
ARTICLE IN PRESS
0955-7997/$ - se

doi:10.1016/j.en

�Correspond
E-mail addr
Engineering Analysis with Boundary Elements 31 (2007) 209–215

www.elsevier.com/locate/enganabound
The singular function boundary integral method for biharmonic
problems with crack singularities

Miltiades Elliotis, Georgios Georgiou�, Christos Xenophontos

Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus

Received 19 April 2006; accepted 14 September 2006

Available online 13 November 2006
Abstract

We use the singular function boundary integral method (SFBIM) to solve two model fracture problems on the plane. In the SFBIM,

the solution is approximated by the leading terms of the local asymptotic solution expansion, which are also used to weight the governing

biharmonic equation in the Galerkin sense. The discretized equations are reduced to boundary integrals by means of the divergence

theorem and the Dirichlet boundary conditions are weakly enforced by means of Lagrange multipliers. The main advantage of the

method is that the leading stress intensity factors (SIFs) are calculated directly together with the Lagrange multipliers, i.e. no post-

processing of the numerical solution is necessary. The numerical results for the two model problems show the fast convergence of the

method and compare well with those of the collocation Trefftz method.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In a recent work [1], we developed the Singular Function
Boundary Integral Method (SFBIM) for plane elasticity
problems. In this method, the solution is approximated by
the leading terms of the local asymptotic solution expan-
sion for the Airy stress function around the crack, which
are referred to as the singular functions. The stress intensity
factors (SIFs), also referred to as singular coefficients, are
thus primary unknowns and are calculated directly. It
should be noted that the idea for the above approximation
has been known since the seventies; see, e.g., Ref. [2]. In the
SFBIM, the singular functions are used to weight the
governing biharmonic equation in the Galerkin sense,
which allows the reduction of the discretized equations to
boundary integrals by means of the divergence theorem.
Lagrange multipliers are introduced in order to apply the
Dirichlet boundary conditions. These are calculated
together with the SIFs.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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As already mentioned, one advantage of the SFBIM is
the direct calculation of the SIFs. In other words, the
method does not require post-processing of the numerical
solution, which is not, in general, efficient and very
accurate [3]. The method has been applied to Schiff’s crack
problem [1] exhibiting fast convergence with the number of
singular functions and the number of Lagrange multipliers
and yielding accurate estimates of the leading SIFs. The
first SIF, in particular, was converged up to eight
significant digits. The calculated SIFs agreed well with
the collocation Trefftz method results of Li et al. [4]. In this
method, the SIFs are also calculated directly, and as
reported by Li et al. [4], the accuracy of the solutions is
very high.
The objective of the present work is to test the

performance of the SFBIM against the other two model
problems (Model Problems I and II) studied by Li et al. [4],
in which some numerical difficulties are posed by the
presence of third-order partial derivatives in the boundary
conditions. The paper is organized as follows: in Section 2,
we present the two model problems and the corresponding
asymptotic local solution expansion for the Airy stress
function. In Section 3, the SFBIM is formulated for both
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problems. In Section 4, numerical results showing the fast
convergence of the method are presented and comparisons
are made with the results of Li et al. [4]. Finally, the main
conclusions are summarized in Section 5.
2. Governing equations and asymptotic solution

We consider here the Model Problems I and II studied
by Li et al. [4]. These are shown in Figs. 1 and 2,
respectively. In both problems, a rectangular thin elastic
plate contains a single edge crack. Due to symmetry, only
the upper half of the plate is considered,
O ¼ ð�1; 1Þ � ð0; 1Þ. Boundary parts SA and SB represent,
respectively, the upper free surface of the crack and a
horizontal plane section within the elastic interior of the
material of the plate along the same direction of the crack
plane. The crack is assumed to be very narrow in the limit
of plane stress condition in the area of the crack, and hence
boundary part SA is taken as horizontal. In both problems,
no shear stresses act on the upper and the left edges of the
plate, SD and SE , respectively. What is different is the
boundary condition along boundary part SC . In Model
Fig. 1. Model

Fig. 2. Model P
Problem I, SC represents a clamped edge, while in Model
Problem II, SC is a simply supported edge (i.e. without
bending moments). In both problems, the Airy stress
function uðx; yÞ is governed by the biharmonic equation.
The boundary conditions for the two problems are also
depicted in Figs. 1 and 2.
The resulting boundary value problem in the case of

