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SUMMARY 
The authors present a new singular function boundary integral method for the numerical solution of 
problems with singularities which is based on approximation of the solution by the leading terms of the 
local asymptotic expansion. The essential boundary conditions are weakly enforced by means of 
appropriate Lagrange multipliers. The method is applied to a benchmark Laplace-equation problem, the 
Motz problem, giving extremely accurate estimates for the leading singular coefficients. The method 
converges exponentially with the number of singular functions and requires a low computational cost. 
Comparisons are made to the analytical solution and other numerical methods. 
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1. INTRODUCTION 

Singularities often arise in engineering problems when there is a sudden change in the boundary 
conditions or the boundary itself. Standard numerical methods like the finite-element , boundary- 
element and finite-difference methods perform poorly in the neighbourhood of singular points. 
To achieve satisfactory accuracy and convergence rates, special methods taking into account the 
form of the local solution are often required. Incorporating the form of the singularity in the 
numerical scheme is generally more effective than mesh refinement. Special numerical methods 
for singular problems are reviewed in Reference 1. 

The form of the singularity for Laplace-equation or biharmonic-equation problems is easily 
obtained by a local analysis using separation of variables. For the two-dimensional Laplace 
equation, the asymptotic solution in polar co-ordinates ( r ,  O),  centred at the singular point, is 
given by 
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where V is a simply connected domain, u is the dependent variable, aj  are the unknown singular 
coefficients, ,uj are the singularity powers arranged in ascending order, and the functions &(e) 
represent the 8 dependence of the eigensolution. The values of pj and the form of &(@) are 
determined by the local analysis. The functions 

wj= r y ( e )  (2) 
satisfy the governing equation in the domain and the boundary conditions along the parts of the 
boundary that cause the singularity. The singular coefficients aj  depend on the global problem 
and are often desirable in many applications. As an example, in fracture mechanics, the first 
coefficient is the stress intensity factor, a measure of the stress at which fracture occurs.* 

In a previous paper,’ we developed the integrated singular basis function method (ISBFM), a 
finite-element method based on the direct subtraction of the leading terms of the singular local 
solution from the original mathematical problem. Finite elements are thus used to approximate 
the ‘smooth’ part of the solution. Since the basis functions derived from the local solution 
satisfy the governing equations, a double application of the divergence theorem reduces all 
integrals involving the singular terms to boundary integrals with non-singular integrands. 
Lagrange multipliers weakly enforce the originally essential boundary conditions, coupling the 
ordinary polynomial finite element basis functions with the singular basis functions. The ISBFM 
has been used for the solution of standard Laplace-equation problems yielding accurate 
estimates for the leading singular coefficients.’ It has also been extended to solve singular fluid 
mechanics problems like the stick-slip and the extrudate-swell  problem^.^ Compared to other 
singular methods, the ISBFM eliminates the need for high-order integration in the 
neighbourhood of the singularity and improves the overall accuracy. It also accelerates the 
convergence with regular mesh refinement and converges rapidly with the number of singular 
functions. 

In the present paper, we propose a singular function boundary integral method based on a 
modification of the ISBFM. The solution is approximated by the leading terms of the 
singularity expansion: 

N .  

j =  I 

where N ,  is the number of basis functions W’= r p / f ( e ) .  As already pointed out, the basis 
functions exactly satisfy the governing equation and the boundary conditions along the 
boundary causing the singularity. With the double application of the divergence theorem all the 
discretized equations are reduced to boundary integrals. As with the ISBFM, Lagrange 
multipliers are used to apply the essential boundary conditions. The advantages of this 
formulation are the following: (a) the dimension of the problem is reduced by one and, 
consequently, the computational cost is considerably lower; (b) the convergence of the solution 
with the number of singular functions is exponential. 

