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The singular function boundary integral method for 3-D Laplacian problems
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a b s t r a c t

Three-dimensional Laplace problems with a boundary straight-edge singularity caused by
two intersecting flat planes are considered. The solution in the neighbourhood of the
straight edge can be expressed as an asymptotic expansion involving the eigenpairs of
the analogous two-dimensional problem in polar coordinates, which have as coefficients
the so-called edge flux intensity functions (EFIFs). The EFIFs are functions of the axial coor-
dinate, the higher derivatives of which appear in an inner infinite series in the expansion.
The objective of this work is to extend the singular function boundary integral method
(SFBIM), developed for two-dimensional elliptic problems with point boundary singulari-
ties [G.C. Georgiou, L. Olson, G. Smyrlis, A singular function boundary integral method
for the Laplace equation, Commun. Numer. Methods Eng. 12 (1996) 127–134] for solving
the above problem and directly extracting the EFIFs. Approximating the latter by either
piecewise constant or linear polynomials eliminates the inner infinite series in the local
expansion and allows the straightforward extension of the SFBIM. As in the case of two-
dimensional problems, the solution is approximated by the leading terms of the local
asymptotic solution expansion. These terms are also used to weight the governing har-
monic equation in the Galerkin sense. The resulting discretized equations are reduced to
boundary integrals by means of the divergence theorem. The Dirichlet boundary conditions
are then weakly enforced by means of Lagrange multipliers. The values of the latter are
calculated together with the coefficients of the EFIFs. The SFBIM is applied to a test problem
exhibiting fast convergence of order k + 1 (k being the order of the approximation of the
EFIFs) in the L2-norm and leading to accurate estimates for the EFIFs.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The solutions of elliptic equations, such as the Laplace and the biharmonic equations, in two-dimensional domains exhibit
singularities at boundary corners and/or at boundary points where there is an abrupt change in the boundary condition. Such
problems are of interest in many engineering fields, such as fracture and fluid mechanics. They have also attracted the atten-
tion of numerical analysts, since boundary singularities limit the regularity of solutions, even if the data are very smooth,
leading to convergence difficulties to Galerkin and other standard numerical methods and thus causing inaccuracies in
the numerical solutions. The latter are not always local and may propagate to the rest of the problem domain.

In the past few decades, several methods for treating elliptic boundary value problems with boundary singularities have
been proposed. Among them one finds the so-called hybrid methods which incorporate, directly or indirectly, the form of the
local asymptotic expansion for the solution in the approximation scheme. Knowledge of the leading singular coefficients of
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the local solution expansion, which in two-dimensional problems are also known as generalized stress intensity factors
(SIFs) [30] or flux intensity factors [1], is of great importance in many applications, especially in fracture mechanics.

Many methods have been proposed in the literature for the effective and efficient approximation of singular coefficients,
by postprocessing the numerical solution including high-order p=hp finite element methods [30,28] and special adaptive grid
refinement schemes and multigrid algorithms [4,5]. The solution is first approximated on a refined grid designed especially
to capture the singularity and the coefficients are obtained by an extraction formula which uses the computed solution.
Methods that do not require any postprocessing and/or include information about the exact solution in the approximation
scheme, such as Trefftz methods [20], are more attractive when the approximation of the coefficients is the main objective.

In Trefftz methods, which are also known as Boundary Approximation Methods (BAMs), the solution over the entire prob-
lem domain is approximated as a linear combination of certain particular solutions of the governing equation. As a result,
only the boundary conditions need to be imposed in order to extract directly the unknown coefficients in the linear combi-
nation. Trefftz methods have been recently reviewed by Li and co-workers [20] who have also made comparisons with col-
location and other boundary methods. Other recent reviews of methods used for solving elliptic boundary value problems
with boundary singularities can be found in the articles of Bernal and Kindelan [3] who considered both global and local
meshless collocation methods with multiquadrics as basis functions, and of Dosiyev and Buranay [12] who employed the
block method for solving Laplace problems on arbitrary polygons.

