)


=


 i; s(x1; x3)

�i; s(x1; x3)
R1; s(x3)


+ 



 i;p(x1; x3)

�i;p(x1; x3)
R1;p(x3)


 exp(��) (28)



Ui(x1; x2; x3; �)
Wi(x1; x2; x3; �)
pi(x1; x2; x3; �)
R1(x2; x3; �)


=



Ui; s(x1; x3)
Wi; s(x1; x3)
pi; s(x1; x3)
R1; s(x3)


+ 




Ui;p(x1; x3)
Wi;p(x1; x3)
pi;p(x1; x3)
R1;p(x3)


 exp(��+ ikx2) (29)

respectively, where the subscript p denotes the disturbances. By omitting terms of order
higher than the perturbation parameter 
, we obtain a generalized eigenvalue problem of
the form J x=�M x, where J and M are the Jacobian and the mass matrix, respectively.
The eigenvalues, �, are generally complex. The real part of �; Re(�), corresponds to the
growth rate of the disturbance, while its imaginary part, Im(�), corresponds to the temporal
oscillation frequency. The steady state is stable to in�nitesimal disturbances, if the real parts
of all the eigenvalues are negative; otherwise it is said to be unstable. In order to reduce the
requirements for storing two square matrixes, the above generalized eigenvalue problem has
been transformed to the standard one:

(J−1M)x=
�∗

‖�‖2 x (30)

where (∗) denotes the complex conjugate. The Jacobian matrix is invertible unless there is
at least one zero eigenvalue. On the other hand, the mass matrix is always non-invertible,
since the vorticity and the continuity equation, in addition to some boundary conditions, in-
volve no time derivatives. The resulting eigenvalue problem is solved using Arnoldi’s method
[20] (see, for example, Sureshkumar and Beris [21] and Kouris and Tsamopoulos [7] for the
implementation of Arnoldi’s algorithm). The algorithm we have used is based on the commer-
cially available software developed by Lehoucq and Scott [20], which is capable by default of
computing the eigenvalues with large magnitudes. However, this is not what is needed here,
since the eigenvalues of interest are those with the smallest real parts. On the other hand, we
have observed that when the most ‘dangerous’ modes are those with long wavelength (when
Re� 1), the software is capable of locating those with the smaller real parts if only 10–20
modes with the largest magnitudes are computed. Furthermore, when Re� 1, the unstable
modes are characterized by short wavelength with large temporal frequencies. In this case,
the number of the computed eigenvalues should be increased up to 300.
With M Chebyshev modes in the radial direction and N Fourier modes in the axial direction

for each phase, the total number of unknowns is 4MN+N (�i; s;�i; s; Ri; s) with the SVFSM, and
6MN+N (Ui; s;Wi; s; Pi; s; R1; s) with the axisymmetric PFSM. In the case of the non-axisymmetric
PFSM (k �=0), i.e., when the eigenvalues of the complex variables (Ui;p;Wi;p; Vi;p; Pi;p; R1;p) are
calculated, the total number of unknowns is 2(8MN + N ). This last formulation leads to a
considerable increase in unknowns, but it is necessary in order to examine the stability of the
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base �ow to three-dimensional disturbances. Finally, with the PFFEM, M radial elements and
N axial ones are used in each phase, and the total number of unknowns is 4(2M + 1)(2N +
1) + 2(M + 2)(N + 1).
Regardless of the numerical scheme of solution or the adopted formulation, the time integra-

tion is performed using the implicit Euler method with constant time step equal to 0:5× 10−3.
In order to accelerate the time integration, the modi�ed Newton–Raphson technique is intro-
duced, i.e. the solution at the current time step is found using the LU decomposed Jacobian
matrix corresponding to a previous time step up to a point that the convergence rate becomes
less than linear. It is worth saying that for the examined set of dimensionless numbers, the
time integration using both SVFSM and PFFEM does not produce �ctitious oscillations. In
particular, the SVFSM numerical scheme of solution has been used extensively in examining
the linear stability of CAF in constricted tubes [6; 7] and its nonlinear dynamics in straight
tubes [22; 23]. In some of these cases, the dynamic response of the system has been pol-
luted by �ctitious oscillations, which have been removed using a �ltering technique. With
the present parameter values, we have not encountered such problems, but still we have inte-
grated the time dependent partial di�erential equations using our �ltering technique, which is
slightly di�erent than that proposed by Avgousti et al. [24]. This is done in order to assess
the e�ect of the �lter on the time evolution of the two-phase �ow by comparing the initial
dynamic response with the growth rate and the temporal frequency computed using the lin-
ear stability theory. Avgousti et al. [24] suggest that each dependent variable follows certain
regular patterns with respect to the mode number, provided that the spatial variation of these
variables is smooth enough. The spectrum of these modes is divided into three frequency
parts. The amplitude of the lower part follows closely the transient variation, the amplitude
of the intermediate part decreases with increasing the mode number, and the upper part varies
unpredictably due to numerical error. Although the upper part of the spectrum is insigni�-
cant, it is the primary cause for inducing numerical instabilities, as these artifacts are always
associated with large amplitudes of the high frequency modes. In their work, Avgousti et al.
[24] propose either an exponential cuto� �lter or a procedure called spectrum regularization.
Instead, we choose to completely damp the upper third of the spectrum at every time step. To
achieve this, we decompose the solution into its Fourier modes, set the highest third of them
to zero, and then reconstruct the solution at every collocation point using the remaining two
thirds of the Fourier modes. In this way, the high frequency modes are completely damped
(see also Beris and Sureshkumar [25]).

