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Abstract—We investigate the convergence of special boundary approximation methods (BAMs)
used for the solution of Laplace problems with a boundary singularity. In these methods, the solution
is approximated in terms of the leading terms of the asymptotic solution around the singularity.
Since the approximation of the solution satisfies identically the governing equation and the boundary
conditions along the segments causing the singularity, only the boundary conditions along the rest of
the boundary need to be enforced. Four methods of imposing the essential boundary conditions are
considered: the penalty, hybrid, and penalty/hybrid BAMs and the BAM with Lagrange multipliers.
A priori error analyses and numerical experiments are carried out for the case of the Motz problem,
and comparisons between all methods are made. c© 2005 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

As in Li [1], we employ the term boundary approximation method (BAM) for numerical methods
used for the solution of boundary value problems when the solution is approximated over the entire
domain as a linear combination of certain particular solutions of the governing equation. Since
the governing equation is identically satisfied, only the enforcement of the boundary conditions
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is necessary in order to obtain the unknown coefficients of the above linear combination. BAMs
include the boundary element method [2] and the method of fundamental solutions [3], in which
the approximate solution is expressed in terms of fundamental solutions of the governing equation.
The main advantage of the BAMs is that the dimension of the problem is reduced by one, which
implies that the required computational cost is considerably reduced.

Special BAMs can be developed in the case of elliptic boundary value problems with a boundary
singularity. If the local asymptotic solution around the singularity is known and converges over
the entire solution domain, then the leading terms of the solution expansion can be used for
the approximation of the solution. The additional advantages of such special BAMs are the
following.

(a) Since the boundary conditions along the boundary parts causing the singularity are identi-
cally satisfied, application of the boundary conditions is necessary only along the remaining
parts of the boundary.

(b) The singular coefficients, i.e., the leading coefficients of the asymptotic solution expansion,
are calculated directly.

(c) The accuracy and the rate of convergence are considerably improved, compared to those
of standard numerical methods which are seriously affected by the presence of singularities
[1,4–6].

The approximation of the solution with the leading terms of the local asymptotic expansion
may be employed only locally, i.e., in a subdomain Ω1 containing the singularity. Such an
approach is mandatory if the domain of convergence of the asymptotic solution is a subset of
the domain Ω (which should be a superset of Ω1). Then, one may use another set of particular
solutions or employ standard numerical methods in order to approximate the solution and apply
the boundary conditions in the remaining part Ω2 of the domain (Ω = Ω1 ∪ Ω2). Obviously, in
the latter case, the method is not a BAM. A difficulty associated with this approach comes from
the need of imposing proper coupling conditions along the interface of Ω1 and Ω2 (see, e.g., [7]).
Li [1] considered a benchmark Laplace equation problem with a boundary singularity, known
as the Motz problem, and investigated different coupling techniques when finite elements, finite
differences, and the finite-volume method are employed over Ω2.

What distinguishes the various special BAMs used for solving elliptic boundary value problems
with a boundary singularity is the way the essential boundary conditions are enforced. Li et
al. [7] and Arad et al. [8] employed least-squares techniques, whereas Georgiou and co-work-
ers [4–6] employed Lagrange multipliers. Li [1] also considered other techniques, such as the
penalty method, the hybrid method and the penalty/hybrid method which can be viewed as a
combination of the former two methods.

The objective of the present work is to carry out a priori error analyses for various special
BAMs which will allow the optimal choice of the parameters involved, leading to exponential
convergence rates. For demonstration purposes, we have chosen to study the Motz problem [9].

In Section 2, we consider a general Laplace equation problem with Dirichlet and mixed bound-
ary conditions and formulate the corresponding Galerkin and minimization problems with the
penalty, the hybrid and the penalty/hybrid BAMs. For comparison purposes, the BAM with La-
grange multipliers [4,6] is also considered. In Section 3, the application of the above four methods
to the Motz problem is demonstrated, and in Sections 4–7, the corresponding error analyses are
presented. Finally, in Section 8, we present some representative numerical experiments validating
the error analyses, and make comparisons between all BAMs under study.

2. FORMULATIONS FOR THE LAPLACE EQUATION

For simplicity, we present the formulations of the BAMs for the special case of the Laplace
equation. These formulations are easily extended to more general elliptic problems; see, e.g., [1].
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We consider the Laplace equation in a plane, simply connected polygonal domain Ω,

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0, in Ω, (2.1)

with mixed boundary conditions,

u = g1, on Γ1, (2.2)
∂u

∂n
+ qu = g2, on Γ2, (2.3)

where Γ1 ∪ Γ2 = ∂Ω, |Γ1| > 0, the functions g1, g2 and q are sufficiently smooth, q|Γ2 ≥ 0, and n
is the outward normal direction to the boundary.

2.1. Weak Formulations and Lagrange Multipliers

Before proceeding to the various descriptions of the BAMs it is instructive to present first
the standard weak formulations of the problem (2.1)–(2.3), i.e., the Galerkin weak form and
its equivalent variational formulation, and discuss briefly the use of Lagrange multipliers for the
enforcement of the essential boundary condition (2.2) on Γ1. Let us employ the following notation
for the Sobolev spaces of interest,

H1(Ω) =
{
v : v, vx, vy ∈ L2(Ω)

}
, (2.4)

H1
0 (Ω) =

{
v : v, vx, vy ∈ L2(Ω), v|Γ1 = 0

}
. (2.5)

We are also interested in the following subset of H1(Ω),

H1
∗ (Ω) =

{
v : v, vx, vy ∈ L2(Ω), v|Γ1 = g1

}
. (2.6)

In the Galerkin method, a solution u ∈ H1
∗ (Ω) is sought, such that∫∫

Ω

∇u · ∇v ds+
∫

Γ2

quv d` =
∫

Γ2

g2v d`, ∀ v ∈ H1
0 (Ω), (2.7)

or

B(u, v) = F (v), ∀ v ∈ H1
0 (Ω), (2.8)

where
B(u, v) =

∫∫
Ω

∇u · ∇v ds+
∫

Γ2

quv d` (2.9)

and
F (v) =

∫
Γ2

g2v d`. (2.10)

The solution u of the Galerkin problem (2.7) minimizes the quadratic functional,

I(v) =
1
2
B(v, v)− F (v), v ∈ H1

∗ (Ω), (2.11)

or

I(v) =
1
2

∫∫
Ω

(∇v)2 ds+
1
2

∫
Γ2

qv2 d`−
∫

Γ2

g2v d`, v ∈ H1
∗ (Ω). (2.12)
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Thus, the equivalent minimization problem is to find u ∈ H1
∗ (Ω), such that

I(u) = min
v∈H1∗(Ω)

I(v). (2.13)

If now, the essential boundary condition (2.2) on Γ1 is enforced by means of Lagrange mul-
tipliers λ = ∂u

∂n |Γ1 , then the weak form of the problem (2.1)–(2.3) becomes [10]. Find (u, λ) ∈
H1(Ω)×H−1/2(Γ1), such that

B(u, v) +G(u, v;λ, µ) = F (v), ∀ (v, µ) ∈ H1(Ω)×H−1/2(Γ1), (2.14)

where B(·, ·) and F (·) are given by (2.9) and (2.10), respectively, and

G(u, v;λ, µ) = −
∫

Γ1

(λv + µ(u− g1)) d`, (2.15)

with (v, µ) ∈ H1(Ω)×H−1/2(Γ1) arbitrary test functions. Here, H−1/2 is the dual space of H1/2,
defined as follows. If

H1/2 (∂Ω) =
{
u ∈ H1 (Ω) : u|∂Ω ∈ L2 (Ω)

}
(2.16)

is the trace space of functions in H1(Ω), T denotes the trace operator , and the norm of H1/2(∂Ω)
is defined as

‖ψ‖1/2,∂Ω = inf
u∈H1(Ω)

{
‖u‖1,Ω : Tu = ψ

}
, (2.17)

then H−1/2(∂Ω) is defined as the closure of H0(∂Ω) ≡ L2(∂Ω) with respect to the norm,

‖ϕ‖−1/2,∂Ω = sup
ψ∈H1/2(∂Ω)

∫
∂Ω
ϕψ

‖ψ‖1/2,∂Ω

. (2.18)

The reader is referred to [10,11] for more details.
It is clear that the Galerkin problem (2.14) takes the form,∫∫

Ω

∇u · ∇v ds+
∫

Γ2

quv d`−
∫

Γ1

(λv + µu) d` =
∫

Γ2

g2v d`−
∫

Γ1

g1µd`.