Model Problem I is the following:

r4u ¼ 0 in O (1)

with

u ¼ 0;
qu

qy
¼ 0 on SA;

qu

qy
¼ 0;

q3u

qy3
¼ 0 on SB;

u ¼ 1;
qu

qx
¼ 0 on SC ;

qu

qy
¼ 0;

q3u

qy3
¼ 0 on SD;

qu

qx
¼ 0;

q3u
qx3
¼ 0 on SE ;

(2)
Problem I.

roblem II.
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where SA [ SB [ SC [ AD [ SE ¼ qO. What is different in
Model Problem II is the boundary condition along SC

u ¼ 1;
q2u
qx2
¼ 0 on SC . (3)

Since the boundary conditions along boundary parts SA

and SB are the same, the local asymptotic solution in the
neighbourhood of the crack is the same in both model
problems. This can be expressed in terms of an eigenfunc-
tion expansion of the form

uðr; yÞ ¼
X1
j¼1

ajr
mjþ1f ðy;mjÞ; ðr; yÞ 2 O, (4)

where (r, y) are the polar co-ordinates centred at the crack
tip, O, aj are the unknown SIFs, mj are the singularity
powers arranged in ascending order, and the functions
f ðy; mjÞ represent the y-dependence of the eigensolution. It
turns out that the local solution (4) consists of two sets of
particular solutions

W
j
1 � rmjþ1f 1ðy;mjÞ, (5)

where

f 1ðy;mjÞ ¼ cosðmj � 1Þy�
mj � 1

mj þ 1
cosðmj þ 1Þy,

mj ¼ j �
1

2
; j ¼ 1; 2; . . . , ð6Þ

and

W
j
2 � rmjþ1f 2ðy;mjÞ, (7)

where

f 2ðy;mjÞ ¼ cosðmj � 1Þy� cosðmj þ 1Þy,

mj ¼ j; j ¼ 1; 2; . . . . ð8Þ

The functions W
j
1 and W

j
2 are referred to as the singular

functions. Using the notation employed by Li et al. [4], the
local asymptotic solution may be written as follows:

u ¼
X1
j¼1

djW
j
1 þ

X1
j¼1

cjW
j
2, (9)

where dj and cj are the SIFs corresponding to the two sets
of singular functions. The first SIF, d1 yields the opening
mode SIF, K ¼

ffiffiffiffiffiffi
2p
p

d1 [5].

3. The singular function boundary integral method

In the SFBIM [1], the solution is approximated by the
leading Na terms of the local solution expansion (9)

ū ¼
XNa

j¼1

d̄ jW
j
1 þ

XNa

j¼1

c̄jW
j
2, (10)

where ū is the approximation of the solution, and c̄j and d̄ j

are the approximations of the SIFs. The problem is
discretized by applying Galerkin’s principle, i.e. by
weighting the governing biharmonic equation by the
singular functions:Z
O
r4ūW i

k dV ¼ 0; i ¼ 1; 2; . . . ;Na; k ¼ 1; 2. (11)

Noting that the singular functions W
j
k satisfy the

biharmonic equation, the volume integrals are reduced to
boundary ones by means of Green’s theorem:

Z
qO

qū

qn
r2W i

k � ū
qðr2W i

kÞ

qn

� �
dS

þ

Z
qO

qðr2ūÞ

qn
W i

k �r
2ū

qW i
k

qn

� �
dS ¼ 0,

i ¼ 1; 2; . . . ;Na; k ¼ 1; 2. ð12Þ

The reduction of the problem dimension by one is clearly
an important advantage of the method, as the computa-
tional cost is considerably reduced. Since the singular
functions W

j
k also satisfy the boundary conditions along

boundary parts SA and SB, the contributions of the latter
to the boundary integrals of Eq. (12) are identically zero.
Therefore, we can write

Z
SC[SD[SE

qū

qn
r2W i

k � ū
q r2W i

k

� �
qn

� �
dS

þ

Z
SC[SD[SE

q r2ū
� �
qn

W i
k �r

2ū
qW i

k

qn

� �
dS ¼ 0,

i ¼ 1; 2; . . . ;Na; k ¼ 1; 2. ð13Þ

There remains to enforce the Dirichlet boundary condition
along SC . This is applied in a weak sense by means of
Lagrange multipliers, which may replace either the normal
derivative qū=qn of the solution or qr2ū=qn [1]. Since in
Model Problem I, qu=qx ¼ 0 along SC , the Lagrange
multipliers are chosen to replace qðr2uÞ/qx. The Lagrange
multiplier function, l, is approximated locally by means of
quadratic basis functions, Mj

l ¼
qðr2ūÞ

qx

����
SC

¼
XNl

j¼1

ljMj, (14)

where Nl is the number of the discrete Lagrange multi-
pliers lj. The nodal values of l are additional unknowns of
the problem. The required Nl additional equations are
obtained by weighting, in the Galerkin sense, the Dirichlet
condition along SC by the quadratic basis functions Mi.
Thus, the following linear system of 2Na þNl discretized
equations is obtained