6. RESULTS AND DISCUSSION

In our numerical experiments we impose a constant total volumetric �ow rate. We �rst com-
pute the basic �ow �eld and then the pressure loss along the tube. Subsequently, the stability
of the steady solution is examined by solving for the most dangerous eigenvalues of the lin-
earized equations. We are interested in the assessment of the two formulations (streamfunction-
vorticity versus primitive variables) and of the two numerical methods (pseudo-spectral versus
�nite elements). To this end, we have focused our attention on the e�ect of the Reynolds
number on the total number of unknowns, which each formulation requires for the accurate
representation of both the steady solution and the most unstable disturbance in the axisym-
metric case. A complete parametric study has been presented elsewhere [6; 7]. In order to
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quantify the term ‘accurate representation’, we de�ne an objective function to measure the
absolute di�erence of the approximate solution from that corresponding to the �nest mesh
used, the ‘exact result’. Although this choice is arbitrary and may introduce round-o� errors
into the calculations, which may a�ect the convergence rates of the numerical methods, it is
the best available.
The pressure drop, which is the most sensitive variable, is used to compute the relative

error in the steady-state calculations. This error, RESC , is de�ned as the absolute value of the
di�erence between the pressure drop in various resolutions minus its ‘exact’ value divided by
the absolute value of its ‘exact’ value:

RESC =
∣∣∣∣1− �P

�PEXACT

∣∣∣∣ (31)

In the eigenvalue calculations, the relative error (REEC) is de�ned as the absolute value of
the di�erence between the real part of the most unstable eigenvalue minus the real part of
the ‘exact’ eigenvalue, normalized by the modulus of the ‘exact’ eigenvalue, i.e.:

REEC =
|Re(�EXACT)−Re(�)|√

Re(�EXACT)2 + Im(�EXACT)2
(32)

The results presented in the �gures correspond to the following values of the dimensionless
numbers: �=0:55; �=�=2; V =0:7988; �=0:05 and �=1. We use a small value for � in
order to promote separation of the steady �ow of the outer �uid at relatively small values
of the Reynolds number [7]. We also use a small value for the inverse Weber number in
order to induce unstable modes of short-wavelength whose accurate representation is a di�cult
numerical task. The other parameter that we vary in our numerical experiments, besides the
tube geometry, is the Reynolds number. In all the �gures that present streamlines of the basic
�ow, the streamfunction at the axis of symmetry, r=0, equals −1, the streamfunction at
the solid wall, r=R2, equals 0, while the thick line indicates the position of the �uid=�uid
interface.

6a. Comparison of methods in steady and eigenvalue calculations

The lower half of Figure 1 shows the streamlines of the basic, steady �ow for Re=1.
Flow takes place from left to right. It is clear that the streamlines smoothly follow the solid
wall and they appear to be symmetric around the mid-plane of the tube. The value of the
streamfunction at the interface is �1 =−0:0935. The upper part of Figure 1 shows contour
lines of the periodic part of the pressure �eld for the steady �ow, as computed using the
PFSM scheme. The maximum (minimum) of the periodic part of the pressure occurs in the
annular �uid, near the tube wall and at the center of the right (left) closed curve and has
a value of p2 = 48:9 (−16:9). There is a jump in the pressure across the interface, which
is induced by the capillary force. An interesting observation is that, although the streamlines
appear to be symmetric around the mid-plane of the tube, this does not hold for the periodic
part of the pressure. This result means that even the velocity �eld is not symmetric and,
in this case, the asymmetry is more clearly identi�able in the pressure �eld, which is a
more sensitive indicator than the streamlines. The asymmetry is caused by the small but not
negligible Reynolds number. The e�ect of the latter is ampli�ed by the fairly small constriction
ratio which forces the �uids to decelerate as they enter the expanding portion of the tube,
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Figure 1. Contour lines of both the pressure (upper half) and the streamfunction (lower half) of the
steady solution for (�;�; �; V; �; �;Re; W )= (0:55; �=2; 0; 0:7988; 0:05; 1; 1; 0:05).