Its solution (u, λ) ∈ H1(Ω)×H−1/2(Γ1) creates a stationary point for the (not positive definite)
functional,

I(v, λ) =
1
2

[B(v, v) +G(v, v;λ, λ)]− F (v)

=
1
2

∫∫
Ω

(∇v)2ds+
1
2

∫
Γ2

qv2d`−
∫

Γ2

g2v d`−
∫

Γ1

λ(v − g1) d`.
(2.20)

Note that the Lagrange multiplier function λ = ∂u
∂n |Γ1 is treated as an additional unknown

variable.

2.2. Boundary Approximation Methods

The basic characteristic of the boundary approximation methods is that the solution of problem
(2.1)–(2.3) is sought in a finite-dimensional subspace,

VN = span {Φi}Ni=1 , (2.21)

where {Φi}Ni=1 is a finite set of analytic, linearly independent basis functions, satisfying

∆Φi = 0, in Ω, i = 1, . . . , N. (2.22)
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Thus, the approximate solution uN ∈ VN is of the form,

uN =
N∑
i=1

aNi Φi, (2.23)

where aNi , i = 1, . . . , N , are unknown coefficients to be determined. The admissible (or test)
functions v also belong to VN and do not necessarily satisfy the essential boundary condition
on Γ1. Due to (2.22), any function v ∈ VN satisfies the Laplace equation. Therefore, the double
integrals in the Galerkin problems (2.7) or (2.19) and in the functionals (2.12) or (2.20) are
reduced to boundary integrals,∫∫

Ω

∇u · ∇v ds =
∫
∂Ω

u
∂v

∂n
d` and

∫∫
Ω

(∇v)2 ds =
∫
∂Ω

v
∂v

∂n
d`.

The essential boundary condition on Γ1 can be enforced using different techniques [1]. The
variational formulations for the penalty, the hybrid and the penalty/hybrid BAMs are conve-
niently combined by introducing the parameters w ≥ 0 and α ∈ [0, 1]. An approximate solution
uN ∈ VN is sought, such that

I(uN ) = min
v∈VN (Ω)

I(v), (2.24)

where
I(v) =

1
2

∫
∂Ω

v
∂v

∂n
d`+

1
2

∫
Γ2

qv2 d`−
∫

Γ2

g2v d`

+w2

∫
Γ1

(v − g1)2 d`− α
∫

Γ1

∂v

∂n
(v − g1) d`.

(2.25)

In the penalty BAM, w > 0 and α = 0; in the hybrid BAM, w = 0 and α = 1; and in the
penalty/hybrid BAM, w ≥ 0 and 0 ≤ α ≤ 1 with w2 + α2 > 0. The functional (2.25) involves
only boundary integrals. This is, of course, also true for the equivalent Galerkin problem. Find
u ∈ H1(Ω) such that∫

∂Ω

u
∂v

∂n
d`+

∫
Γ2

quv d`+ 2w2

∫
Γ1

uv d`− α
∫

Γ1

(
∂u

∂n
v + u

∂v

∂n

)
d`

=
∫

Γ2

g2v d`+ 2w2

∫
Γ1

g1v d`− α
∫

Γ1

g1
∂v

∂n
, d` ∀ v ∈ H1(Ω).

(2.26)

The discrete problem is obtained by replacing u with uN ∈ VN ⊂ H1(Ω) above and requiring
that (2.26) holds for all v ∈ VN .

In the BAM with Lagrange multipliers, the functional,

I(v, λ) =
1
2

∫
∂Ω

v
∂v

∂n
d`+

1
2

∫
Γ2

qv2 d`−
∫

Γ2

g2v d`−
∫

Γ1

λ : (v − g1) d`

is minimized over all (v, λ) ∈ H1(Ω)×H−1/2(Γ1).
The similarity of the BAM with Lagrange multipliers with the hybrid BAM is obvious; the main

difference is that the normal derivative ∂v
∂n |Γ1 = λ is treated as an additional unknown variable.

This is usually approximated locally in terms of polynomial basis functions. For completeness,
we state the associated Galerkin problem, which reads. Find (u, λ) ∈ H1(Ω)×H−1/2(Γ1), such
that ∫

∂Ω

u
∂v

∂n
ds+

∫
Γ2

quv d`−
∫

Γ1

[λv + µ (u− g1)] d` =
∫

Γ2

g2v d`,

for all (v, µ) ∈ H1(Ω)×H−1/2(Γ1). As before, the discrete problem is obtained by replacing (u, λ)
above with (uN , λh) ∈ [VN × Λh] ⊂ [H1(Ω)×H−1/2(Γ1)] and requiring that (2.28) holds for all
(v, µ) ∈ (VN × Λh). The precise definition of the finite-dimensional subspace Λh ⊂ H−1/2(Γ1) is
given in Section 4.4 ahead.
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Figure 1. Geometry and boundary conditions of the Motz problem.

3. APPLICATION OF THE BAMS TO THE MOTZ PROBLEM

The Motz problem [9] is a benchmark Laplace equation problem that is very often used for
testing various special numerical methods proposed in the literature for the solution of elliptic
boundary value problems with boundary singularities. Figure 1 shows the geometry and the
boundary conditions as modified by Wait and Mitchell [12]. The boundary value problem is
stated as follows,

∆u = 0, in Ω = {(x, y) | −1 ≤ x ≤ 1, 0 ≤ y ≤ 1}, (3.1)

u|OD = 0, (3.2)

u|AB = 500, (3.3)

∂u

∂n

∣∣∣∣
OA∪BC∪CD

= 0. (3.4)

A singularity arises at x = y = 0, where the boundary condition suddenly changes from u = 0
to ∂u

∂y = 0. The local solution is given by

u =
∞∑
i=1

air
(2i−1)/2 cos

[(
2i− 1

2

)
θ

]
, (3.5)

where (r, θ) are the polar coordinates centered at the origin. The above expansion is valid in
the entire solution domain [13], with a radius of convergence at least as large as two [14]. The
values of the coefficients ai, known as singular coefficients or generalized stress intensity factors
are of interest. Rosser and Papamichael obtained the exact solution of the Motz problem using a
conformal mapping technique and computed accurate approximations to the first 20 coefficients
expressing them in terms of the coefficients in the series expansions of various elliptic functions
and integrals involved in their conformal maps [14,15].

Many special numerical schemes have been proposed for the solution of the Motz problem,
including finite-difference, global-element, boundary-element, and finite-element methods. Early
works include those of Symm [16] and Papamichael and Symm [17] who developed singular
boundary integral methods. Recent methods include those of Georgiou et al. [6] and Li and
Lu [18]. The reader is referred to these papers for discussions about other numerical methods
used for the solution of the Motz problem and the calculation of the singular coefficients, and for
additional references.

Let us now consider the following approximation of the solution,

uN =
N∑
i=1

aNi r
(2i−1)/2 cos

[(
2i− 1

2

)
θ

]
(3.6)

or

uN =
N∑
i=1

aNi Φi, (3.7)
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where the basis functions,

Φi = r(2i−1)/2 cos
[(

2i− 1
2

)
θ

]
, (3.8)

are the singular functions appearing in the local solution expansion (3.5) and aNi are the ap-
proximations of the singular coefficients ai. Since the singular functions Φi are solutions of the
Laplace equation, the theory of the previous section applies with

Γ1 = OD ∪AB, Γ2 = OA ∪BC ∪ CD, (3.9)

g1|OD = 0, g1|AB = 500, q|Γ2 = 0, and g2|Γ2 = 0.

Moreover, the essential boundary condition on OD and the natural boundary condition on OA

are identically satisfied by all basis functions Φi. As a result, for all v ∈ VN ,∫
OD

v
∂v

∂n
d` =

∫
OA

v
∂v

∂n
d` = 0.