The singular function boundary integral method (SFBIM), developed by Georgiou et al. [17,13–16,7,8] for two-dimen-
sional Laplacian and biharmonic problems with a boundary singularity is a Trefftz method, the basic feature of which is that
the solution is approximated by the leading terms of the asymptotic expansion around the singular point. These singular
functions are also used to discretize the governing elliptic equation in the Galerkin sense. The discretized equations are then
reduced to boundary integrals by means of Green’s theorem. A second feature of the SFBIM is that Dirichlet conditions are
weakly enforced by means of Lagrange multipliers. It has been demonstrated both numerically [7] and theoretically [31] that
for two-dimensional Laplacian problems, the SFBIM converges exponentially as the number of singular functions used in the
approximation of the solution is increased. The method (and its convergence proof) has also been extended to biharmonic
problems in two-dimensions arising from solid and fluid mechanics [8,14].

The main advantages of the SFBIM are: (a) the dimension of the problem is reduced by one, leading to considerable compu-
tational savings, and (b) the singular coefficients are calculated directly, hence avoiding the need for post-processing (and extra
computational cost). However, formulating the SFBIM requires the knowledge of the singular function representation and this
limits the range of applicability of the method. On the other hand, it is clear that in problems where calculation of SIFs is desired,
the knowledge of the local solution is a prerequisite for their definition. Moreover, the problem domain must be a subset of the
convergence domain of the local solution expansion. Otherwise, the method may be applied locally using another standard
numerical method in the rest of the domain with appropriate conditions at the interface of the two subdomains (see, e.g. [26]).

Singularities in three-dimensional Laplacian problems have received less attention in the literature, mainly due to their
complexity. Different forms of singularities may appear depending on the boundary geometry and conditions. In applica-
tions, both edge [23,36] and vertex [18,29,21] singularities are of interest. Of course, there are also other types of singular-
ities. For example, Kozlov et al. [19] studied singularities near cusp tips of peak-shaped domains and Nazarov et al. [22]
considered cuspidal edges and rotational cusps. Two very recents books by Costabel et al. [11] and Yosibash [35] contained
unified analyses of singularities in two- and three-dimensional linear elliptic systems.

Yosibash et al. [32] studied the case of edge singularities; they presented the solution to the Laplace operator in three-
dimensional domains in the vicinity of straight edges in the form of an asymptotic expansion involving eigenpairs and hav-
ing as coefficients the so-called edge flux intensity functions (EFIFs). It turns out that the eigenpairs are those of the two-
dimensional problem over a plane perpendicular to the edge. Edge singularities appear, for example, in V-notched solids
loaded by static loads, in which the assumption of plane stress or plane strain condition is not valid. For the solution of such
problems, few methods have been proposed, such as the methods of Costabel et al. [10] and Yosibash et al. [32] in which the
EFIFs are computed by post-processing the solution obtained with a p-version finite element scheme. Edge singularities also
appear in electrical conductors in micro-electromechanical systems (MEMS) [25].

Vertex singularities appear in electromagnetic fields, in magnetic recording, heat transfer, elasticity, fluid mechanics, as
well as in multimaterial problems [36]. Among the earliest analyses of Laplacian solutions in the neighbourhood of a vertex
are those of Stephan and Whiteman [29] and Beagles and Whiteman [2] who used finite elements for the computation of the
eigenvalues; see also [27] for an approach using the boundary element method. Recently, Zaltzman and Yosibash [36] de-
rived explicit analytical expressions for the local solution of the Laplace equation in the neighbourhood of a vertex. They also
considered vertices at the intersection of a crack front and a free surface and provided numerical estimates of the eigenpairs
obtained by extending a modified Steklov method.

The objective of the present work is to extend the SFBIM to 3-D Laplacian problems with a boundary straight-edge sin-
gularity and calculate the EFIFs directly. These are approximated locally by low-degree polynomials, the coefficients of which
are primary unknowns of the method. To our knowledge, the only methods found in the literature for the calculation of the
EFIFs are based on post-processing the numerical solution and/or using extraction formulae [24,32–34].