and then to accelerate as they exit it through its contracting portion. In the same �gure, we
can also identify two distinct regions in the pressure �eld where contour lines end at the
tube wall. As Re tends to zero, the region located closer to the entrance of the tube moves
backwards so that one half of it occupies the entrance and the other half the exit of the
tube. Similarly, the region, which can be seen to the right of the mid-plane of the tube,
also moves backwards and in such a way that all �eld variables regain symmetry around the
mid-plane. The converged value of the pressure loss per unit length is �P=−13:69063, and
the most dangerous eigenvalue is found to be �=0:28084× 10−1± 0:665008× 101i, i.e., the
steady �ow is unstable.
Figures 2–4 present the convergence rates using di�erent formulations and numerical

methods. Figures 2(a), (2(b)) and 3(a), (3(b)) show the convergence rate with respect to
the highest order of the retained Chebyshev polynomial (Fourier mode), when the equations
of motion are expressed in terms of the streamfunction-vorticity and in primitive variables,
respectively. The common characteristic of these �gures is that there is an exponential decrease
in the relative error of both the steady and the eigenvalue problems. Although the convergence
rates for these two problems are large and approximately similar up to a certain number of
modes, the relative errors attain plateaus as the number of modes is increased. In the steady
case, the plateau arises at a relative error of ∼ 10−11, which is easily explained by taking into
account the round-o� error and the tolerance used for the Newton–Raphson process. In the
eigenvalue calculations, the relatively large value of the error in the computations of the most
unstable eigenvalue is probably caused by the error introduced by the numerical computation
of the Jacobian matrix. Figures 2(b) and 3(a), demonstrate that the line corresponding to
the eigenvalue problem is shifted upwards by about two orders of magnitude with respect to
its steady-state counterpart. In Figure 3(b), the two lines virtually coincide, indicating that
the same relative error occurs in both the steady and the eigenvalue problem. Comparing
Figures 2(a), (b) and 3(a), (b) we see that 15 Fourier modes and nine Chebyshev modes
are needed in order to decrease the error below 10−5 for both the steady and the eigenvalue
problem. This fact makes the SVFSM much more e�cient than the PFSM as the former
involves fewer unknowns.
The variation of the relative error in the PFFEM formulation with the number of elements in

the radial and axial directions can be seen in Figures 4(a) and (b). Apparently, the convergence
rates are lower than those obtained with the spectral methods, following a relation of the form:
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Figure 2. Variation of the relative error with respect to the (a) Chebyshev modes for 19 Fourier
modes and (b) Fourier modes for 13 Chebyshev modes using the SVFSM for (�;�; �; V; �; �;Re; W )

= (0:55; �=2; 0; 0:7988; 0:05; 1; 1; 0:05).
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Figure 3. Variation of the relative error with respect to the (a) Chebyshev modes for 21 Fourier
modes and (b) Fourier modes for nine Chebyshev modes using PFSM for (�;�; �; V; �; �;Re; W )

= (0:55; �=2; 0; 0:7988; 0:05; 1; 1; 0:05).
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Figure 4. Variation of the relative error with respect to the number of (a) radial elements us-
ing 26 axial and (b) axial elements using six radial elements; PFFEM, for (�;�; �; V; �; �;Re; W )

= (0:55; �=2; 0; 0:7988; 0:05; 1; 1; 0:05).
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Figure 5. Contour lines of both the pressure (upper half) and the streamfunction (lower half) of the
steady solution for (�;�; �; V; �; �;Re; W )= (0:55; �=2; 0; 0:7988; 0:05; 1; 7:5; 0:05).