Z
SC

lW i
k � ū

qðr2W i
kÞ

qx
� r2ū

qW i
k

qx

� �
dy

þ

Z
SD

�ū
qðr2W i

kÞ

qy
þ

q3ū

qyqx2
W i

k � r
2ū

qW i
k

qy

� �
dx

þ

Z
SE

ū
q r2W i

k

� �
qx

�
q3ū

qxqy2
W i

k þ r
2ū

qW i
k

qx

� �
dy ¼ 0,

i ¼ 1; . . . ;Na; k ¼ 1; 2, ð15Þ
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Table 1

Convergence of the leading SIFs with 2Na; Model Problem I, Nl ¼ 7

2Na c1 c2 c3 c4 c5 c10

30 1.579187 �1.01728 �0.39366 �0.12060 �0.01280 �0.00158

36 1.579371 �1.01748 �0.39417 �0.12014 �0.01265 �0.00112

40 1.579378 �1.01739 �0.39453 �0.11976 �0.01283 �0.00112

42 1.579372 �1.01742 �0.39424 �0.12007 �0.01269 �0.00111

44 1.579373 �1.01745 �0.39429 �0.12001 �0.01271 �0.00112

48 1.579373 �1.01746 �0.39427 �0.12003 �0.01270 �0.00112

50 1.579373 �1.01745 �0.39429 �0.12001 �0.01271 �0.00112

52 1.579373 �1.01746 �0.39425 �0.12005 �0.01269 �0.00112

54 1.579374 �1.01745 �0.39431 �0.11999 �0.01272 �0.00112

56 1.579373 �1.01746 �0.39426 �0.12004 �0.01270 �0.00112

58 1.579371 �1.01747 �0.39421 �0.12009 �0.01267 �0.00112

60 1.579377 �1.01741 �0.39445 �0.11985 �0.01279 �0.00112

2Na c1 c2 c3 c4 c5 c10

30 0.07733 0.22801 0.14122 0.02777 �0.00589 0.00108

36 0.07692 0.22886 0.14089 0.02766 �0.00635 0.00080

40 0.07647 0.22942 0.14058 0.02770 �0.00628 0.00079

42 0.07683 0.22896 0.14082 0.02767 �0.00635 0.00076

44 0.07676 0.22905 0.14078 0.02768 �0.00633 0.00077

48 0.07679 0.22902 0.14079 0.02767 �0.00634 0.00077

50 0.07677 0.22905 0.14078 0.02767 �0.00633 0.00077

52 0.07682 0.22898 0.14081 0.02767 �0.00634 0.00077

54 0.07675 0.22907 0.14077 0.02768 �0.00633 0.00077

56 0.07680 0.22900 0.14080 0.02767 �0.00633 0.00077

58 0.07686 0.22892 0.14085 0.02767 �0.00635 0.00077

60 0.07657 0.22930 0.14064 0.02769 �0.00630 0.00078

Table 2

Convergence of the leading SIFs with Nl; Model Problem I, 2Na ¼ 50

Nl d1 d2 d3 d4 d5 d10
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Z
SC

ūMi dy ¼

Z
SC

Mi dy; i ¼ 1; 2; . . . ;Nl. (16)

The integrands in the above equations are non-singular
(all integrations are carried out far from the boundaries
causing the singularity). Note that the stiffness matrix is
symmetric and becomes singular when Nl42Na, since the
second set of equations does not contain the last Nl

unknowns (i.e. the discrete Lagrange multipliers).
In the case of Model Problem II, the Lagrange multiplier

function has been chosen to replace the normal derivative
of u, qu=qx, which in contrast to Model Problem I, is not
zero

l ¼
qū

qx

����
SC

¼
XNl

j¼1

lj
CMj. (17)

What is different in the discretized equations (15) and (16)
is just the boundary integral along SC which reads

Z
SC

lr2W i
k � ū

qðr2W i
kÞ

qx
þ

qr2ū

qx
W i

k �
q2ū
qy2

qW i
k

qx

� �
dy.