We demonstrate the method on a Laplace equation problem, the Motz p r~b lem.~  This is con- 
sidered as a benchmark problem for testing the various singular methods proposed in the 
literah~re.~ Figure 1 shows the geometry, the governing equations and the boundary conditions for 
the Motz problem as modified by Wait and Mitchell.’ A singularity arises at K = y = 0, where the 
boundary condition suddenly changes from u = 0 to &/ay = 0. The local solution is given by 
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Figure 1. The Motz problem 

The above expansion is valid in the entire solution domain V.6 In fact, its radius of convergence 
is at least as large as Z7 Rosser and Papamichae17 obtained the exact solution of the Motz 
problem using a conformal mapping technique. They computed accurate approximations to the 
first 20 coefficients, expressing them in terms of the coefficients in the series expansions of 
various elliptic functions and integrals involved in their conformal maps.' 

Many special numerical schemes have been proposed for the solution of the Motz problem, 
including finite-difference, global-element, boundary-element , finite-element and other methods. 
We refer the reader to our previous paper' for more details. We should also add here the early 
works of Morley and Yamamoto" who used special finite-element techniques for singular 
problems and those of Symm" and Papamichael and Symm," who developed singular 
boundary integral methods. In what follows we will make comparisons of our numerical results 
to the exact values of Rosser and Papamichae17 and to the two numerical methods that are, to 
our knowledge, the most accurate in the literature: the ISBFM and the boundary method of Li et 
a1..l3 In the latter method, expansion (4) is used to approximate the solution but the boundary 
conditions are satisfied in a least-squares sense. 

The formulation of the boundary element method is presented in Section 2. Even though we 
focus on the Motz problem, we should stress that the method is quite general and it can be used 
for other singular problems. The results are presented in Section 3, where we make comparisons 
to the exact solution of Rosser and Papami~hael,~.' the boundary-element results of Li et 
and the values obtained with the ISBFM.' The conclusions are summarized in Section 4. 

2. THE NUMERICAL METHOD 

We present the boundary element formulation for the Motz problem. The same ideas can 
straightforwardly be extended for other singular elliptic problems. The solution u is 
approximated using as basis functions the leading terms of the asymptotic expansion in 
equation (4): 

N" 

ii = x a j W j  
j =  1 

The singular basis functions are used to weight the governing equation in the Galerkin sense. 
The volume integrals resulting from a double application of Green's theorem are identically 
zero because the basis functions W' are harmonic. One then obtains the following discretized 
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integral equations: 

aA all 
a x 2  

aA 
- 
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[;I=[;] 

where S is the boundary of the domain V consisting of five differents parts as shown in Figure 
1, and n denotes the co-ordinate normal to the boundary. The integrals along boundaries S ,  and 
S2 are zero because the corresponding boundary conditions are identically satisfied by the basis 
functions W'. Moreover, the normal derivatives of z i  along S, and Ss are zero. Equation (6) 
becomes 

ls3( -W'-zz-)dy-js ;I . awi zi-dx+j aw' zi-dy=O, aw' i = 1 , 2  ,..., N ,  (7) 
ax a Y  s5 ax 

As in Reference 1, to impose the essential condition u = 500 along S3, we introduce Lagrange 
multipliers Aj.  Let A denote the normal derivative of z i  on S3. We use quadratic basis functions 
Mi to expand A :  

where NA is the number of Lagrange multipliers. To define the quadratic basis functions Mi, we 
divide the boundary S3 into 3-node boundary elements. The unknowns l j  are then the nodal 
values of the normal derivative of ~2. The basis functions M i  are used to weight the essential 
boundary condition along S3. We thus obtain the following system of equations: 

awi awi awi 
ax a Y  

I (AW'-zi-)dy-Is zi-dx+I s5 zi-dy=O ax i = 1 , 2 ,  ..., Nu (9) 
s3 

I s3 iiM'dy=5001 s3 M'dy i =  1,2, ..., NA (10) 

The discretized equations (9) and (10) constitute a linear system of N ,  + NA equations. Let us 
now denote the equations of (9) and (10) by X1 and X2, respectively, use the symbols A and A 
for the vectors of the two sets of unknowns, and also denote by B the contributions on the RHS 
of equation (10). Then the above system of equations is of the form 

[axi axil - -  

L J 

As with the ISBFM, the stiffness matrix is symmetric. We observe that we should have 
Nu> N l  if the stiffness matrix is to be non-singular (equations in (10) should be fewer than 
those in (9)). 