Error∼ c1hk ∼ c2N−k , where c1 and c2 are constants, h is a measure of the element size, N is
the number of elements and k is the convergence rate. Clearly, the convergence rate becomes
algebraic instead of exponential, a fact that is known from previous theoretical investigations.
Nevertheless, the convergence rates we obtained are above the theoretical predictions (e.g.,
Osborn [26]): 3.67 instead of the theoretical value of 2 for the steady state problem, and
5.14 instead of 4 for the linearized eigenvalue problem. In order to assess the e�ciency
of each numerical method, we set a relative error of 10−4 and then by using Figures 2–4
we reach the conclusion that 377, 715 and 2568 unknowns are needed using the SVFSM,
PFSM and PFFEM, respectively. Obviously, in the case of small Reynolds number, the use
of a spectral representation and the primitive variable formulation results in a 70 per cent
reduction of the total number of unknowns compared with the PFFEM. Additional reductions
can be achieved by exploiting the axial symmetry of the problem and using the SVFSM
scheme as the reduction in the number of the unknowns is greater than 85 per cent over the
PFFEM. However, the storage requirements for the PFFEM formulation in the steady state
case are lower, due to the arrow-shaped structure of the Jacobian matrix (see Section 4). We
have not taken advantage of this matrix structure for the eigenvalue calculations, although this
is possible by increasing considerably the code complexity, instead matrices are stored and
used assuming that their shape is square. In eigenvalue calculations, the computational cost
depends on the square of the number of unknowns and, thus, the computation of the same
number of eigenvalues using the PFSM and PFFEM formulations require 3.6 and 46 times
more computational time than the SVFSM.
Next, we increase the Reynolds number to Re=7:5 and present in Figure 5 both the

streamlines and the periodic part of the pressure (computed using PFSM) which correspond
to the steady �ow. The value of the streamfunction at the center of the vortex is 0.0129, while
that at the interface is −0:0539. The converged value of the pressure loss per unit length is
�P=−2:435416 and the maximum (minimum) value of the periodic part of the pressure is
p2 = 27:6 (−0:8). The most dangerous eigenvalue is found to be �=0:5104± 0:52978× 101i,
i.e., the linear growth rate has increased. It can also be seen that, at this higher Re value,
�ow separation occurs and recirculation develops in the outer �uid in the expanding portion
of the tube, while the asymmetry of the pressure �eld is further intensi�ed. Figures 6–8
show the convergence of the most unstable eigenvalue and the pressure loss with the number
of the used modes or elements. An observation that should be made concerning Figures 6
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Figure 6. Variation of the relative error with respect to the (a) Chebyshev modes for 25
Fourier modes and (b) Fourier modes for 15 Chebyshev modes; SVFSM, for (�;�; �; V; �; �;Re; W )

= (0:55; �=2; 0; 0:7988; 0:05; 1; 7:5; 0:05).
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Figure 7. Variation of the relative error with respect to the (a) Chebyshev modes for 21
Fourier modes and (b) Fourier modes for 13 Chebyshev modes; PFSM, for (�;�; �; V; �; �;Re; W )

= (0:55; �=2; 0; 0:7988; 0:05; 1; 7:5; 0:05).
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Figure 8. Variation of the relative error with respect to the number of (a) radial elements
for 26 axial and (b) axial elements for six radial elements; PFFEM, for (�;�; �; V; �; �;Re; W )

= (0:55; �=2; 0; 0:7988; 0:05; 1; 7:5; 0:05).
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and 7 is that for both the steady and the eigenvalue problem, the error corresponding to
di�erent resolutions oscillates around the thicker line, which has been computed using least
squares, in contrast to the results presented in Figures 2 and 3. Comparing now the slopes of
Figures 2(a), (2(b)) and Figures 3(a), (3(b)) with those of Figures 6(a), (6(b)) and Figures
7(a), (7(b)), it can be seen that the error decreases more rapidly in the former case than
in the latter, although the convergence of the solution remains exponential. In the case of
PFFEM (Figures 8(a) and (b)), the relative error for a given mesh is an order of magnitude
higher compared to that in Figures 4(a) and (b), a result which indicates that the �ow �eld
in the former case is more involved. The convergence rates seem to be quite higher for the
steady problem compared to the theoretically predicted ones, while those corresponding to the
eigenvalue problem are slightly higher than the asymptotic ones. By setting a relative error to
order 10−4, we compute again the required number of unknowns for each numerical scheme.
More speci�cally, the number of unknowns which are found to be adequate for resolving both
the steady solution and the most unstable disturbance are 703, 1046 and 1490 for the SVFSM,
PFSM and PFFEM, respectively. Compared with the PFFEM, the decrease in the total number
of unknowns is now only 30 per cent for the PFSM and 50 per cent for the SVFSM, while
the computation of the same number of eigenvalues using the PFSM and PFFEM formulations
requires 2.2 and 4.5 times more computational time than the SVFSM. It is worth pointing out
that spurious eigenvalues with positive real parts, (i.e., unstable ones), have been encountered
during the previous eigenvalue calculations, irrespective of the formulation or the numerical
scheme of solution. These eigenvalues do not disappear with mesh re�nement; actually, their
growth rates increase and their temporal frequencies persist. Moreover, the corresponding
eigenvectors exhibit a node by node spatial oscillation.
Figures 9(a) and (b) show the contour lines of the streamfunction and the periodic part