Moreover, the resulting linear system is not symmetric. Let
us note that we have also studied the possibility of l
replacing qðr2uÞ=qx. It turns out that this alternative
formulation gives essentially the same results, and it will
not be discussed here.

As pointed out in Ref. [1], the SFBIM can be used only if
the local asymptotic solution is known. Another limitation
is the condition that the problem domain must be a subset
of the domain of convergence of the asymptotic expansion.
The same restrictions also hold for the collocation Trefftz
method [4], with which comparisons are made in the next
section.
3 1.579222 �1.01904 �0.38817 �0.12631 �0.00963 �0.00067

5 1.579304 �1.01820 �0.39139 �0.12300 �0.01127 �0.00097

7 1.579373 �1.01745 �0.39429 �0.12001 �0.01271 �0.00112

9 1.579373 �1.01745 �0.39428 �0.12002 �0.01271 �0.00112

11 1.579378 �1.01739 �0.39450 �0.11980 �0.01281 �0.00113

13 1.523493 �1.51039 1.54888 �2.11614 0.94649 0.05018

Nl c1 c2 c3 c4 c5 c10

3 0.08428 0.21940 0.14595 0.02707 �0.00772 0.00030

5 0.08032 0.22447 0.14323 0.02740 �0.00696 0.00062

7 0.07677 0.22905 0.14078 0.02767 �0.00633 0.00077

9 0.07678 0.22903 0.14079 0.02767 �0.00633 0.00077

11 0.07651 0.22937 0.14061 0.02769 �0.00629 0.00081

13 2.45544 �2.82869 1.77616 �0.01560 �0.41269 �0.05485
4. Numerical results

In order to calculate the stiffness matrix and the force
vector in Eqs. (15) and (16), boundary parts SC , SD and
SE , are partitioned uniformly into quadratic (i.e., 3-node)
elements. Specifically, NC elements are employed along
each one of SC and SE , while 2NC elements are used along
SD. Given that the partition of the boundary is uniform,
the number of the quadratic elements used is determined
from the number of Lagrange multipliers, i.e.
2NC ¼ ðNl � 1Þ=2. As in Refs. [1,6–8], the integrals in all
formulations are calculated numerically by subdividing
each element into 10 subintervals and using a 15-point
Gauss–Legendre quadrature over each subinterval.

Systematic runs have been carried out in order to find the
optimal values of the numbers of singular functions and
Lagrange multipliers, Na and Nl. As already mentioned,
2Na must be greater than Nl so that the stiffness matrix is
non-singular. In fact, 2Na must be much greater than Nl to
avoid ill-conditioning of the stiffness matrix [1,6–8].

The effect of 2Na on the leading SIFs can be observed in
Table 1, which shows the leading values of c̄i and d̄ i for
Model Problem I, obtained with Nl ¼ 7. We observe that
fast convergence is achieved as 2Na is increased and
accurate estimates of the leading SIFs are obtained. For
2Na ¼ 50 the results appear to be converged, while for
higher values of Na slow divergence is observed, due to the
inaccuracies introduced by the high-order singular func-
tions. For higher values of 2Na (e.g. 2Na ¼ 56) satisfactory
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Table 4

Convergence of the leading SIFs with 2Na; Model Problem II, Nl ¼ 7

2Na d1 d2 d3 d4 d5 d10

30 0.843350 �0.08170 �0.07449 �0.04260 0.00032 0.00122

36 0.843270 �0.08140 �0.07487 �0.04181 0.00060 0.00015

40 0.843247 �0.08096 �0.07613 �0.04052 0.00115 0.00031

42 0.843263 �0.08103 �0.07601 �0.04065 �0.00108 0.00031

44 0.843264 �0.08103 �0.07602 �0.04064 �0.00108 0.00031

46 0.843264 �0.08103 �0.07601 �0.04065 �0.00108 0.00031

48 0.843262 �0.08102 �0.07602 �0.04063 �0.00109 0.00031

50 0.843238 �0.08101 �0.07593 �0.04073 �0.00105 0.00032

52 0.843366 �0.08124 �0.07598 �0.04069 �0.00100 0.00031

54 0.843324 �0.08114 �0.07603 �0.04063 �0.00105 0.00031

56 0.843333 �0.08116 �0.07602 �0.04065 �0.00104 0.00031

58 0.843346 �0.08110 �0.07628 �0.04038 �0.00116 0.00031

60 0.843460 �0.08142 �0.07598 �0.04071 �0.00093 0.00030

66 0.843231 �0.08132 �0.07490 �0.04181 �0.00052 0.00034
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values of the SIFs are still obtained, but the quality of the
global solution is not very good, as discussed below.