The rest of the paper is organized as follows: in Section 2 we present a 3-D Laplacian problem with an edge singularity and
its asymptotic local solution expansion. In Section 3 the three-dimensional version of the SFBIM is formulated. Numerical re-
sults on a model problem are presented and discussed in Section 4. Finally, our conclusions are summarized in Section 5.
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2. A three dimensional problem with a straight edge singularity

To demonstrate the analogy with the two-dimensional case, we first consider the Laplace equation over a circular sector,
as shown in Fig. 1. A boundary singularity arises at the origin O, which is due not only to the presence of a corner in the
boundary, but also to the fact that the boundary conditions along boundaries S1 and S2 are different: u ¼ 0 along h ¼ 0
and @u=@h ¼ 0 along h ¼ ap, where 0 < a < 2. The local solution in polar coordinates r; hð Þ, centered at the singular point
O, is of the general form

u2D r; hð Þ ¼
X1
j¼1

ajrlj fj hð Þ; ð1Þ

where lj and fj are, respectively, the eigenvalues and eigenfunctions of the problem with ljþ1 > lj, and aj are the constant

singular coefficients which are unknown. The eigensolution lj; fj

� �
is uniquely determined by the geometry and boundary

conditions along the boundary parts S1 and S2 sharing the singular point:

lj ¼
2j� 1

2a
ð2Þ

and

fjðhÞ ¼ sin ljh
� �

: ð3Þ

The unknown singular coefficients aj are determined by the boundary conditions in the remaining parts of the boundary. As
already mentioned, these coefficients are called generalized stress intensity factors [30] and, in many applications, are the
main unknowns.

Let us now move to the three-dimensional space using cylindrical coordinates ðr; h; zÞ. We consider a Laplacian problem in
the three-dimensional domain X ¼ 0;1½ � � 0;ap½ � � �1;1½ �, as shown in Fig. 2:

Fig. 1. A two-dimensional Laplacian problem with a boundary singularity at point O.

Fig. 2. A model three-dimensional domain X ¼ ½0;1� � ½0;ap� � ½�1;1� with a straight edge AB.
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r2u ¼ 0 in X; ð4Þ

with
u ¼ 0 on S1
@u
@h ¼ 0 on S2

u ¼ gðr; h; zÞ on S3
@u
@z ¼ q1 r; hð Þ on S4
@u
@z ¼ q2 r; hð Þ on S5

9>>>>>>=
>>>>>>;
; ð5Þ

where @X ¼
S5
i¼1

Si. S1 and S2 are quadrilateral surfaces intersecting at a straight edge AB; S3 is a cylindrical surface of unit ra-

dius, and S4 and S5 are unit-circular sectors of angle ap.
As pointed out by Yosibash et al. [32], once the eigen-pairs for the 2-D Laplacian problem are obtained, the full series

expansion solution for the 3-D Laplacian operator in the vicinity of straight edges may be constructed. The solution can
be decomposed as follows:

uðr; h; zÞ ¼
XJ

j¼1

XL

‘¼1

aj‘ðzÞrlj ln rð Þ‘fj‘ðhÞ þ vðr; h; zÞ; ð6Þ

where the exponents lj are identical to the eigenvalues of the 2-D problem given by Eq. (2) and are now called edge eigen-
values, aj‘ are the edge flux intensity functions (EFIFs) which are analytic in z up to the vertices, fj‘ are the edge eigenfunc-
tions which are analytic in h, and v is a sufficiently smooth function. L P 0 is an integer which is zero except when lj is an
integer. In the present work it is assumed that lj; j 6 J are not integers. Therefore, (6) is reduced to

uðr; h; zÞ ¼
XJ

j¼1

ajðzÞrlj fjðhÞ þ vðr; h; zÞ; ð7Þ

where fjðhÞ are the eigenfunctions of the 2-D problem given by Eq. (3). As demonstrated in [32], good choices for the function
v so that u satisfies identically the 3-D Laplace equation are

v jðr; h; zÞ ¼ rlj fjðhÞ
X1

i¼1

d2i

dz2i
ajðzÞ
� � r2i �1=4ð ÞiQi

n¼1n lj þ n
� � ; j ¼ 1;2; . . . ; J: ð8Þ

Thus, the solution (7) takes the form

uðr; h; zÞ ¼
XJ

j¼1

ajðzÞrlj fjðhÞ þ
XJ

j¼1

v jðr; h; zÞ

or

uðr; h; zÞ ¼
XJ

j¼1

rlj fjðhÞ ajðzÞ þ
X1

i¼1

d2i

dz2i
ajðzÞ
� � r2i �1=4ð ÞiQi

n¼1n lj þ n
� �

8<
:

9=
;: ð9Þ

The calculation of the EFIFs ajðzÞ; j ¼ 1;2; . . . ; J is the main objective of the present work.