of the pressure for Re=7:5 and for nonzero values of the geometric parameter � (�=0:5
and 0.9999, respectively). This parameter is varied in order not only to check the ability of
the spectral formulations, SVFSM and PFSM, to represent the solution when the geometry
of the solid wall approaches a singularity, but also to investigate how the convergence rates
of the spectral and the �nite element method are a�ected. When �=0:9999, a cusp point
is formed on the boundary. It is evident that, even for the larger value of �=0:9999, the
truncated Fourier series of each variable with bounded variation in the neighborhood of a
point of discontinuity does not exhibit the characteristic oscillatory behavior, i.e., the Gibbs
phenomenon. This is due to the fact that the discontinuity arises in the derivative but not in
the function itself. Comparing the steady streamlines as well as the shapes of solid wall shown
in Figure 9, we conclude that the increase of the geometric parameter � towards unity makes
the radius of the tube wall more uniform, except for the mid-plane, where the singularity is
intensi�ed. At the same time, the region where the recirculation of the annular �uid takes
place moves towards the cusp as the geometric parameter, �, increases in size.
In Figures 10 and 11, we examine how the singularity of the solid wall a�ects the

convergence rate of the SVFSM and PFFEM formulations for Re=7:5 and �=0:9999. It
can be seen in Figure 10(a) that the error decreases exponentially with the number of modes
used in the radial direction, and algebraically with the number of modes in the axial di-
rection. Obviously, the convergence rate of the solution with respect to the Fourier modes
has been seriously deteriorated since the SVFSM formulation now exhibits just a 2nd order
convergence rate. This convergence rate increases after employing considerably more Fourier
modes than before. The PFFEM numerical scheme of solution continues to exhibit a nearly
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Figure 9. Contour lines of both the pressure (upper half) and the streamfunction (lower half)
of the steady solution corresponding to (a) �=0:5 and (b) �=0:9999, for (�;�; V; �; �;Re; W )

= (0:55; �=2; 0:7988; 0:05; 1; 7:5; 0:05).

4th order convergence rate, as in the previously examined cases, in spite of the singularity in
the geometry. Assuming now a relative error of 10−3, we can compute the required number
of unknowns needed for each formulation. More speci�cally, the SVFSM requires 1785 un-
knowns, while the PFFEM requires 1276 unknowns. Clearly, the PFFEM handles the singular
geometry much more e�ciently than the SVFSM scheme, since the latter requires 30 per cent
more unknowns and produces a dense matrix. In the PFFEM formulation, there is always a
representative node at the axial location of the cusp point, whether even or odd number of
elements in the axial direction is used. We have always used an even number of elements in
order to map the cusp point onto an inter-element node, where the derivatives of the basis
functions are discontinuous, thus handling more e�ciently the geometric discontinuity. If an
odd number of elements had been used, the cusp region would have been mapped onto an
extremely distorted element. The speci�c choice of collocation points with the pseudo-spectral
methods, which is unrelated to the cusp location, prevents them from accurately resolving the
�ow �eld near the singularity.

6b. Comparison of the methods in dynamic calculations

In order to validate the PFSM algorithm for even non-axisymmetric disturbances and subse-
quently to compute the most dangerous eigenvalues in a tube of fairly small constriction ratio,
we repeat the eigenvalue calculations reported by Hu and Joseph [27] for core-annular �ow
in a straight tube. These authors report the unstable eigenvalues for the following three sets
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Figure 10. Variation of the relative error of the steady solution with respect to the (a) Chebyshev
modes for 31 Fourier modes and (b) Fourier modes for nine Chebyshev modes; SVFSM, for (�;�; V; �;

�;Re; W )= (0:55; �=2; 0:7988; 0:05; 1; 7:5; 0:05).
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Figure 11. Variation of the relative error of the steady solution with respect to the number of (a) radial
elements for 26 axial elements and (b) axial elements for six radial elements; PFFEM, for (�;�; V; �;

�;Re; W )= (0:55; �=2; 0:7988; 0:05; 1; 7:5; 0:05).
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Table I. Comparison with the results reported by Hu and Joseph [27] for CAF in a straight tube.

Case Hu and Joseph [27] This work (PFSM) This work (SVFSM)

1 0:020874± 0:38614 i 0:020971± 0:38486·i 0:020978± 0:38485·i
2 0:004137± 0:66934·i 0:004146± 0:66939·i 0:004147± 0:66939·i
3 0:003270± 0:67274·i 0:003275± 0:67284·i —

Table II. Eigenvalues for an axisymmetric and a non-axisymmetric disturbance.