For the numerical integration, the elements are subdivided into ten sub-elements over which 
a 15-point Gauss-Legendre quadrature is employed. Different tests with lower-order 
quadratures and/or more element subdivisions showed that the quadrature used is satisfactory 
for N o  < 100. 
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3. RESULTS 

As mentioned in the previous Section, we should have N ,  3 N ,  if the stiffness matrix is to be 
non-singular. Furthermore, for higher values of Nu,  a stronger coupling of equations (9) and 
(10) is achieved and the condition of the stiffness matrix is improved. The calculated values of 
the Lagrange multipliers are characterized by oscillations when N ,  is not sufficiently high. 
Hence, a good measure of the quality of the solution is the smoothness of A. In Figure 2 we 
plot the values of 1 obtained with Nu = 52 and 70 ( N ,  = 17). For N ,  = 52, A oscillates wildly 
especially at high y. Increasing N ,  results in a stronger coupling of equations (9) and (10) and 
the wiggles gradually disappear. On the other hand, our calculations show that the convergence 
of the solution worsens when N ,  gets high (greater than 90) and therefore N ,  should be kept as 
small as possible. As we will see below, this lack of convergence does not affect the values of 
the leading coefficients; it only affects the 8th decimal (or the 4th significant) digit of the last 
singular coefficients. 

In Table I we show the effect of N ,  on the calculated values of a,, a,, ale, al, and a20, 
obtained with N ,  = 75. One notices that the values of the singular coefficients converge rapidly 
with N ,  and that highly accurate estimates are obtained at least for the 20 leading coefficients. 
This is shown in Figure 3, where we plot the absolute error for a15 as a function of 
N , ( N ,  = 75). 

x 

250 
0 0.2 0.4 0.6 0.8 1 

Y 

Figure 2. Calculated Lagrange multipliers for N, = 52 and 70 (N, = 17) 

Table I. Convergence of the solution with N, ( N ,  = 75) 

3 
5 
11 
17 
21 
25 
29 
33 
41 

Exact 

401.1603987635 
401.16242538 16 
401-1 624537452 
401.1624537452 
40 1.1624537452 
401.1624537452 
40 1.1 6245 37452 
40 1.1624537452 
40 1.1624537452 

40 1.1624537452 

a5 

14436773630 
144004521 14 
14402724379 
1402727181 
1.4402727170 
1.4402727170 
14402727 170 
1402727170 
1-4402727 170 

1.4402727170 

a10 

0.0411230925 
0.0153638444 
0.0153842469 
0,0153843735 
0.0 153843745 
0.0 153843745 
0.0 153843745 
0.0153843745 
0.0153843745 

0.0153843745 

0.01 1725985 1 
Om19658 13 1 
0.0002706916 
0.00027 15 126 
Oal027 15 122 
0.0002715 122 
0-0002715 122 
0-0002715122 
0.0002715122 

0.0002715 122 

“20 

0.0044337214 
0.001 399540 1 

-0.00001 19044 
-0~0000052961 
-0~0000052956 
-0.0000052957 
-0.0000052958 
- 0.000005295 8 
-0-0000052959 

-0*000005295 
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Figure 3. Absolute error of ui5 as a function of N A  (No = 75) 

In Table I1 we show the convergence of the solution with N ,  when N ,  = 25. We would like to 
make two remarks: (a) for N ,  > 90 the stability of the solution appears to start deteriorating (the 
high accuracy of the leading coefficients is conserved but some oscillations appear after the 8th 
decimal digit of the high-order coefficients). A similar loss of stability is observed with the 
boundary method of Li et ~ 1 . ; ’ ~  (b) the method gives converged results (up to the 10th decimal 
digit) only for the first 20 coefficients. For the higher-order coefficients (up to a30) we observe 
oscillations which do not allow the exact determination of the fourth significant digit. This is 
shown in Table 11, where we list the calculated values of a25 for different N,. The exponential 
convergence of the method is illustrated in Figure 4, where we plot the absolute error for a,5 as 
a function of N , ( N ,  = 25). 

Finally, in Table I11 we compare the ‘best’ values of the first 25 coefficients (obtained with 
N ,  = 75 and N ,  = 33) to the exact values of Rosser and Papami~hael,~ the results obtained with 
the ISBFM,’ and the most accurate values calculated by Li et a1.I3 Note that the last one or two 
final digits of the exact solution might be in The present method yields more accurate 
values of the singular coefficients and requires a smaller computational effort than the other two 
methods. 