3. Formulation of the SFBIM

The basic assumption for the development of the SFBIM for 3-D Laplacian problems with edge singularities is the use of
piecewise low-degree (k = 0 or 1) polynomial approximations for the EFIFs by partitioning the interval ½�1;1� into M subin-
tervals and writing

ajðzÞ ¼
XM/

m¼1

ajm/mðzÞ; j ¼ 1;2; . . . ;N; ð10Þ

where ajm are unknown coefficients, /mðzÞ are (piecewise polynomial) basis functions, and M/ is the number of basis func-
tions (e.g. M/ ¼ M for constant, M/ ¼ M þ 1 for linear basis functions, etc.). Thus, the inner sum in Eq. (9) is eliminated and
the solution can be approximated as follows:

uðr; h; zÞ ¼
XN

j¼1

ajðzÞrlj fjðhÞ; ð11Þ
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or

uðr; h; zÞ ¼
XN

j¼1

XM/

m¼1

ajmWm
j ðr; h; zÞ; ð12Þ

where

Wm
j ðr; h; zÞ ¼ rlj fjðhÞ/mðzÞ; j ¼ 1;2; . . . ;N; m ¼ 1;2; . . . ;M/: ð13Þ

It is worthy to note that the functions Wm
j satisfy identically the governing equation and the boundary conditions on bound-

aries S1 and S2 sharing the edge AB. In order to calculate the Na ¼ NM/ unknown coefficients ajm, we discretize the problem
by weighting the governing equation over X by means of the functions Wm

j . Applying Green’s theorem (twice) one gets:ZZ
S3[S4[S5

@u
@n

Wm
j �

@Wm
j

@n
u

 !
dS ¼ 0; j ¼ 1;2; . . . ;N; m ¼ 1;2; . . . ;M/: ð14Þ

The Neumann conditions on boundaries S4 and S5 are weakly imposed by simply substituting the functions q1 and q2, respec-
tively. The Dirichlet boundary condition on S3 is imposed by means of a Lagrange multiplier function kðh; zÞ which replaces
the normal derivative of the solution. In this work, k is approximated by means of locally polynomial (depending on the
choice for /m) basis functions Wi:

kðh; zÞ ¼ @u
@r

����
r¼1
¼
XNk

i¼1

kiWiðh; zÞ; ð15Þ

where ki; i ¼ 1;2; . . . ;Nk are the unknown discrete Lagrange multipliers. To define the basis functions Wi, the two-dimensional
domain ½0;ap� � ½�1;1� is partitioned into Nh �M/ elements, which means that Nk ¼ M/Nh or M/ðNh þ 1Þ for, respectively,
constant or bilinear Lagrange multipliers. The additional required equations are obtained by weighting the Dirichlet condition
u ¼ gðh; zÞ on S3 by means of the basis functions Wi. The following linear system of Na þ Nk discretized equations is obtained:ZZ

S3

kWm
j � u

@Wm
j

@r

 !
dSþ

ZZ
S4

u
@Wm

j

@z
dS�

ZZ
S5

u
@Wm

j

@z
dS ¼

ZZ
S4

q1Wm
j dS�

ZZ
S4

q1Wk
j dS

for j ¼ 1;2; . . . ;N; m ¼ 1;2; . . . ;M/ ð16Þ

and ZZ
S3

uWidS ¼
ZZ

S3

gWidS; i ¼ 1;2; . . . ;Nk: ð17Þ

Eqs. (16) and (17) involve only two-dimensional integrals, which implies that the dimension of the problem has been re-
duced by one. This is an important advantage of the method, since the required computational cost is reduced dramatically.
Moreover, it should be noted that the contributions over boundary parts S1 and S2, i.e. the two boundary parts that cause the
edge singularity, are identically zero. The contributions over boundary parts S4 and S5 are also zero when the basis functions
/m are constant (k = 0). The system of Eqs. (16) and (17) can be written in block form as follows:

K L
LT O

� �
A
K

� �
¼

B
C

� �
; ð18Þ

where A is the vector of the unknown coefficients ajm of the EFIFs and K is the vector of the unknown discrete Lagrange coef-
ficients. It is easily observed that the stiffness matrix is symmetric and becomes singular if the number of Lagrange multi-
pliers, Nk, is greater than the number of the unknown coefficients, Na < Nk, or, equivalently, when N < Nh for constant /k and
N < Nh þ 1 for linear /k. In order to assure that the stiffness matrix is non-singular, in all the numerical results of this work
we have chosen Nh ¼minfM;N � 2;20g.

