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Abstract

The singular function boundary integral method (SFBIM) originally developed for Laplacian problems with boundary singularities is extended

for solving two-dimensional fracture problems formulated in terms of the Airy stress function. Our goal is the accurate, direct computation of the

associated stress intensity factors, which appear as coefficients in the asymptotic expansion of the solution near the crack tip. In the SFBIM, the

leading terms of the asymptotic solution are used to approximate the solution and to weight the governing biharmonic equation in the Galerkin

sense. The discretized equations are reduced to boundary integrals by means of Green’s theorem and the Dirichlet boundary conditions are weakly

enforced by means of Lagrange multipliers. The numerical results on a model problem show that the method converges extremely fast and yields

accurate estimates of the leading stress intensity factors.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The elastic field near the tip of a crack in an elastic body is

characterized by the stress intensity factors (SIFs). These are

the coefficients, aj, that appear in the asymptotic expansion of

the Airy stress function u near the crack tip, which is of the

general form

u Z
XN

iZ1

ajr
bj fjðqÞ; (1)

where (r,q) denote polar coordinates centered at the crack tip.

The eigenvalues bj and the corresponding eigenfunctions fj(q)

are known, whereas the SIFs are unknown, with their values

depending on the global problem. The first SIF, a1, plays a

crucial role in the mathematical description of the propagation

of fracture, since

K ZK
ffiffiffiffiffiffi
2p

p
a1 (2)

is the opening mode SIF [10].

In the last few decades, there has been a plethora of work

aimed at reliably computing the SIFs. The methods used
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include the finite element method (FEM) with post-processing

[1,2,19,20,22], the FEM with local mesh refinement [17],

enriched and generalized finite elements [16,18], the method of

fundamental solutions [12], as well as certain versions of the

Trefftz method [8,11,13,14].

It should be noted that in most of the methods mentioned

above, the SIFs are calculated as a post-solution operation, i.e.

the solution u is approximated first and the SIFs are then

calculated using the approximation to u. If the calculation of

the SIFs is the main goal of the computation, then it may be

beneficial to use a method in which the SIFs are calculated

directly. Examples of such methods include the Trefftz method

[11,14] and the method of fundamental solutions [12].

The objective of the present work is to extend the singular

function boundary integral method (SFBIM) to two-dimen-

sional fracture problems. The SFBIM was originally

developed in Ref. [5] to solve Laplacian problems with

boundary singularities aiming at resolving the convergence

difficulties encountered with standard numerical methods in

the vicinity of singular points. In this method, the solution is

approximated by the leading terms of the local asymptotic

solution expansion, which are also employed to weight the

governing equation in the Galerkin sense. Furthermore, the

discretized equations are reduced to boundary integrals by

means of the divergence theorem, and the Dirichlet boundary

conditions are weakly enforced by means of Lagrange

multipliers. In addition to reducing the dimension of the
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problem by one, another important feature of the method is

that the singular coefficients aj are calculated directly (i.e. no

post-processing is required), together with the discrete

Lagrange multipliers. The SFBIM has been applied to

various problems with singularities, such as the Motz

problem [5], the cracked-beam problem [6], and to Laplacian

problems over L-shaped domains [3,4], exhibiting fast

convergence and yielding very accurate results, especially

for the leading singular coefficients.

Since it yields direct estimates of the SIFs, the SFBIM

appears to be an excellent candidate for solving fracture

problems, which can be expressed as a biharmonic equation in

terms of the Airy stress function. To illustrate the extension of

the method to such problems, we have chosen a two-

dimensional fracture problem, originally studied by Schiff

et al. [17].
2. The model problem and the asymptotic solution

We consider here the model problem studied by Schiff

et al. [17], which deals with a two-dimensional solid elastic

plate containing a single edge crack, subjected to a uniform

inplane load normal to the two edges parallel to the crack,

while the remaining edges are stress free (see Fig. 1).

Using symmetry, the problem is formulated on

UZ ðK1; 1Þ!ð0; 1Þ, as a biharmonic equation of the Airy

stress function u(x,y), and is depicted graphically in Fig. 2.

For simplicity, the load in the original problem from [17]

has been taken to be 1.