Therefore, the functional (2.25) becomes

I(v) =
1
2

∫
Γ∗
v
∂v

∂n
d`+ w2

∫
AB

(v − 500)2 d`− α
∫
AB

∂v

∂n
(v − 500) d`, (3.10)

where
Γ∗ = AB ∪BC ∪ CD, (3.11)

and the solution is sought in the space,

H1
M (Ω) .=

{
v ∈ H1(Ω) : v

∣∣∣∣OD =
∂v

∂n

∣∣∣∣
AB

= 0
}
. (3.12)

For convenience, the minimization and Galerkin problems reached with the four BAMs studied
in this work are summarized below.

Penalty BAM

Minimization Problem: Minimize

IP (v) .=
1
2

∫
Γ∗
v
∂v

∂n
d`+ w2

∫
AB

: (v − 500)2 d`, v ∈ VN ⊂ H1
M (Ω). (3.13)

Galerkin Problem: Find uN ∈ VN ⊂ H1
M (Ω), such that ∀ v ∈ VN ⊂ H1

M (Ω),∫
Γ∗
uN

∂v

∂n
d`+ 2w2

∫
AB

uNv d` = 2w2

∫
AB

500v d`. (3.14)

Hybrid BAM

Minimization Problem: Minimize

IH(v) .=
1
2

∫
Γ∗
v
∂v

∂n
d`−

∫
AB

:
∂v

∂n
: (v − 500) d`, v ∈ VN ⊂ H1

M (Ω). (3.15)

Galerkin Problem: Find uN ∈ VN ⊂ H1
M (Ω), such that, ∀v ∈ VN ⊂ H1

M (Ω),∫
Γ∗
uN

∂v

∂n
d`−

∫
AB

(
∂uN
n

v + uN
∂v

∂n

)
d` = −

∫
AB

500
∂v

∂n
d`. (3.16)
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Penalty/Hybrid BAM

Minimization Problem: Minimize

IPH(v) .=
1
2

∫
Γ∗
v
∂v

∂n
d`+ w2

∫
AB

(v − 500)2 d`− α
∫
AB

∂v

∂n
(v − 500) d`,

v ∈ VN ⊂ H1
M (Ω).

(3.17)

Galerkin Problem: Find uN ∈ VN ⊂ H1
M (Ω), such that, ∀ v ∈ VN ⊂ H1

M (Ω),∫
Γ∗
uN

∂v

∂n
d`+ 2w2

∫
AB

uNv d`− α
∫
AB

(
∂uN
n

v + uN
∂v

∂n

)
d`

= 2w2

∫
AB

500v d`− α
∫
AB

500
∂v

∂n
d`.

(3.18)

BAM with Lagrange Multipliers

Minimization problem: Minimize

IL(v, λ) .=
1
2

∫
Γ∗
v
∂v

∂n
: d`−

∫
AB

λ(v − 500) d`,

(v, λ) ∈ [VN × Λh] ⊂
[
H1
M (Ω)×H−1/2(AB)

]
.

(3.19)

Galerkin problem: Find (uN , λh) ∈ [VN × Λh] ⊂
[
H1
M (Ω)×H−1/2(AB)

]
, such that∫

Γ∗
uN

∂v

∂n
d`−

∫
AB

: [λhv + µ (uN − 500)] d` = 0,

∀ (v, µ) ∈ [VN × Λh] ⊂
[
H1
M (Ω)×H−1/2(AB)

]
.

(3.20)

4. ERROR ANALYSES

Before proceeding to the error analyses for the four BAMs, we first provide some useful results,
which, for the sake of simplicity, are presented specifically for the Motz problem. We will often
use the notation β ≈ γ to mean that there exist constants C1 and C2, such that

C1β ≤ γ ≤ C2β.

Also, throughout this section, the letters c and C denote generic positive constants which are
generally different in each occurrence. Finally, we note that the error analyses that follow will
give bounds on the error in approximating u by uN ; error bounds for the singular coefficients can
be obtained from these and the fact that [1],∣∣ai − aNi ∣∣ ≤ C ‖u− uN‖L2(Ω) , (4.1)

with C a positive constant independent of N .

Lemma 4.1. Let v satisfy (3.1)–(3.4) and let Γ1 be given by (3.9). Then,

|v|21,Ω + ‖v‖20,Γ1
≈ ‖v‖21,Ω . (4.2)

Proof. We first have

|v|21,Ω + ‖v‖20,Γ1
≤ |v|21,Ω + ‖v‖20,Ω = ‖v‖21,Ω . (4.3)

Next, we use Poincaré’s inequality,

|v|21,Ω ≥ C ‖v‖
2
1,Ω ,

to obtain
C ‖v‖21,Ω ≤ |v|

2
1,Ω + ‖v‖20,Γ1

. (4.4)

Combining (4.3) and (4.4), we get (4.2).
In what follows, we will be using the norm,

‖v‖H =
{∫

Γ∗
v
∂v

∂n
+ w2

∫
AB

v2

}1/2

, (4.5)

for w ≥ 1, with Γ∗ given by (3.11).
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Lemma 4.2. If w = 1, then ‖v‖H ≈ ‖v‖1,Ω, ∀ v ∈ VN .

Proof. Let v ∈ VN and note that

∆v = 0 in Ω, v|OD = 0,
∂v

∂n

∣∣∣∣
OA

= 0. (4.6)

Using Green’s formula, we have

|v|21,Ω =
∫∫

Ω

|∇v|2 =
∫∫

Ω

v∆v +
∫
∂Ω

v
∂v

∂n

and by (4.6),

|v|21,Ω =
∫

Γ∗
v
∂v

dn
. (4.7)

Now, since w = 1, we have from (4.5),

‖v‖2H =
∫

Γ∗
v
∂v

dn
+
∫
AB

v2

and by (4.7),
‖v‖2H = |v|21,Ω + ‖v‖20,AB .

The desired result follows as in the proof of Lemma 4.1.

Lemma 4.3. For w ≥ 1, there exist constants C1, C2 > 0, such that

C1 ‖v‖1,Ω ≤ ‖v‖H ≤ C2w ‖v‖1,Ω , ∀ v ∈ VN . (4.8)

Proof. Let Γ1 be given by (3.9). Since w ≥ 1, we have

‖v‖2H ≥ |v|
2
1,Ω + ‖v‖20,Γ1

,

and by Lemma 4.1,
‖v‖2H ≥ C ‖v‖

2
1,Ω . (4.9)

Next, we have

‖v‖2H = w2

{
1
w2
|v|21,Ω + ‖v‖20,Γ1

}
≤ Cw2

{
|v|21,Ω + ‖v‖20,Γ1

}
and by Lemma 4.2,

‖v‖2H ≤ Cw2 ‖v‖21,Ω . (4.10)

Combining (4.9) and (4.10), we get (4.8).

Now, let u = uN + rN with

uN =
N∑
i=1

aiΦi (4.11)

and

rN =
∞∑

i=N+1

aiΦi (4.12)

where ai are the true singular coefficients and Φi are given by (3.8). We have the following
lemma.
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Lemma 4.4. With rN given by (4.12), we have

‖rN‖H ≤ ‖rN‖
1/2
0,Γ∗

∥∥∥∥∂rN∂n
∥∥∥∥1/2

0,Γ∗
+ w ‖rN‖0,AB .

Proof. Using (4.5) and the Cauchy-Schwartz inequality, we get

‖rN‖2H ≤ ‖rN‖0,Γ∗
∥∥∥∥∂rN∂n

∥∥∥∥
0,Γ∗

+ w2 ‖rN‖20,AB .

Using the inequality
√
a2 + b2 ≤ a+ b, the desired result follows.

In what follows, we make the assumption that there exists a ∈ (0, 1) such that, with rN is
given by (4.12),

‖rN‖0,Γ∗ ≤ CaN , (4.13)∥∥∥∥∂rN∂n
∥∥∥∥

0,Γ∗
≤ CNaN , (4.14)

where C is a constant independent of N .
Assumptions (4.13),(4.14) hold trivially if r < 1 in the local solution (3.5), since then by (3.8),

(4.12), and the fact that the solution u is continuous, we have

|rN | ≤
∞∑

i=N+1

|ai| ri−1/2 ≤ C r
N+1/2

1− r ≤ Ca
N

with r < a < 1. In the case of r ≥ 1, one may partition the domain Ω into subdomains in which
separate approximations may be obtained, as was discussed in Section 1. The solution over the
entire domain can then be composed by combining the solutions from the various subdomains
and properly dealing with their interactions across the interfaces separating each subdomain (see,
e.g., [7]).