V1=VT k =0 k =1 k =2

0.634 0:2048× 10−1± 0:3902× 101·i −0:8463× 10−1± 0:3838× 101·i −0:5895× 10−1± 0:3978× 101·i
0.259 0:1853× 10−1± 0:3299× 101·i −0:7168× 10−1± 0:3242× 101·i −0:5814× 100± 0:3360× 101·i
0.207 0:3253× 10−1± 0:3294× 101·i −0:9570× 10−1± 0:3794× 101·i −0:1059× 101± 0:3950× 101·i

of values of the parameters (J ∗; 	; m; �; k; �; RHJ): Case 1: (1000, 0.9, 0.05, 1, 0, 5, 500); Case
2: (0, 0.7, 0.5, 1, 0, 10, 37.78); and Case 3: (0, 0.7, 0.5, 1, 5, 10, 37.78). Their dimensionless
numbers are related to ours as follows:

�=m; �= �;
V1
VT
= 	2; �=�; A=1−m(1− 	2)

Re=
RHJ�
4A

(	4(1−m) + 2(1− 	2)− (1 + 2A	2))

W = J ∗
(

4A
RHJ (	4(1−m) + 2(1− 	2)− (1− 2A	2))

)2
(33)

In Table I, we compare the �nite element results by Hu and Joseph [27] given in their
Table I, for both axisymmetric and non-axisymmetric modes with the eigenvalues we com-
puted using the PFSM and the SVFSM formulations. Since the �rst two cases correspond to
axisymmetric modes, they are studied using both formulations. The third case corresponds to
a non-axisymmetric mode with azimuthal wavenumber k=5; hence, the SVFSM formulation
cannot be used.
We observe that our calculations are in very good agreement with those of Hu and Joseph

[27], which validates our method for non-axisymmetric eigenvalue calculations and the PFSM
scheme. Moreover, the results obtained at constant total pressure loss (PFSM) are the same,
within computational accuracy, as those obtained at constant volumetric �ow rate (SVFSM).
We have performed additional simulations with (�; �;Re; W; F;�; �; N )= (1; 1; 1; 1; 0; 1;

0:75; 1), and varied the ratio of the volume of the core �uid to the total volume of the
tube, as seen in Table II. The reason for changing only the volume ratio is that studies with
a straight tube have shown that decreasing the volume ratio, i.e., the thickness of the core
�uid, allows the growth rate of a non-axisymmetric mode to overtake the growth rate of the
axisymmetric one [28]. However, this does not happen in our case. Indeed, as shown in Ta-
ble II, although parameter values have been chosen so that an axisymmetric mode is unstable,
all the non-axisymmetric ones remain stable. Table II also demonstrates the stabilizing e�ect
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Table III. Most dangerous eigenvalues of the steady solution corresponding to:(�;�; �; V; �; �;
Re; W )= (0:55; �=2; 0; 0:7988; 0:05; 1; 3; 0:5).

One cell (k =0) One cell (k =1) One cell (k =2) Two cells (k =0)

0:06051± 1:5027·i −0:09100± 1:3737·i −0:12200± 1:4749·i 0:02454± 0:6866·i
— −0:08607± 3:5372·i −0:16272± 3:7105·i 0:06051± 1:5027·i
— −0:32584± 6:2778·i −0:42515± 6:4866·i 0:05549± 2:4907·i

of surface tension on non-axisymmetric modes: as the mode number, k, in the azimuthal
direction is increased, the real part of the corresponding eigenvalue is reduced.
In Table III, we present the eigenvalues of the linearized equations of motion of the two �u-

ids for the steady solution corresponding to: (�;�; �; V; �; �;Re; W )= (0:55; �=2; 0; 0:7988; 0:05;
1; 3; 0:5). In this case, we have computed the axisymmetric and the �rst and second non-
axisymmetric disturbances, and, in addition, we have doubled the number of the unit cells
that comprise the tube by imposing periodicity between the left end of the �rst cell and
the right end of the second one. Apparently, when the tube is composed of two unit cells,
the steady �ow �eld is not a�ected. However, in addition to the unstable eigenvalues that
correspond to one cell, there exist others, which do not appear in the one-cell tube, due to
the shorter length of the computational domain. Table III also demonstrates the stabilizing
e�ect of surface tension on non-axisymmetric modes, since the real part of the corresponding
eigenvalue decreases with the azimuthal wave number, k.
Consequently, we can argue that, under the present parameter values, the most unstable

eigenvalue arises even if the tube is composed of one unit cell only, and that mode is ax-
isymmetric. Therefore, integrating in time the axisymmetric Navier–Stokes equations in a tube
composed of only one unit is accurate, since it will capture the fastest growing disturbance.
The time integration with the previous dimensionless numbers is performed employing the