The resulting boundary value problem is as follows: find u

such that

V4u Z 0 in U Z ðK1; 1Þ!ð0; 1Þ ; (3)
(-1, -1)

O

(1, 1)

Fig. 1. A thin elastic plate with a symmetric crack.
with

u Z 0;
vu

vy
Z 0 on SA

vu

vy
Z 0;

v3u

vy3
Z 0 on SB

u Z 2;
vu

vx
Z 2 on SC

u Z
1

2
ðx C1Þ2;

vu

vy
Z 0 on SD

u Z 0;
vu

vx
Z 0 on SE

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

(4)

where vUZSA gSB gSC gSD gSE. The asymptotic

expansion for u in the neigbourhood of the singular point O

can be expressed in terms of an eigenfunction expansion of the

form:

uðr; qÞ Z
XN

jZ1

½cj W
j
1ðr; qÞCdj W

j
2ðr; qÞ� ; (5)

where (r,q) are the polar coordinates centered at O, and cj,dj

correspond to the even and odd SIFs, respectively (see also Eq.

(1.1) in [17]). (Using this notation, we have a1Zd1 in (2).) In

expansion (5), the two sets of the so-called singular functions

W
j
k, kZ1,2, are given by

W
j
k h rmj C 1fkðq;mjÞ ; k Z 1; 2 (6)

where

f1ðq;mjÞ Z cosðmj K 1ÞqKcosðmj C1Þq;

mj Z j; j Z 1; 2;. ;
(7)

and

f2ðq;mjÞ Z cosðmj K1ÞqK
mjK1

mj C1
cosðmj C1Þq;

mj Z jK
1

2
; j Z 1; 2;.:

(8)

We note that the singular functions W
j
k satisfy the PDE (3),

as well as the boundary conditions on SA and SB.
3. The singular function boundary integral method

In the SFBIM, the solution u is approximated by the leading

terms of the asymptotic expansion. By employing the first Na

terms in (5), the approximate solution �u is given by

�u Z
XNa

iZ1

�ciW
i
1 C

XNa

iZ1

�diW
i
2; (9)

where �ci and �di are the approximations to the SIFs. Obviously,

the total number of singular functions involved in the

approximation is 2Na. It should be pointed out that the method

is restricted to fracture problems with only one crack for which



Fig. 2. The model fracture problem.

M. Elliotis et al. / Engineering Analysis with Boundary Elements 30 (2006) 100–106102
the asymptotic solution is available. Moreover, the proposed

approximation (9) is valid only if the domain of the problem is

a subset of the domain of convergence of the asymptotic

solution. Otherwise, the domain may be partitioned into

subdomains over which separate approximations obeying

appropriate compatibility conditions along the interfaces

should be used.

By applying Galerkin’s principle, the governing equation is

weighted by the singular functions, which yields the following

set of discretized equations:

ð
U

V4 �u Wi
k dV Z 0 ; i Z 1; 2;.;Na; k Z 1; 2:

Next, applying Green’s theorem twice and taking into

account that the singular functions satisfy the governing

biharmonic Eq. (3), the above integrals are reduced to

boundary ones:

ð
vU

v �u

vn
V2Wi

k K �u
v V2Wi

k

� 	
vn


 �
dS

C

ð
vU

vðV2 �uÞ

vn
Wi

k KV2 �u
vWi

k

vn


 �
dS Z 0;

for iZ1,2,.,Na, kZ1,2. Now, since Wi
k satisfy exactly the

boundary conditions along SA and SB, the above integral along

these boundary segments is identically zero. Therefore,

ð
SCgSDgSE

v �u

vn
V2Wi

k K �u
vðV2Wi

kÞ

vn


 �
dS

C

ð
SCgSDgSE

vðV2 �uÞ

vn
Wi

k KV2 �u
vWi

k

vn


 �
dS Z 0

for iZ1,2,..Na, kZ1,2.

In the SFBIM, the Dirichlet boundary conditions are

imposed by means of Lagrange multipliers. In the case of
Laplacian problems, the Lagrange multipliers replace

the normal derivative v �u=vn. In the case of biharmonic

problems, another option for the Lagrange multipliers is to

replace vV2 �u=vn. In the current problem, Dirichlet boundary

conditions appear along the three boundary parts of interest, i.e.

SC, SD and SE, where the normal derivative of the solution is

also specified. Therefore, Lagrange multipliers have been

chosen to replace vV2 �u=vn on boundary parts SC, SD and SE.