The Penalty BAM

Using the above results, we arrive at the following theorem for the penalty BAM.

Theorem 4.1. Let uPN ∈ VN be the solution to (3.13) and u ∈ H1
M the weak solution to (3.1)–

(3.4). Then, there exists a positive constant C, independent of N , such that

∥∥u− uPN∥∥H ≤ C
{

inf
v∈VN

‖u− v‖H +
1
w

∥∥∥∥∂u∂n
∥∥∥∥

0,AB

}
.

Proof. Note that uPN ∈ VN satisfies

B1(uPN , v) = F1(v), ∀ v ∈ VN , (4.15)

where
B1(u, v) =

∫
Γ∗
v
∂u

∂n
+ w2

∫
AB

uv, F1(v) = 500w2

∫
AB

v.

In addition, u satisfies

B1(u, v) = F1(v) +
∫
AB

v
∂u

∂n
, ∀ v ∈ H1

M . (4.16)
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Combining (4.15) and (4.16), we get

B1

(
u− uPN , v

)
=
∫
AB

v
∂u

∂n
, ∀ v ∈ VN . (4.17)

Let δ = (uPN − v) ∈ VN . Then, using (4.5) and (4.17), we obtain

‖δ‖H = B1 (δ, δ) = B1

(
uPN − v, δ

)
= B1 (u− v, δ)−

∫
AB

δ
∂u

∂n
. (4.18)

Since |B1(u, v)| ≤ C ‖u‖H ‖v‖H , we further obtain

‖δ‖2H ≤ C ‖u− v‖H ‖δ‖H + ‖δ‖0,AB
∥∥∥∥∂u∂n

∥∥∥∥
0,AB

after using the triangle and Cauchy-Schwartz inequalities. By Lemma 4.3,

‖δ‖0,AB ≤ C
1
w
‖δ‖H

hence,

‖δ‖2H ≤ C
{
‖u− v‖H +

1
w

∥∥∥∥∂u∂n
∥∥∥∥

0,AB

}
‖δ‖H .

Dividing by ‖δ‖H , we get

‖δ‖H ≤ C
{
‖u− v‖H +

1
w

∥∥∥∥∂u∂n
∥∥∥∥

0,AB

}
, ∀ v ∈ VN . (4.19)

Finally, ∥∥u− uPN∥∥H ≤ ‖u− v‖H +
∥∥v − uPN∥∥H ≤ C

{
‖u− v‖H +

1
w

∥∥∥∥∂u∂n
∥∥∥∥

0,AB

}
and the proof is complete.

Corollary 4.1. Let u be the weak solution to (3.1)–(3.4) and let uPN satisfy (3.13). Then, there

exists a constant C > 0, independent of N , such that

∥∥u− uPN∥∥H ≤ C
{
‖rN‖1/20,Γ∗

∥∥∥∥∂rN∂n
∥∥∥∥1/2

0,Γ∗
+ w ‖rN‖0,AB +

1
w

}
. (4.20)

Proof. Let v = uN and u = uN + rN as given by (4.11) and (4.12). Then, by Theorem 4.1

∥∥u− uPN∥∥H ≤ C
{

inf
v∈VN

‖u− v‖H +
1
w

∥∥∥∥∂u∂n
∥∥∥∥

0,AB

}
≤ C

{
‖rN‖H +

1
w

∥∥∥∥∂u∂n
∥∥∥∥

0,AB

}
.

The desired result follows from Lemma 4.4 and by noting that ‖ ∂u∂n‖0,AB ≤ C.

Assuming (4.13) and (4.14) hold, we may use Corollary 4.1 to obtain the optimal choice for
the parameter w = a−N/2 for the penalty BAM, as well as the error estimate,∥∥u− uPN∥∥H ≤ C√NaN/2, (4.21)

with C a constant independent of N and a.
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4.2. The Hybrid BAM

In the hybrid BAM, we seek uHN ∈ VN such that (3.16) holds ∀ v ∈ VN (with uN replaced by
uHN ). Note that uHN also satisfies

B2(uHN , v) = F2(v), ∀ v ∈ VN , (4.22)

where
B2(u, v) .=

∫
Γ∗
u
∂v

∂n
−
∫
AB

v
∂u

∂n
−
∫
AB

u
∂v

∂n
=
∫
BC∪CD

v
∂u

∂n
+
∫
AB

u
∂v

∂n
(4.23)

and
F2(v) = −500

∫
AB

∂v

∂n
. (4.24)

We have the following theorem.

Theorem 4.2. Let uHN ∈ VN satisfy (4.22) and u ∈ H1
M be the weak solution to (3.1)–(3.4).

Then, ∣∣u− uHN ∣∣1,Ω ≤ 2 inf
v∈VN

|u− v|1,Ω .

Proof. Note that

B2(v, v) =
∫

Γ∗
v
∂v

∂n
=
∫∫

Ω

|∇v|2 = |v|21,Ω , ∀ v ∈ VN .

Moreover, with u ∈ H1
M the solution to (3.1)–(3.4), we have

B2(u− uHN , v) = 0, ∀ v ∈ VN . (4.25)

Let δ = (uHN − v) ∈ VN with v ∈ VN arbitrary. Then,

|δ|21,Ω = B2(δ, δ) = B2

(
uHN − v, δ

)
,

so that using (4.25),

|δ|21,Ω = B2

(
uHN − v, δ

)
+B2(u− uHN , δ) = B2(u− v, δ)

≤ [B2 (u− v, u− v)B2 (δ, δ)]1/2 = |u− v|1,Ω |δ|1,Ω ,

which gives
|δ|1,Ω ≤ |u− v|1,Ω .

Thus, with v ∈ VN ,∣∣u− uHN ∣∣1,Ω ≤ |u− v|1,Ω +
∣∣v − uHN ∣∣1,Ω = |u− v|1,Ω + |δ|1,Ω ≤ 2 |u− v|1,Ω ,

from which the desired result follows.

Corollary 4.2. Let the assumptions of Theorem 4.2 as well as (4.13),(4.14) hold. Then,∥∥u− uHN∥∥1,Ω
≤ C
√
NaN ,

where C is a constant independent of N and a ∈ (0, 1).

Proof. By Poincaré’s inequality and Theorem 4.2,∥∥u− uHN∥∥1,Ω
≤ C(Ω)

∣∣u− uHN ∣∣1,Ω < 2C(Ω) inf
v∈VN

|u− v|1,Ω .

Letting v = uN , u = uN + rN , and using (4.7), (4.13), and (4.14), we get∥∥u− uHN∥∥1,Ω
< C |rN |1,Ω ≤ CNaN

as desired.

Comparing the above result with the error bound (4.21), we see that the hybrid BAM converges
at an optimal rate.
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4.3. The Penalty/Hybrid BAM

Recall that uPHN is obtained from

IPH
(
uPHN

)
= min
v∈VN

IPH(v) (4.26)

where IPH(v) is defined by (3.17). Equivalently, we may seek uPHN ∈ VN , such that

B3

(
uPHN , v

)
= F3 (v) , ∀ v ∈ VN , (4.27)

where

B3 (u, v) =
∫

Γ∗
u
∂v

∂n
+ 2w2

∫
AB

uv − α
∫
AB

(
∂u

∂n
v + u

∂v

∂n

)
, (4.28)

F3 (v) = 2w2

∫
AB

500v − α
∫
AB

500
∂v

∂n
. (4.29)

First, let us consider how to choose the two parameters α and w above. The value of w must be
chosen in such a way that the first two integrals in (3.17) are balanced. To this end, let us, for
simplicity, restrict our consideration to a semicircular domain,

SR = {(r, θ) : 0 ≤ r ≤ R, 0 ≤ θ ≤ π} , (4.30)

with boundary
`R = {(R, θ) : 0 ≤ θ ≤ π} , (4.31)

for which the following result holds.