The convergence of the solution with the number of
Lagrange multipliers is shown in Table 2, which contains
the values of the leading SIFs for Model Problem I,
calculated with 2Na ¼ 50 and various values of Nl. Again,
fast convergence is observed initially, up to Nl ¼ 7, but as
Nl increases the results diverge slowly, which is attributed
to the fact that the stiffness matrix becomes ill-conditioned.
Our computations showed that the optimum values of Nl

and 2Na are Nl ¼ 7 and 2Na ¼ 50. An indication of the
quality of the solution is the smoothness of the calculated
Lagrange multiplier function [1,6–8]. As shown in Fig. 3,
for the optimum combination Nl ¼ 7 and 2Na ¼ 50, l is
smooth. For the slightly higher value of Nl ¼ 9, the
estimated values of the SIFs are essentially the same, but
-15

-10

-5

0

0 0.2 0.4 0.6 0.8 1
y

λ

Fig. 3. Calculated Lagrange multipliers for Model Problem I with

2Na ¼ 50: Nl ¼ 7 (solid) and Nl ¼ 9 (dashed).

Table 3

Converged values of the SIFs for Model Problem I; Nl ¼ 7 and 2Na ¼ 50

i di ci

1 1.579373 0.07677

2 �1.01745 0.22905

3 �0.39429 0.14078

4 �0.12001 0.02767

5 �0.01271 �0.00633

6 �0.00247 0.00612

7 �0.01542 0.01129

8 �0.01056 0.00511

9 �0.00343 0.00134

10 �0.00112 0.00077

11 �0.00091 0.00065

12 �0.00057 0.00031

13 �0.00022 0.00010

14 �0.00008 0.00006

15 �0.00006 0.00004

2Na c1 c2 c3 c4 c5 c10

30 �0.13217 0.00292 0.04069 0.01445 �0.00986 �0.00069

36 �0.13298 0.00377 0.03992 0.01460 �0.00879 �0.00011

40 �0.13459 0.00573 0.03884 0.01472 �0.00871 �0.00012

42 �0.13441 0.00554 0.03895 0.01471 �0.00874 �0.00014

44 �0.13443 0.00556 0.03894 0.01471 �0.00874 �0.00014

46 �0.13442 0.00555 0.03895 0.01471 �0.00874 �0.00014

48 �0.13444 0.00557 0.03894 0.01471 �0.00874 �0.00014

50 �0.13435 0.00542 0.03901 0.01471 �0.00875 �0.00014

52 �0.13425 0.00550 0.03902 0.01467 �0.00879 �0.00013

54 �0.13437 0.00558 0.03896 0.01469 �0.00876 �0.00013

56 �0.13434 0.00556 0.03897 0.01469 �0.00876 �0.00014

58 �0.13466 0.00597 0.03875 0.01471 �0.00871 �0.00013

60 �0.13413 0.00549 0.03907 0.01464 �0.00882 �0.00014

66 �0.13304 0.00378 0.03991 0.01461 �0.00897 �0.00017
the Lagrange multiplier function exhibits oscillations. The
converged values of the first 15 SIFs for Model Problem I
are shown in Table 3.
The SFBIM appears to perform much better in the case

of Model Problem II. The effect of 2Na on the leading SIFs
can be observed in Table 4, which shows results obtained
with Nl ¼ 7. Again, fast convergence is observed as 2Na is
increased and accurate estimates of the leading SIFs are
computed. The method appears to start diverging slowly
for 2Na444. The convergence of the SFBIM with the
number of Lagrange multipliers is presented in Table 5,
which shows the values of the leading SIFs calculated with
2Na ¼ 44 and various values of Nl. The optimal values of
Nl and 2Na have been found to be Nl ¼ 7 and 2Na ¼ 44.
As shown in Fig. 4, the corresponding Lagrange multiplier
function is smooth, unlike its counterpart for Nl ¼ 9,
which exhibits huge oscillations. The converged values of
the first fifteen SIFs for Model Problem II are tabulated in
Table 6.
Finally, as shown in Table 7, the converged values of

coefficients d1–d10 and c1–c10 for both model problems
compare well with the results of the collocation Trefftz
method of Li et al. [4]. The latter researchers reported an
accuracy of eight significant digits for d1, but they do not
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Table 5