These are partitioned into three-node elements and the

corresponding Lagrange multipliers, denoted, respectively,

by lC, lD and lE, are expanded in terms of quadratic basis

functions Mj:

lC Z
vðV2 �uÞ

vx
Z

XNlC

jZ1

l
j
C Mj on SC; (10)
lD Z
vðV2 �uÞ

vy
Z

XNlD

jZ1

l
j
DMj on SD; (11)

and

lE Z
vðV2 �uÞ

vx
Z

XNlE

jZ1

l
j
E Mj on SE; (12)

where NlC
, NlD

and NlE
are the numbers of the discrete

Lagrange multipliers l
j
C, l

j
D and l

j
E along the corresponding

boundaries. The discrete Lagrange multipliers appear as

additional unknowns in the problem. The required NlC
CNlD

C
NlE

additional equations are obtained by weighting the

Dirichlet boundary conditions along SC, SD and SE by the

quadratic basis functions Mi in the Galerkin sense. The

following linear system of 2Na CNlC
CNlD

CNlE
discretized

equations is thus obtained:



Table 1

Convergence of the leading odd SIFs di with 2Na; NlZ39

2Na d1 d2 d3 d4 d5 d10

70 2.12751291 K1.03669169 0.0371710 0.1177493 K0.1227288 K0.01108

80 2.12751343 K1.03669221 0.0371701 0.1177510 K0.1227319 K0.01103

88 2.12751347 K1.03669218 0.0371701 0.1177511 K0.1227313 K0.01103

90 2.12751342 K1.03669217 0.0371701 0.1177510 K0.1227316 K0.01103

92 2.12751342 K1.03669217 0.0371701 0.1177509 K0.1227316 K0.01103

94 2.12751343 K1.03669217 0.0371702 0.1177509 K0.1227315 K0.01103

96 2.12751343 K1.03669217 0.0371702 0.1177509 K0.1227314 K0.01103

100 2.12751343 K1.03669219 0.0371702 0.1177509 K0.1227315 K0.01103

110 2.12751347 K1.03669237 0.0371705 0.1177508 K0.1227315 K0.01102

120 2.12751343 K1.03669229 0.0371705 0.1177508 K0.1227314 K0.01103
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ð
SC

lCWi
k K �u

vðV2Wi
kÞ

vx
KV2 �u

vWi
k

vx


 �
dy

C

ð
SD

lDWi
k K �u

vðV2Wi
kÞ

vy
KV2 �u

vWi
k

vy


 �
dx

C

ð
SE

KlEWi
k C �u

vðV2Wi
kÞ

vx
CV2 �u

vWi
k

vx


 �
dy

ZK

ð
SC

2V2Wi
k dy; i Z 1;.;Na; k Z 1; 2;

(13)

ð
SC

�uMi dy Z

ð
SC

2Mi dy; i Z 1; 2;.;NlC
; (14)
Table 2

Convergence of the leading even SIFs ci, with 2Na; NlZ39

2Na c1 c2 c3

70 0.16676222 0.0624426 K0.1324729

80 0.16676181 0.0624440 K0.1324747

88 0.16676182 0.0624439 K0.1324746

90 0.16676184 0.0624439 K0.1324745

92 0.16676184 0.0624439 K0.1324745

94 0.16676184 0.0624439 K0.1324745

96 0.16676184 0.0624439 K0.1324745

100 0.16676184 0.0624439 K0.1324745

110 0.16676179 0.0624441 K0.1324753

120 0.16676181 0.0624440 K0.1324751

Table 3

Convergence of the leading even SIFs ci, with Nl; NaZ94

Nl d1 d2 d3

7C13C7 2.12751309 K1.03669185 0.0371707

7C17C7 2.12751334 K1.03669214 0.0371702

7C21C7 2.12751338 K1.03669217 0.0371702

7C23C7 2.12751343 K1.03669217 0.0371702

7C25C7 2.12751343 K1.03669217 0.0371702

7C27C7 2.12751342 K1.03669217 0.0371702

7C29C7 2.12751347 K1.03669213 0.0371703

7C31C7 2.12751346 K1.03669213 0.0371703

7C33C7 2.12751335 K1.03669221 0.0371701
ð
SD

�uMi dx Z

ð
SD

1

2
ðx C1Þ2

� 
Mi dx; i Z 1; 2;.;NlD

; (15)

K

ð
SE

�uMi dy Z 0; i Z 1; 2;.;NlE
: (16)