Lemma 4.5. Let `R be given by (4.31). Then, for any v ∈ VN ,∫
`R

v
∂v

∂n
≤ N + 1

R

∫
`R

v2, (4.32)∫
`R

(
∂v

∂n

)2

≤ N + 1
R2

∫
`R

v2. (4.33)

Proof. Since v ∈ VN , we have

v =
N∑
i=1

βir
(2i−1)/2 cos

[(
2i− 1

2

)
θ

]
(4.34)

with βi ∈ R. By direct calculation, using the orthogonality of trigonometric functions, we obtain∫
`R

v2 =
π

2

N∑
i=1

(βi)
2
R2i, (4.35)

∫
`R

v
∂v

∂n
=
π

2

N∑
i=1

(βi)
2 (2i− 1)R2i−1, (4.36)

∫
`R

(
∂v

∂n

)2

=
π

2

N∑
i=1

(βi)
2 (2i− 1)2R2i−2. (4.37)

From (4.36), we get

∫
`R

v
∂v

∂n
=
π

2

N∑
i=1

(βi)
2 (2i− 1)R2i−1 =

1
R

π

2

N∑
i=1

(βi)
2 (2i− 1)R2i ≤ N + 1

R

π

2

N∑
i=1

(βi)
2
R2i,
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which along with (4.35) gives (4.32). Similarly, from (4.37),

∫
`R

(
∂v

∂n

)2

=
π

2

N∑
i=1

(βi)
2 (2i− 1)2R2i−2

=
1
R2

π

2

N∑
i=1

(βi)
2 (2i− 1)R2i

≤ N + 1
R2

π

2

N∑
i=1

(βi)
2
R2i,

which along with (4.35) gives (4.33), and the proof is complete.

Guided by (4.32) in the above lemma, we return to our problem and choose w2 = C∗(N + 1),
where C∗ ∈ R+ will be determined shortly. Moreover, in view of (4.33), we make the following
assumption, ∃C ∈ R independent of N , such that∥∥∥∥∂v∂n

∥∥∥∥
0,AB

≤ C (N + 1) ‖v‖0,AB , ∀ v ∈ VN . (4.38)

In what follows, we will obtain error bounds for this method in the norm

‖v‖∗ =
(
|v|21,Ω + w2 ‖v‖20,AB

)1/2

=
(
|v|21,Ω + C∗ (N + 1) ‖v‖20,AB

)1/2

.

(4.39)

We have the following lemma.

Lemma 4.6. Suppose (4.38) holds. Then, for α ∈ (0, 1] there exists C∗ ∈ R independent of N ,

such that

B3 (v, v) ≥ ‖v‖2∗ , ∀ v ∈ VN , (4.40)

and

|B3 (u, v)| ≤ C ‖u‖∗ ‖v‖∗ , ∀u, v ∈ VN , (4.41)

with C ∈ R independent of N .

Proof. Note that B3(u, v) given by (4.28) may be written as

B3 (u, v) =
∫∫

Ω

∇u · ∇v + 2C∗ (N + 1)
∫
AB

uv − α
∫
AB

(
∂u

∂n
v + u

∂v

∂n

)
(4.42)

so that
B3 (v, v) =

∫∫
Ω

|∇v|2 + 2C∗ (N + 1)
∫
AB

v2 − 2α
∫
AB

∂v

∂n
v. (4.43)

Using the Cauchy-Schwartz inequality and (4.38),∫
AB

∂v

∂n
v ≤

∥∥∥∥∂v∂n
∥∥∥∥

0,AB

‖v‖0,AB ≤ C (N + 1) ‖v‖20,AB . (4.44)

Hence,

B3 (v, v) ≥
∫∫

Ω

|∇v|2 + 2 (C∗ − Cα) (N + 1) ‖v‖20,AB , (4.45)
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where C ∈ R is the constant in (4.44). Choosing C∗ ∈ R to satisfy 2 (C∗ − Cα) ≥ C∗, i.e.,

C∗ ≥ 2Cα (4.46)

gives

B3 (v, v) ≥
∫∫

Ω

|∇v|2 + C∗ (N + 1) ‖v‖20,AB = ‖v‖2∗ , (4.47)

which is precisely (4.40).
Next, we have

|B3 (u, v)| ≤
∣∣∣∣∫∫

Ω

∇u · ∇v
∣∣∣∣+ 2C∗ (N + 1)

∣∣∣∣∫
AB

uv

∣∣∣∣+ α

(∣∣∣∣∫
AB

∂u

∂n
v

∣∣∣∣+
∣∣∣∣∫
AB

u
∂v

∂n

∣∣∣∣) . (4.48)

Moreover, ∣∣∣∣∫
AB

∂u

∂n
v

∣∣∣∣ ≤ C ‖u‖1,Ω ‖v‖1,Ω ≤ C ‖u‖∗ ‖v‖∗ (4.49)

and similarly, ∣∣∣∣∫
AB

∂v

∂n
u

∣∣∣∣ ≤ C ‖u‖∗ ‖v‖∗ . (4.50)

Combining (4.48)–(4.50), we get

|B3 (u, v)| ≤
∣∣∣∣∫∫

Ω

∇u · ∇v
∣∣∣∣+ 2C∗ (N + 1)

∣∣∣∣∫
AB

uv

∣∣∣∣+ Cα ‖u‖∗ ‖v‖∗
≤ |u|1,Ω |v|1,Ω + 2C∗ (N + 1) ‖u‖0,AB ‖v‖0,AB + Cα ‖u‖∗ ‖v‖∗
≤ (1 + Cα) ‖u‖∗ ‖v‖∗ ,

from which (4.41) follows.

Using the above lemma, we obtain the following result.

Theorem 4.3. Let uPHN ∈ VN satisfy (4.27) and u ∈ H1
M be the weak solution to (3.1)–(3.4).

Assuming (4.38) holds, there exists a constant C, independent of N , such that

∥∥u− uPHN ∥∥
∗ ≤ C

{
inf
v∈VN

‖u− v‖∗ +
|1− α|√
C∗ (N + 1)

∥∥∥∥∂u∂n
∥∥∥∥

0,AB

}
. (4.51)

Proof. With u ∈ H1
∗ the weak solution to (3.1)–(3.4), we have from (4.28),(4.29),

B3(u, v) = (1− α)
∫
AB

∂u

∂n
v + F3(v), (4.52)

so that using (4.27) and (4.39),

B3(u− uPHN , v) = (1− α)
∫
AB

∂u

∂n
v

≤ |1− α|
∥∥∥∥∂u∂n

∥∥∥∥
0,AB

‖v‖0,AB

≤ C |1− α|√
C∗ (N + 1)

∥∥∥∥∂u∂n
∥∥∥∥

0,AB

‖v‖∗ .

With v ∈ VN , let δ =
(
v − uPHN

)
∈ VN . By Lemma 4.6,

‖δ‖2∗ ≤ B3(δ, δ) = B3(v − uPHN , δ) = B3(u− v, δ)− (1− α)
∫
AB

∂u

∂n
δ

≤ C
{
‖u− v‖∗ ‖δ‖∗ +

|1− α|√
C∗ (N + 1)

∥∥∥∥∂u∂n
∥∥∥∥

0,AB

‖δ‖∗

}
.
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Hence,

‖δ‖∗ ≤ C
{
‖u− v‖∗ + |1− α| |1− α|√

C∗ (N + 1)

∥∥∥∥∂u∂n
∥∥∥∥

0,AB

}
. (4.53)

Therefore, by the triangle inequality and (4.53),∥∥u− uPHN ∥∥
∗ ≤ ‖u− v‖∗ +

∥∥v − uPHN ∥∥
∗ = ‖u− v‖∗ + ‖δ‖∗

≤ ‖u− v‖∗ + C

{
‖u− v‖∗ +

|1− α|√
C∗ (N + 1)

∥∥∥∥∂u∂n
∥∥∥∥

0,AB

}
,

and the proof is complete.

Based on Theorem 4.3, we could choose the parameter α = 1 in order to raise the accuracy of
the method. In this case, we have the following theorem.

Theorem 4.4. Let the assumptions of Theorem 4.3 and (4.13),(4.14) hold, and choose α = 1.
Then, there exists a constant C independent of N , such that∥∥u− uPHN ∥∥

∗ ≤ C
√
NaN , (4.54)

with a ∈ (0, 1).