Convergence of the leading SIFs with Nl; Model Problem II, 2Na ¼ 44

2Na d1 d2 d3 d4 d5 d10

3 0.845547 �0.08543 �0.07622 �0.04024 �0.00089 0.00041

5 0.843941 �0.08230 �0.07613 �0.04061 �0.00071 0.00024

7 0.843264 �0.08103 �0.07602 �0.04064 �0.00108 0.00031

9 0.843262 �0.08101 �0.07606 �0.04060 �0.00110 0.00031

11 0.844011 �0.08672 �0.06290 �0.05428 0.00540 0.00031

13 0.841944 �0.14174 �0.02388 �0.02233 0.04304 �0.00284

2Na c1 c2 c3 c4 c5 c10

3 �0.13185 0.00607 0.03950 0.01341 �0.01050 �0.00058

5 �0.13371 0.00574 0.03915 0.01450 �0.00897 �0.00011

7 �0.13443 0.00556 0.03894 0.01471 �0.00874 �0.00014

9 �0.13448 0.00562 0.03891 0.01471 �0.00873 �0.00012

11 �0.11680 �0.14869 0.05044 0.01365 �0.01153 �0.00329

13 �0.03809 �0.02302 0.04203 �0.02431 �0.02142 �0.00192

-4

-2

0

2

4

0 0.2 0.4 0.6 0.8 1
y

λ

Fig. 4. Calculated Lagrange multipliers for Model Problem II with

2Na ¼ 44: Nl ¼ 7 (solid) and Nl ¼ 9 (dashed).

Table 6

Converged values of the SIFs for Model Problem II; Nl ¼ 7 and 2Na ¼ 44

i di ci

1 0.843264 �0.13443

2 �0.08103 0.00556

3 �0.07602 0.03894

4 �0.04064 0.01471

5 �0.00108 �0.00874

6 0.00927 �0.00353

7 �0.00054 0.00153

8 �0.00160 0.00061

9 �0.00006 �0.00030

10 0.00031 �0.00014

11 �0.00002 0.00007

12 �0.00007 0.00003

13 �0.00000 �0.00002

14 0.00002 �0.00001

15 �0.00000 0.00000

Table 7

Comparison of the converged values of the SIFs with those obtained by Li

et al. [4]

SIFs Model Problem I Model Problem II

Ref. [4] SFBIM Ref. [4] SFBIM

d1 1.579144 1.579373 0.8432657 0.843264

d2 �1.018751 �1.01745 �0.081032 �0.08103

d3 �0.388346 �0.39429 �0.076019 �0.07602

d4 �0.126596 �0.12001 �0.040641 �0.04064

d5 �0.009015 �0.01271 �0.001080 �0.00108

d6 �0.004103 �0.00247 0.009265 0.00927

d7 �0.015222 �0.01542 �0.000538 �0.00054

d8 �0.010564 �0.01056 �0.001596 �0.00160

d9 �0.003533 �0.00343 �0.000060 �0.00006

d10 �0.001084 �0.00112 0.000313 0.00031

c1 0.084557 0.07677 �0.134425 �0.13443

c2 0.218683 0.22905 0.005557 0.00556

c3 0.147059 0.14078 0.038943 0.03894

c4 0.025896 0.02767 0.014708 0.01471

c5 �0.006610 �0.00633 �0.008738 �0.00874

c6 0.006926 0.00612 �0.003529 �0.00353

c7 0.010900 0.01129 0.001525 0.00153

c8 0.005336 0.00511 0.000619 0.00061

c9 0.001285 0.00134 �0.000296 �0.00030

c10 0.000799 0.00077 �0.000137 �0.00014
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provide information about the convergence of the other
SIFs. In Table 7 we tabulate their computed values with
one additional digit than the converged values of the
SFBIM. Agreement appears to be better in the case of
Model Problem II. In fact, Li et al. [4] pointed out that
their method is more accurate and stable in this problem.

5. Conclusions

The SFBIM has been used to solve two crack problems
in the plane. The method converges rapidly with the
number of singular functions and the number of Lagrange
multipliers and gives directly accurate estimates of the
leading SIFs. The results compare well with those of the
Trefftz method used by Li et al. [4]. Despite their
aforementioned limitations, both methods appear to be
very attractive when the main goal is the computation of
the SIFs.
The convergence of the SFBIM has been recently studied

theoretically in the case of Laplace problems with
boundary singularities [9,10]. In particular, it has been
demonstrated that the method approximates the SIFs at an
exponential rate [10]. The theoretical analysis of the
convergence of the SFBIM in the case of the biharmonic
equation with crack singularities is currently under
investigation.
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