The above linear system can be written in block form as

follows:

K KC KD KE

KT
C O O O

KT
D O O O

KT
E O O O

2
666664

3
777775

X �c; �d

LC

LD

LE

2
66664

3
77775 Z

A

C

D

O

2
66664

3
77775 ; (17)
c4 c5 c10

K0.0102230 0.1058502 0.004334

K0.0102203 0.1058466 0.004262

K0.0102211 0.1058471 0.004263

K0.0102208 0.1058474 0.004264

K0.0102208 0.1058474 0.004264

K0.0102209 0.1058472 0.004264

K0.0102208 0.1058471 0.004264

K0.0102207 0.1058470 0.004264

K0.0102196 0.1058450 0.004262

K0.0102200 0.1058457 0.004265

d4 d5 d10

0.1177516 K0.1227324 K0.01103

0.1177509 K0.1227318 K0.01103

0.1177507 K0.1227319 K0.01103

0.1177510 K0.1227314 K0.01103

0.1177509 K0.1227315 K0.01103

0.1177509 K0.1227315 K0.01103

0.1177513 K0.1227309 K0.01103

0.1177513 K0.1227310 K0.01103

0.1177506 K0.1227324 K0.01103
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Table 4

Convergence of the leading even SIFs c1 with Nl; 2NaZ94

Nl c1 c2 c3 c4 c5 c10

7C13C7 0.16676176 0.0624436 K0.1324753 K0.0102209 0.1058486 0.004267

7C17C7 0.16676184 0.0624439 K0.1324745 K0.0102207 0.1058479 0.004264

7C21C7 0.16676185 0.0624439 K0.1324744 K0.0102204 0.1058480 0.004266

7C23C7 0.16676185 0.0624439 K0.1324745 K0.0102209 0.1058471 0.004264

7C25C7 0.16676184 0.0624439 K0.1324745 K0.0102209 0.1058472 0.004264

7C27C7 0.16676184 0.0624439 K0.1324745 K0.0102208 0.1058470 0.004263

7C29C7 0.16676180 0.0624438 K0.1324748 K0.0102213 0.1058461 0.004263

7C31C7 0.16676181 0.0624438 K0.1324748 K0.0102212 0.1058462 0.004262

7C33C7 0.16676187 0.0624440 K0.1324743 K0.0102201 0.1058485 0.004262
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where X �c; �d, LC, LD and LE are the vectors of unknowns,

X �c; �d Z ½ �c1;.; �cNa
; �d1;.; �dNa

�T; LC Z ½l1
C; l

2
C;.; l

NlC

C �T;

LD Z ½l1
D; l

2
D;.; l

NlD

D �T; LE Z ½l1
E; l

2
E;.; l

NlE

E �T:

It should be noted that the integrands in Eqs. (13)–(16) are

non-singular and all integrations are carried out far from the

boundaries causing the singularity. Also, the stiffness matrix in

(17) is symmetric and becomes singular if NlO2Na where

Nl ZNlC
CNlD

CNlE
. This last fact will be taken into

consideration when choosing specific values for these

parameters.
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Fig. 3. Calculated Lagrange multipliers along SC, SD, SE, with 2NaZ94; NlZ
39 (solid, NlC

ZNlE
Z7, NlD

Z25) and NlZ43 (dashed, NlC
ZNlE

Z9,

NlD
Z25).
4. Numerical results

In order to implement the SFBIM, the boundary parts SC, SD

and SE (i.e. the boundary parts away from the singularity) are

subdivided into quadratic elements. In particular, we use NC

elements for each of the boundaries SC and SE and ND elements

for boundary SD, which makes the total number of Lagrange

multipliers NlZNlC
CNlD

CNlE
Z2NlC

CNlD
(where NlC

Z
2NC C1 and NlD

Z2ND C1). All integrals are calculated

numerically by subdividing each quadratic element into 10

subintervals and using a 15-point Gauss–Legendre quadrature

over each subinterval [3,4].

Our numerical experiments indicated that the number of the

singular functions 2Na should be much greater than the number

of Lagrange multipliers Nl, because otherwise the stiffness

matrix becomes ill-conditioned. On the other hand, large

values of 2Na should be avoided because the contributions of

the high-order singular functions become either negligible (for

r!1) or very large (for rO1) beyond the limits double

precision can handle. Since, at the moment, no a priori way of

choosing the ‘optimal’ values for Nl and Na exists, we have

carried out systematic runs in order to study the effects that the

variation of these parameters would have on the numerical

results.