Proof. With α = 1, we have from Theorem 4.3,∥∥u− uPHN ∥∥
∗ ≤ C inf

v∈VN
‖u− v‖∗ . (4.55)

Letting u = uN + rN with uN and rN given by (4.11) and (4.12), we further have

∥∥u− uPHN ∥∥
∗ ≤ C ‖rN‖∗ = C

(
|rN |21,Ω + C∗ (N + 1) ‖rN‖20,AB

)1/2

, (4.56)

and by (4.13),

∥∥u− uPHN ∥∥
∗ ≤ C

(
|rN |21,Ω +Na2N

)1/2

≤ C
(
|rN |1,Ω +

√
NaN

)
. (4.57)

It remains to bound |rN |1,Ω in (4.57). By (4.7), (4.13), and (4.14), we have

|rN |21,Ω =
∫

Γ∗

∂v

∂n
v ≤ C

∥∥∥∥∂rN∂n
∥∥∥∥

0,AB

‖rN‖0,AB ≤ CNa2N (4.58)

so that combined with (4.57) gives the desired result.

We should point out that the parameter w2 = C∗(N + 1) includes the constant C∗ satis-
fying (4.46); in practice it turn outs that simply choosing C∗ = 1 suffices, as observed in the
numerical computations of Section 5.

4.4. The BAM with Lagrange Multipliers

When the Dirichlet condition u|AB = 500 is regarded as a constraint, the solution to the
Motz problem may be obtained by minimizing the (not positive definite) functional IL(v) given
by (3.19), or equivalently by solving the variational problem given by (3.20). While for the
implementation of the method (3.20) is used, for the analysis it is often convenient to state the
variational problem as follows. Find (u, λ) ∈ H1

M (Ω)×H−1/2(AB), such that

B(u, v) +G(u, v;λ, µ) = 0, ∀ (v, µ) ∈ H1
M (Ω)×H−1/2

(
AB
)
, (4.59)
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where

B(u, v) =
∫∫

Ω

∇v · ∇u, (4.60)

G(u, v;λ, µ) = −
∫
AB

vλ−
∫
AB

µ(u− 500). (4.61)

For the discretization, we divide AB into sections Γi, i = 1, . . . , n, such that

AB =
n⋃
i=1

Γi, hi = |Γi| , h = max
1≤i≤n

hi. (4.62)

With Pk(AB) the space of polynomials of degree ≤ k on AB, we define

Λh = {λh : λh|Γi ∈ Pk (Γi) , i = 1, . . . , n} . (4.63)

Then, the discrete version of (4.59) reads. Find (uLN , λh) ∈ VN × Λh, such that

B(uLN , v) +G(uLN , v;λh, µ) = 0, ∀ (v, µ) ∈ VN × Λh. (4.64)

The present method was first introduced in [6] and was subsequently used to efficiently solve
Laplacian problems in domains with boundary singularities (cf., [4,5]). Below, we give a brief
justification for the method, as it pertains to the Motz problem. We begin with the following
theorem from [1].

Theorem 4.5. Let (u, λ) and (uLN , λh) be the solutions to (4.59) and (4.64), respectively. Sup-

pose there exist positive constants c0, c, β, and γ, independent of N and h, such that the following

assumptions hold,

B(v, v) ≥ c0 ‖v‖21,Ω and |B(u, v)| ≤ c ‖u‖1,Ω ‖v‖1,Ω , ∀ v ∈ VN , (4.65)

∃ 0 6= vN ∈ VN , such that
∣∣∣∣∫
AB

µhvN

∣∣∣∣ ≥ β ‖µh‖−1/2,AB ‖vN‖1,Ω , ∀µh ∈ Λh, (4.66)∣∣∣∣∫
AB

λv

∣∣∣∣ ≤ γ ‖λ‖−1/2,AB ‖v‖1,Ω , ∀ vN ∈ VN . (4.67)

Then,

∥∥u− uLN∥∥1,Ω
+ ‖λ− λh‖−1/2,AB ≤ C

{
inf
v∈VN

‖u− v‖1,Ω + inf
η∈Λh

‖λ− η‖−1/2,AB

}
, (4.68)

with C ∈ R+ independent of N and h.

Proof. For a proof, see Theorem 6.1 in [1].

Let us verify that (4.67)–(4.67) hold for our problem. First, note that B(v, v) = |v|21,Ω so that,
by Poincaré’s inequality,

B(v, v) ≥ c0 ‖v‖21,Ω , ∀ v ∈ H1
M (Ω) . (4.69)

By the Cauchy-Schwartz inequality,

B(u, v) ≤ c ‖u‖1,Ω ‖v‖1,Ω , ∀u, v ∈ H1
M (Ω) , (4.70)

so that (4.69) and (4.70) give (4.65).
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To verify (4.66), consider the following auxiliary problem. Find w ∈ H1
M (Ω), such that

∆w = 0 in Ω, (4.71)
∂w

∂n
= µh on AB, (4.72)

w = 0 on OD, (4.73)
∂w

∂n
= 0 on OA ∪BC ∪ CD, (4.74)

where µh ∈ Λh in (4.72). From (4.71)–(4.72) we obtain, using Green’s formula and Poincaré’s
inequality, ∫

AB

µhw ≡
∫
AB

w
∂w

∂n
=
∫∫

Ω

w∆w +
∫∫

Ω

|∇w|2 = |w|21,Ω ≥ c0 ‖w‖
2
1,Ω , (4.75)

with c0 ∈ R+. Also,

‖µh‖−1/2,AB =
∥∥∥∥∂w∂n

∥∥∥∥
−1/2,AB

≤ C ‖w‖1,Ω , (4.76)

so that by (4.75),(4.76), ∫
AB

µhw ≥ c0 ‖w‖21,Ω ≥ β ‖w‖1,Ω ‖µh‖−1/2,AB , (4.77)

with β ∈ R+ independent of w and h. Now, let wN ∈ VN be such that w = wN + rN with
rN ∈ H1

M (Ω) the remainder (see (4.11)–(4.14)). We have∫
AB

µhwN =
∫
AB

µhw −
∫
AB

µhrN (4.78)

and also ∫
AB

µhrN ≤ ‖µh‖−1/2,AB ‖rN‖1/2,AB ≤ C1 ‖µh‖−1/2,AB ‖rN‖1,Ω , (4.79)

so that combining (4.77)–(4.79), we get∫
AB

µhwN ≥ β ‖w‖1,Ω ‖µh‖−1/2,AB − C1 ‖µh‖−1/2,AB ‖rN‖1,Ω . (4.80)

Now, using
‖w‖1,Ω = ‖wN + rN‖1,Ω ≥ ‖wN‖1,Ω − ‖rN‖1,Ω

along with (4.80), we obtain∫
AB

µhwN ≥ β
(
‖wN‖1,Ω − ‖rN‖1,Ω

)
‖µh‖−1/2,AB − C1 ‖µh‖−1/2,AB ‖rN‖1,Ω

≥ β ‖wN‖1,Ω ‖µh‖−1/2,AB − (C1 + β) ‖µh‖−1/2,AB ‖rN‖1,Ω .
(4.81)

Since, by assumptions (4.13),(4.14), wN converges to w exponentially, we have

0 <
‖rN‖1,Ω
‖wN‖1,Ω

< 1.

For N sufficiently large, we may write

‖rN‖1,Ω
‖wN‖1,Ω

≤ β

2 (C1 + β)
, (4.82)

where C1 and β are the positive constants from above. Combining (4.81) and (4.82), we have∫
AB

µhwN ≥
β

2
‖µh‖−1/2,AB ‖wN‖1,Ω ,

which gives (4.66) once we replace wN by vN and β/2 by β.
Condition (4.67) follows in a similar fashion; see, e.g., (4.79). The preceding discussion leads

to the following theorem.
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Theorem 4.6. Let (u, λ) and (uLN , λh) be the solutions to (4.59) and (4.64), respectively, and

suppose (4.13) and (4.14) hold. Then, if λ ∈ Hk+1(AB), there exists C ∈ R+ independent of N

and h, such that ∥∥u− uLN∥∥1,Ω
+ ‖λ− λh‖−1/2,AB ≤ C

{√
NaN + hk+1

}
,

where a ∈ (0, 1) and h is given by (4.62).