SVFSM and the PFFEM numerical schemes using in all cases as initial condition the steady
solution slightly perturbed by including the most unstable eigenvector. It has already been
mentioned that even though the time integration with the SVFSM does not produce any
spurious results, it is performed incorporating a �ltering technique. This is done in order
to assess the e�ect of the �lter on the time evolution of the two-phase �ow. This e�ect is
measured by comparing the growth rate and the temporal frequency, when the system is very
close to the steady solution (i.e., at the initial stages of time integration) with that predicted
by the linear theory. Figure 12(a) shows the time evolution of the core �ow rate using 11
Chebyshev modes in each phase and 41 Fourier modes in the radial and axial directions,
respectively in which case the total number of unknowns equals 1815. Focusing on the region
near t=0, we observe that the perturbation from the steady solution is indeed very small,
i.e., linear: the core �ow rate is disturbed from its steady-state value by less than 0.2 per
cent. Clearly, no incubation period is required for the instability to set in, since apart from
the temporal oscillation the original disturbance grows immediately.
The thick solid line that joins the maxima of the temporal oscillation of the core �ow rate is

used in order to �t an exponential function with respect to time for time less than 55, shown
as the dashed line in Figure 12(a). The computed exponent that results from this �tting is
found to be 0.0601, while the temporal frequency computed using Figure 12(a) is found to
be 1.500. Clearly, the replication of the linear stability results (see Table III) using dynamic
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Figure 12. Time evolution of the core �ow rate using (a) SVFSM and (b) PFFEM with
(�;�; �; V; �; �;Re; W )= (0:55; �=2; 0; 0:7988; 0:05; 1; 3; 0:5).
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calculations is very good, as we attain accuracy to the third digit for both the growth rate
and the frequency of oscillation. Consequently, the e�ect of the �lter is insigni�cant. This
result is not totally unexpected; if we take into account that when the total number of modes
is adequate to resolve the �ow �eld, then their further increase does not contribute to the
dynamics, since their amplitudes tend to zero almost exponentially, as it happens in this case.
As a result, the explicit imposition of these modes to zero has no e�ect on the time evolution
of the two-phase �ow. An additional comment that should be made on the time evolution of
the core �ow rate presented in Figure 12(a) is that, when the instability saturates, the temporal
oscillation of the �ow rate is not symmetric around the horizontal line representing the �ow
rate of the steady solution, i.e., 0.9134. This result, which indicates that higher temporal
harmonics are introduced due to nonlinear e�ects, may be responsible for an increased core
�ow rate compared to the steady solution. In order to examine whether this indeed occurs, we
computed the time averaged core �ow rate at the entrance of the tube after saturation of the
instability (from t=100 to 119.87) and found it to equal 0.913, which is very close to the
steady core �ow rate. These two �ndings lead to the requirement that the time variation of the
core �ow rate must be sharper in its crests than its troughs, something that is also apparent in
Figure 12(a). In Figure 12(b) the dynamic response of the core �ow rate using the PFFEM
scheme is shown. It is obtained using six radial elements in each phase and 30 axial elements,
which results in 3668 degrees of freedom. The computed temporal oscillation frequency and
growth rates equal 1.503 and 0.0596, which is again very close to the corresponding values
computed using linear theory, see Table III.
Figure 13 shows di�erent snapshots of the �ow �eld obtained using the SVFSM numerical

scheme. Figure 13(a) shows the �ow �eld that corresponds to the steady solution, while
Figures 13(b)–(f) presents the �ow �eld when the instability has saturated and the system
has reached a stable limit cycle. More speci�cally, Figures 13(b)–(f) correspond to times
t=117:3; 118:15; 119:0 and 119.85 and 120.5, respectively. The non-linear oscillation period
is found to be 4.25 and as a result, Figures 13(b)–(f) correspond to times within one temporal
period. The spatially averaged core �ow rates computed at the same time instances are found
to be 0.9304, 0.9101, 0.8959, 0.9072 and 0.9192, respectively. The sequence of Figures 13(b)
–(f) clearly shows that the saturated travelling wave is deforming as it travels downstream.
Indeed, as the crest is moving from left to right in the tube and before crossing the mid-plane
of the tube, it becomes steeper and its amplitude increases, while after crossing the mid-plane
of the tube, it exhibits the opposite behavior. The contour lines of the streamfunction seen in
Figures 13(b)–(f) do not change considerably within one temporal period, and their shapes
compare well with those of the steady �ow, despite the large deviation of the time dependent
interface from the steady solution.