The effect of 2Na on the leading SIFs can be observed in

Tables 1 and 2, which show results obtained with NlZ39.

Initially, we observe fast convergence as 2Na is increased, but

at very high values of the latter (i.e. above 2NaZ94) slow

divergence is observed due to the inaccuracies introduced by

the high-order singular functions. Tables 3 and 4 show the
effect of varying NlZNlC
CNlD

CNlE
, when 2NaZ94.

Again, fast convergence is observed initially but as Nl

approaches the value of 2Na, the results start diverging slowly.



Table 5

Comparison of converged values of the SIFs with those reported by Li et al.

[14]

SIFs Collocation Trefftz method [14] SFBIM (present work)

d1 2.12751351 2.1275134

d2 K1.0366925 K1.036692

d3 0.0371711 0.037170

d4 0.117749 0.11775

d5 K0.122728 K0.12273

d6 K0.109909 K0.10991

d7 K0.002255 K0.00226

d8 0.006863 0.00686

d9 K0.005936 K0.00594

d10 K0.011032 K0.01103

c1 0.1667621 0.166762

c2 0.0624433 0.062444

c3 K0.1324738 K0.132474

c4 K0.010221 K0.01022

c5 0.105846 0.10585

c6 0.031153 0.03115

c7 K0.007149 K0.00714

c8 K0.001684 K0.00169

c9 0.009484 0.00950

c10 0.004281 0.00426
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These computations suggest that the ‘optimal’ values for the

numbers of singular functions and Lagrange multipliers are

respectively 2NaZ94 and NlZ39. For higher values of 2Na

(e.g. 2NaZ120), satisfactory values of the SIFs are still

obtained, but the quality of the global solution is not good.

When comparing the performance of the method with that in

the case of Laplacian problems [3–6], we note that

convergence is slower in the case of the biharmonic equation,

which is reasonable since the latter is more complicated than

the Laplace equation. If the smoothness of the calculated

Lagrange multiplier functions is used as an indication of the

quality of the solution, then for the combination of 2NaZ94

and NlZ39, the calculated Lagrange multiplier functions

along boundary parts SC, SD and SE, are the smoothest possible

(see Fig. 3). We note that for a slightly different value of Nl the

estimated values of the SIFs are essentially unaffected, while

the calculated Lagrange multipliers exhibit oscillations.

In Table 5 the converged values of coefficients di and ci,

iZ1,.,10, obtained with the SFBIM are compared with the

most accurate values obtained by the collocation Trefftz

method of Li et al. [14], who reported that the leading SIF,

d1, is converged up to the seventh significant digit. The

SFBIM appears to be more accurate as it achieves

convergence up to the eighth significant digit. Since Li et

al. [14] do not provide information about the convergence of

the other SIFs, in Table 5 we tabulate their computed values

with one additional digit than the converged values of the

SFBIM. Nevertheless, there is excellent agreement between

the results of the two methods.
5. Conclusions

The singular function boundary integral method (SFBIM)

has been developed for solving two-dimensional fracture
problems in terms of the Airy stress function. In this method,

the leading terms of the asymptotic solution are used to

approximate the solution and thus the SIFs are calculated

directly (i.e. no post-processing of the numerical solution is

required). The governing biharmonic equation is weighted by

the singular functions in the Galerkin sense, and the

discretized equations are then reduced to boundary integrals

by means of a double application of the divergence theorem,

which leads to a significant reduction in the computational

cost. Another attractive feature of the method is that

integration is necessary only along boundary parts that are

away from the crack tip. The Dirichlet boundary conditions

are weakly enforced by means of Lagrange multipliers

which, depending on the type of the boundary conditions,

may replace either vu/vn or vP2u/vn in the integrands of the

discretized equations. The Lagrange multipliers are calcu-

lated together with the SIFs.

The SFBIM has been applied to a model problem

proposed by Schiff et al. [17]. The numerical calculations

showed that the method converges very fast with the number

of singular functions and the number of Lagrange multi-

pliers, and yields accurate estimates of the leading SIFs. The

value of the leading SIF, in particular, is converged up to

eight significant digits. Our results agree well with the values

obtained by Li et al. [14] using the collocation Trefftz

method.
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