Table II. Convergence of the solution with N ,  (NA = 25) 

25 
30 
40 
50 
60 
70 
80 
90 

Exact 

401.162882297 1 
401.1624533930 
40 1.1624537452 
401.1624537452 
40 1.1624537446 
40 1-1624537452 
40 1.1624537452 
401.1624537452 

401.1624537452 

0.0205739506 
0.015 1398760 
0-0 153843722 
0.0 153843825 
0.0153843737 
0.0153843745 
0.0 153843745 
0.0 153843745 

0.0 153843745 

-0.00062 10054 
0.0004413487 

-0.0000052964 
-0~0000056267 
-0~0000034623 
-0~0000052957 
- 0.000005295 6 
-0.0000052954 

-0.000005295 

0.0000 13 1064 
-0-0000070329 
-0*0000003590 

0*0000000889 
OQO00002348 
0-0000001092 
06000001085 
0-0000001068 
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Figure 4. Absolute error of a, ,  as a function of N, ( N ,  = 25) 

Table III. Comparison of the calculated coefficients to those of other methods 

I Exact' 
ISBFM' 
N ,  = 40 

Li et a P 3  Present method 
N ,  = 75, NA = 33 N,  = 35 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

40 1.1624537452 
87.6559201951 
17.2379150794 
-8.07 12 152597 

144027271 70 
0.33 10548859 
0.2754373445 

-0.0869329945 
0.0336048784 
0.0153843745 
0.0073023017 

-0.003 1841 139 
0.00 1220646 1 
0.0005309655 
0.00027 15 122 

0~0000505400 
0.000023 167 
0-00001 1535 

-0.000005295 

-0~0001200463 

40 1.1624537452 
87.6559202595 
17.2379150363 
-8.0712152597 

14402727171 
0.33 10548859 
072754373443 

-0.0869329946 
0.0336048784 
0.0 153843745 
0.00730230 17 

- 0.003 184 1 1 39 
0-0012206461 
0.0005309655 
0@0027 15 122 

0.0000505 3 9 8 
0.0000231668 
0.00001 15352 

0.00000229 11 
0.00000 10632 
0.00000053 12 

-0~0000002473 
0~0000001097 

-0~0001200464 

-0.0000052957 

401.1624537450 
87-655920 1941 
17.2379150819 

1402727 163 
0-33 10548866 
0-2754373447 

-0.0869329948 
0-033604878 1 
0-0 153843747 
0.0073023019 

0-0012206456 
0.0005309655 
0-0002715122 

-0.000 1200450 
0.0000505387 
0.000023 1664 
0~0000115349 

0.0000022895 
0~0000010624 
0~0000005307 

0~0000001085 

-8.0712152607 

-0.003 1841 138 

-0~0000052931 

-0.0000002449 

40 1.1624537452 
87.655920195 1 
17.2379150794 
-8.0712152597 

14402727170 
0.3310548859 
0.2754373445 

-0.0869329945 
0.0336048784 
0.0 153 843745 
0.0073023017 

-0.0031841139 
0.0012206461 
0.0005309655 
0.0002715122 

-0.000 1200464 
0-0000505398 
0.0000231669 
0.00001 15353 

-0.0000052958 
0.00000229 1 I 
0~0000010635 
0.00000053 14 

-0.0000002474 
0-000000 1087 
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4. CONCLUSIONS 

We have developed a singular function boundary integral method based on approximation of 
the solution by the leading terms of the local asymptotic expansion, and on the use of Lagrange 
multipliers for the enforcement of the essential boundary conditions. The method has been 
applied to the Motz problem, the solution of which is described by a single expansion, giving 
more accurate estimates for the leading singular coefficients than other numerical methods in the 
literature. It exhibits an exponential convergence with the number of singular functions. 

For other singular problems for which more than one expansion is valid over the entire 
domain, the method can still be applied by subdividing the domain into several subdomains and 
using different expansions (or methods) in each of them. The extension of the method to other 
singular problems is currently under investigation. 
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