Proof. From Theorem 4.5, we have

∥∥u− uLN∥∥1,Ω
+ ‖λ− λh‖−1/2,AB ≤ C

{
inf
v∈VN

‖u− v‖1,Ω + inf
η∈Λh

‖λ− η‖−1/2,AB

}
. (4.83)

Now,
inf
v∈VN

‖u− v‖1,Ω ≤ ‖u− uN‖1,Ω = ‖rN‖1,Ω ,

with uN , rN given by (4.11) and (4.12), respectively. Using (4.13) and (4.14), we get

inf
v∈VN

‖u− v‖1,Ω ≤ C
√
NaN , (4.84)

with C ∈ R+ independent of N .
Next, let λI ∈ Λh be the kth-order interpolant of λ. Then, since λ ∈ Hk+1

(
AB
)
, we have

inf
η∈Λh

‖λ− η‖−1/2,AB ≤ ‖λ− λI‖−1/2,AB ≤ C ‖λ− λI‖0,AB ≤ Chk+1

which along with (4.84) gives the desired result.

Based on the above theorem, one may obtain the optimal matching between N and h, i.e., the
relationship between the number of singular functions and the number of Lagrange multipliers
used in the method, by choosing hk+1 ∼

√
NaN . This leads to the following approximate

expression for N ,

N ≈ (k + 1)
∣∣∣∣ lnhln a

∣∣∣∣ . (4.85)

5. NUMERICAL RESULTS AND DISCUSSION

In this section, new numerical results for the Motz problem (3.1)–(3.4) obtained using the
hybrid and the penalty/hybrid BAMs are presented and discussed in connection with the error
analyses of Section 4. Comparisons are also made with the results obtained with the classic BAM
of Li et al. [7] and the BAM with Lagrange multipliers of Georgiou et al. [6]. Due to the low
efficiency of the penalty BAM (see Section 4.1), no results of this method are presented.

Obtaining accurate estimates of the leading singular coefficients, ai, is the main goal of all these
special methods. Tables 1–3 list the singular coefficients a35

i , i = 1, . . . , 35, obtained using the
classic, hybrid, and penalty/hybrid BAMs, respectively (with N = 35). For comparison purposes,
we list in Table 4 the most accurate singular coefficients calculated by the BAM with Lagrange
multipliers in [6], using a much larger number of singular functions, i.e., N = 75, and 33 discrete
Lagrange multipliers, i.e., Nλ = 33. Note that, in this method, N should be much greater than Nλ
in order to obtain satisfactory convergence of the leading singular coefficients. In Table 5, we list
the numbers of the converged significant digits of the leading 19 singular coefficients for all four
methods, as calculated by Li and Lu [18], using the conformal transformation method (CTM) of
Whiteman and Papamichael [19]. We observe that the four BAMs yield very accurate estimates
of the singular coefficients. For i = 1, 2, 3, the classic BAM gives one less significant digit than
the other three BAMs, while for the higher coefficients all methods yield about the same number
of converged significant digits. The BAM with Lagrange multipliers has a slight advantage as i
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Table 1. Computed singular coefficients with the classic BAM for N = 35.

i aNi i aNi

1 0.40116245374497× 103 19 0.11534855091605× 10−4

2 0.87655920195502× 102 20 −0.52932746412879× 10−5

3 0.17237915079248× 102 21 0.22897323500171× 10−5

4 −0.80712152596499× 101 22 0.10624097261554× 10−5

5 0.14402727170434× 101 23 0.53073158247781× 10−6

6 0.33105488588606× 100 24 −0.24510085058588× 10−6

7 0.27543734452816× 100 25 0.10862672983328× 10−6

8 −0.86932994509462× 10−1 26 0.51043248247979× 10−7

9 0.33604878399124× 10−1 27 0.25407074732821× 10−7

10 0.15384374465022× 10−1 28 −0.11054833875475× 10−7

11 0.73023016452998× 10−2 29 0.49285560339473× 10−8

12 −0.31841136217467× 10−2 30 0.23304869676739× 10−8

13 0.12206458571187× 10−2 31 0.11523150093507× 10−8

14 0.53096530065606× 10−3 32 −0.34653285095421× 10−9

15 0.27151202841413× 10−3 33 0.15243365277043× 10−9

16 −0.12004506715157× 10−3 34 0.72493901550694× 10−10

17 0.50538906322972× 10−4 35 0.35291922501256× 10−10

18 0.23166270362346× 10−4

Table 2. Computed singular coefficients with the hybrid BAM for N = 35.

i aNi i aNi

1 0.401162453745250× 103 19 0.115343772789621× 10−4

2 0.876559201951038× 102 20 −0.529380676633001× 10−5

3 0.172379150794574× 102 21 0.228969115585334× 10−5

4 −0.807121525969505× 101 22 0.106202202610555× 10−5

5 0.144027271701729× 101 23 0.530229339048478× 10−6

6 0.331054885909148× 100 24 −0.245459749591207× 10−6

7 0.275437344500486× 100 25 0.108590887362510× 10−6

8 −0.869329945171928× 10−1 26 0.508138311029889× 10−7

9 0.336048783999441× 10−1 27 0.251496766940829× 10−7

10 0.153843744418389× 10−1 28 −0.111642374722729× 10−7

11 0.730230161393995× 10−2 29 0.491554865658322× 10−8

12 −0.318411372788438× 10−2 30 0.226743542107491× 10−8

13 0.122064584771336× 10−2 31 0.109000401834271× 10−8

14 0.530965184801430× 10−3 32 −0.358701765271215× 10−9

15 0.271511819668155× 10−3 33 0.150813240028775× 10−9

16 −0.120045429073067× 10−3 34 0.660571911959434× 10−10

17 0.505388854473519× 10−4 35 0.296216590328091× 10−10

18 0.231659564580221× 10−4
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Table 3. Computed singular coefficients with the penalty/hybrid BAM for N = 35.

i aNi i aNi

1 0.401162453745202× 103 19 0.1153491708827968× 10−4

2 0.876559201951031× 102 20 −0.5293654843369576× 10−5

3 0.172379150794664× 102 21 0.2290138896618886× 10−5

4 −0.807121525968356× 101 22 0.1062509190385607× 10−5

5 0.144027271701729× 101 23 0.5308058949628783× 10−6

6 0.331054885895757× 100 24 −0.2453536905374091× 10−6

7 0.275437344521521× 100 25 0.1088807854053806× 10−6

8 −0.8693299450621651× 10−1 26 0.5111717330707535× 10−7

9 0.3360487842325408× 10−1 27 0.2545239239069238× 10−7

10 0.1538437441454227× 10−1 28 −0.1112961949757686× 10−7

11 0.7302301661989898× 10−2 29 0.5001877506926354× 10−8

12 −0.3184113682966637× 10−2 30 0.2353670227283211× 10−8

13 0.1220645960584796× 10−2 31 0.1165476462446361× 10−8

14 0.5309652666820730× 10−3 32 −0.3545390456290663× 10−9

15 0.2715120554917799× 10−3 33 0.1603064746407727× 10−9

16 −0.1200453186155349× 10−3 34 0.7511467779109671× 10−10

17 0.5053921174507389× 10−4 35 0.3672896632385438× 10−10

18 0.2316630831563956× 10−4

Table 4. Computed singular coefficients with the BAM with Lagrange multipliers [6]
for N = 75 and Nλ = 33 (only the first 36 coefficients are listed).

i aNi i aNi

1 .401162453745234× 103 19 .115352825403054× 10−4

2 .876559201950877× 102 20 −.529575461575406× 10−5

3 .172379150794469× 102 21 .229103011774740× 10−5

4 −.807121525969814× 101 22 .106349634823553× 10−5

5 .144027271702291× 101 23 .531399419800137× 10−6

6 .331054885920656× 100 24 −.247423064850164× 10−6

7 .275437344509193× 100 25 .108706636458335× 10−6

8 −.869329945252286× 10−1 26 .529296106984506× 10−7

9 .336048784263123× 10−1 27 .264253479339111× 10−7

10 .153843744820525× 10−1 28 −.120550254504250× 10−7

11 .730230167439347× 10−2 29 .116026519978975× 10−8

12 −.318411391508881× 10−2 30 .622763895228202× 10−8

13 .122064610746985× 10−2 31 .332311983973516× 10−8

14 .530965479850461× 10−3 32 .554937941399033× 10−9

15 .271512187507913× 10−3 33 −.107137722721491× 10−7

16 −.120046373993572× 10−3 34 .719736757310813× 10−8

17 .505398053367447× 10−4 35 .432710661454326× 10−8

18 .231668535028465× 10−4 36 .405044840445786× 10−8
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Table 5. Numbers of converged significant digits in aNi , i = 1, . . . , 19 for four BAMs.

i
Classic Hybrid Penalty/Hybrid Lagrange multipliers

N = 35 N = 35 N = 35 N = 75, Nλ = 33

1 12 13 13 13

2 11 12 12 12

3 11 12 12 12

4 11 12 11 11

5 11 12 11 11

6 10 10 10 10

7 10 11 10 10

8 9 9 9 9

9 9 9 10 9

10 8 9 9 9

11 8 8 8 8

12 7 7 7 8

13 7 7 7 8

14 6 6 6 7

15 6 6 6 7

16 5 5 5 6

17 5 5 5 5

18 5 5 5 5

19 5 4 5 5

increases, but it should be kept in mind that the number of singular functions is much higher
(N = 75 instead of 35). Moreover, the implementation of the method is more difficult.