7. CONCLUSIONS

We have examined the performance of both the spectral and the �nite element methods in
the study of the core-annular �ow in an undulating tube. We have shown that the e�ciency
of each one of the examined numerical schemes of solution, SVFSM, PFSM and PFFEM,
depends on the Reynolds number and the geometry of the solid wall. More speci�cally, we
have shown that when Re is small (Re=1) and the solid wall is a sinusoidal function of
the axial distance, the spectral expansions of the variables using either the SVFSM or the
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Figure 13. Snapshots of the �ow �eld that correspond to (a) the steady solution, long after the saturation
of the instability within one temporal period: (b) t=117:3; (c) t=118:15; (d) t=119:0; (e) t=119:85

and (f) t=102:5 for (�;�; �; V; �; �;Re; W )= (0:55; �=2; 0; 0:7988; 0:05; 1; 3; 0:5).
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PFSM method lead to a fully coupled system of non-linear equations, and exhibit a clear ex-
ponential convergence with the number of unknowns. On the other hand, the PFFEM exhibits
approximately a 4th order convergence rate for the steady problem and a 5th or 6th order
convergence for the most unstable eigenvalue. The number of unknowns required by each of
the numerical schemes, SVFSM, PFSM and PFFEM, equals 377, 715 and 2568, respectively,
for a relative error of 10−4. Apparently, there is great bene�t when using the SVFSM scheme,
as it involves the least number of unknowns for this case. We have also shown that although
the velocity �eld appears to be symmetric around the mid-plane of the tube, the periodic
part of the pressure �eld is not. This is due to the non-negligible inertia of both �uids in
conjunction with the small value of the constriction ratio, which make both �uids accelerate
on entering the tube and decelerate in its expanding portion, giving rise in this way to an
asymmetry. In addition to the e�ect of the inertial terms, the capillary forces, which depend
on both the Weber number and the curvature of the �uid=�uid interface, intensify further this
asymmetry.
Turning to the case with the larger value of Re (Re=7:5), we �nd that the conver-

gence rates using the PFFEM do not deteriorate, instead they are somewhat accelerated, at
least for the steady state calculations. The convergence rates of the SVFSM and the PFSM
remain exponential, but the relative error becomes oscillatory. The number of unknowns re-
quired by SVFSM, PFSM and PFFEM for similar resolution of both the steady and the
eigenvalue problem is found to be 703, 1046 and 1490, respectively. Although the SVFSM
scheme still involves the least number of unknowns, the fact that the convergence rate of
the PFFEM has been accelerated while that of the SVFSM and PFSM has been slightly re-
duced results in a reduction in the computational savings of using the pseudo-spectral method
compared to that of the �nite element method. It is also worth noting that the increase of
the relative magnitude of the inertial terms results in the creation of a recirculating region
exclusively in the annular �uid domain which is located at the expanding portion of the
tube.
We have also examined the ability of each of the above formulations to handle singular

geometries. In that case, we have shown that the convergence rate of the SVFSM deterio-
rates considerably, for meshes similar to those previously used, the method exhibits almost
2nd order convergence rate in the axial direction, while for a �ner mesh the convergence
rate with respect to the used Fourier modes is accelerated. As in the previous cases, the PF-
FEM exhibits approximately 4th order convergence rate. The required number of unknowns
by the SVFSM and PFFEM for the steady problem is found to be 1785 and 1276, respec-
tively. The latter formulation is by far more e�cient, given also that the Jacobian matrix is
sparse.
The PFSM numerical scheme of computing axisymmetric and non-axisymmetric eigenvalues

has been validated against already reported results concerning the straight tube geometry. The
axisymmetric set of equations that govern the motion of both �uids as well as the �uid=�uid
interface have been integrated in time using both the PFFEM and the SVFSM formulations.
The two formulations reproduce the linear growth rate and the temporal period corresponding
to the most unstable mode of the linear stability theory. The above-mentioned formulations,
which exhibit the same accuracy, involve 1815 and 3668 unknowns, respectively. The e�ect
of the numerical �lter on the dynamics of the CAF is negligible, as it does not introduce
damping to the time evolution of the CAF. The computed saturated travelling wave shown in
Figures 13(b)–(e) deforms as it travels downstream. In these �gures, we also observe that the
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contour lines of the streamfunction do not change considerably within one temporal period
and their shapes are similar to those of the steady �ow.
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