In addition to the convergence of the singular coefficients, we have also investigated the effect
of the number N of the singular functions on the error,

ε = u− uN ,

where u corresponds to a reference solution calculated using the extremely accurate results in [18]
and uN denotes the approximate solution, and on the condition number of the matrix associated
with the linear system arising from each method. The following error norms have been considered,

|ε|0,Ω .=
{∫∫

Ω

(u− uN )2ds

}1/2

, (5.1)

|ε|1,Ω .=
{∫∫

Ω

|∇(u− uN )|2ds
}1/2

=
∫

Γ∗

{
(u− uN )

∂(u− uN )
∂n

d`

}1/2

, (5.2)

|ε|∞,AB
.= max

AB
|ε|, (5.3)∣∣∣∣ ∂ε∂n

∣∣∣∣
∞,BC

.= max
BC

∣∣∣∣ ∂ε∂n
∣∣∣∣, (5.4)∣∣∣∣ ∂ε∂n

∣∣∣∣
∞,CD

.= max
CD

∣∣∣∣ ∂ε∂n
∣∣∣∣. (5.5)

For the computations with the penalty/hybrid BAM, we choose α = 1 and w2 = C∗(N + 1)
with C∗ = 1; (cf., (4.46) and the discussion at the end of Section 4.3). The matrix APH ∈ RN×N
of the linear system that arises from (4.27), is symmetric and positive definite (provided (4.26)
holds), and its condition number, κ, is given as the ratio of the maximum to the minimum
eigenvalue,

κ (APH) =
λmax(APH)
λmin(APH)

. (5.6)
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Table 6. Error norms and condition numbers for the classic, the hybrid, and the
penalty/hybrid BAMs for different values of N .

Classic BAM

N

∣∣∣∣ ∂ε∂n
∣∣∣∣
∞,BC

∣∣∣∣ ∂ε∂n
∣∣∣∣
∞,CD

|ε|∞,AB |ε|0,Ω |ε|1,Ω κ(F )

11 0.327× 100 0.296× 100 0.795× 10−2 0.216× 10−1 0.936× 10−1 0.106× 102

19 0.328× 10−2 0.313× 10−2 0.658× 10−4 0.288× 10−3 0.901× 10−3 0.225× 104

27 0.354× 10−4 0.366× 10−4 0.606× 10−6 0.761× 10−5 0.114× 10−4 0.431× 105

35 0.387× 10−7 0.445× 10−7 0.596× 10−8 0.248× 10−7 0.175× 10−6 0.787× 106

Hybrid BAM

N

∣∣∣∣ ∂ε∂n
∣∣∣∣
∞,BC

∣∣∣∣ ∂ε∂n
∣∣∣∣
∞,CD

|ε|∞,AB |ε|0,Ω |ε|1,Ω κ(AH)

11 0.400× 100 0.551× 100 0.397× 10−1 0.176× 10−1 0.759× 10−1 0.753× 103

19 0.524× 10−2 0.675× 10−2 0.258× 10−3 0.280× 10−3 0.844× 10−3 0.184× 106

27 0.719× 10−4 0.850× 10−4 0.222× 10−5 0.759× 10−5 0.125× 10−4 0.464× 108

35 0.883× 10−7 0.110× 10−6 0.196× 10−7 0.286× 10−7 0.210× 10−6 0.118× 1011

Penalty/Hybrid BAM

N

∣∣∣∣ ∂ε∂n
∣∣∣∣
∞,BC

∣∣∣∣ ∂ε∂n
∣∣∣∣
∞,CD

|ε|∞,AB |ε|0,Ω |ε|1,Ω κ(APH)

11 0.461× 100 0.512× 100 0.143× 10−1 0.175× 10−1 0.361× 10−1 0.104× 104

19 0.605× 10−2 0.604× 10−2 0.120× 10−3 0.281× 10−3 0.680× 10−3 0.251× 106

27 0.815× 10−4 .749× 10−4 0.123× 10−5 0.760× 10−5 0.139× 10−4 0.628× 108

35 0.101× 10−5 0.944× 10−6 0.141× 10−7 0.177× 10−7 0.302× 10−6 0.159× 1011

In the hybrid BAM, the matrix AH ∈ RN×N of the linear system arising from (4.22) is positive
definite, but not symmetric. Hence, the condition number is calculated as follows,

κ (AH) =

√
λmax

(
ATHAH

)√
λmin

(
ATHAH

) . (5.7)

As described in [7], in the classic BAM, the side AB is divided into M equally spaced pieces
of width h = 1/M . The direct collocation method is used to impose the boundary conditions
(3.2),(3.3). The condition number of the matrix F ∈ R(4M)×(N+1) of the resulting linear system
is given by (5.7), with F replacing AH . Note that since 4M À N + 1, the least squares method
is used to solve the linear system.

The variations of the error norms (5.1)–(5.5) with N , as well as the condition numbers obtained
using the classic, the hybrid, and the penalty/hybrid BAMs, are tabulated in Table 6. These
are presented graphically in Figure 2, where the exponential convergence rates established in
Section 4 are readily visible. Upon careful examination of the numbers given in Table 6, we see
that for the classic BAM, we have

|u− uN |∞,AB → 2.8× 0.55N ,

|ε|0,Ω → 5.0× 0.57N ,

|ε|1,Ω → 19.5× 0.58N ,

while for the hybrid BAM,
|u− uN |∞,AB → 3.5× 0.55N ,

|ε|0,Ω → 4.9× 0.57N ,

|ε|1,Ω → 3.5× 0.59N ,
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(a)

(b)

Figure 2. Convergence and variation of the condition numbers with N when using the
hybrid, the penalty/hybrid, and the classic BAMs. The error estimates are defined
by (5.1)–(5.5).
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(c)

(d)

Figure 2. (cont.)
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(e)

(f)

Figure 2. (cont.)
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and for for the penalty/hybrid BAM,

|u− uN |∞,AB → 6.7× 0.54N ,

|ε|0,Ω → 5.8× 0.56N ,

|ε|1,Ω → 5.1× 0.61N .

It appears that the classic BAM slightly outperforms the other two, when the errors (5.1)–(5.5)
are of interest.

As for the condition numbers, we have

κ(F )→ 0.09× 1.60N ,

κ(AH)→ 0.7× 1.99N ,

κ(APH)→ 1.1× 1.99N .

Therefore, the condition number for the classic BAM grows at a significantly slower rate than
those of the other two BAMs, which is also evident in Figure 2. Hence, in terms of numerical
stability, the classic BAM is to be preferred.

In summary, when compared to the classic BAM, the hybrid and the penalty/hybrid BAMs
may yield slightly more accurate estimates for the singular coefficients, but their performance is
slightly worse in terms of the error norms (5.1)–(5.5), due to the ill-conditioning of the matrices
associated with the corresponding linear systems.

Finally, we wish to make a short remark on the choice N = 35 in our numerical experiments.
Take, for example, the hybrid BAM for which we have |ε|1,Ω ≈ (|ε|20,Ω + |ε|21,Ω)1/2 = 0.211× 10−6

(see Table 6). Since the true solution satisfies |u|1,Ω = O(102), the relative errors in the H1 norm
reach O(10−9), whereas the condition number reaches O(1010)! It is clear that 16-decimal-digit
accuracy allowed by the double-precision arithmetic is reached when N = 35. For N > 35, the
increasing condition number causes a loss of accuracy.
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