4. Numerical results

Following Yosibash et al. [32], we construct test problems having analytical solutions of the form:

usðr; h; zÞ ¼
XJ

i¼1

ai1 þ ai2zþ ai3z2
� �

rli sin lih
� �

� ai3

2 li þ 1
� � rliþ2 sin lih

� �" #
; ð19Þ

where aij; i ¼ 1; . . . ; J; j ¼ 1;2;3 are specified as desired. Any solution of the form (19) satisfies the 3D Laplace equation as
well as the boundary conditions along S1 and S2. Once the solution us is specified, it is straightforward to find the functions
g; q1 and q2 that appear in Eq. (5):
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gðh; zÞ ¼ u 1; h; zð Þ ¼
XJ

i¼1

ai1 �
ai3

2 li þ 1
� �þ ai2zþ ai3z2

 !
sin lih
� �

; ð20Þ

q1ðr; hÞ ¼
@us

@z
ðr; h;�1Þ ¼

XJ

i¼1

ai2 � 2ai3ð Þrli sin lih
� �

; ð21Þ

q2ðr; hÞ ¼
@us

@z
ðr; h;1Þ ¼

XJ

i¼1

ai2 þ 2ai3ð Þrli sin lih
� �

: ð22Þ

In what follows we investigate the implementation of the above method for a ¼ 3p=4. The eigenvalues and eigenfunctions in
this case are:

lj ¼
2ð2j� 1Þ

3
; f jðhÞ ¼ sin ljh

� �
¼ sin

2ð2j� 1Þ
3

h

� �
: ð23Þ

For the model test problem we consider here we take J ¼ 100 with

ai1 ¼
1

i4 ; ai2 ¼
2

i4 þ i2 ; ai3 ¼
3

i4 ; i ¼ 1; . . . ; J: ð24Þ

Due to the form of the essential boundary condition (20), the SFBIM calculates directly the EFIFs, which are given by

aiðzÞ ¼ ai1 �
ai3

2 li þ 1
� �þ ai2zþ ai3z2: ð25Þ
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Fig. 3. The approximate first EFIF, a1ðzÞ, calculated with N = 15 and M = 10 compared to the exact solution.
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Fig. 4. The approximate fifth EFIF, a5ðzÞ, calculated with N = 15 and M = 10 compared to the exact solution.
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Figs. 3 and 4 show the exact and computed a1ðzÞ and a5ðzÞ, respectively, obtained with M ¼ 10; N ¼ 20 using linear basis
functions (k = 1). Other combinations of these parameters gave similar results, with higher values of M or N yielding better
results, as expected. Analogous results have also been obtained using constant basis functions instead (k = 0). Fig. 5 compares
the convergence in the approximations of a1 and a5 for M = 20 when constant and linear basis functions are used. The errors
plotted are relative, i.e.,

ei ¼
ai � aik k2

aik k2
;

where

fk k2 ¼
Z 1

�1
f 2ðzÞdz

� �1=2

:

100 101 10210−4

10−3

10−2

10−1

100

101

N

ε i

ε1, constant

ε5, constant

ε1, linear

ε5, linear

Fig. 5. The errors �1 and �5 for both constant and linear basis functions when M = 20.
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Fig. 6. Convergence of a1ðzÞ; a2ðzÞ and a5ðzÞ with M when N = 40.
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Fig. 7. The error �1ðzÞ in the first EFIF when constant and linear basis functions are used; N = 70.
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Of course, convergence with the linear elements is faster. However, the accuracy of the solution is limited by the type and
number M of the elements employed in the approximation of the EFIFs. Hence, beyond a certain value, accuracy cannot be
improved any further by increasing N.

Fig. 6 shows the convergence in the approximation of ai; i ¼ 1;2;5, when N ¼ 15 and the number of linear elements M
varies. As expected, the convergence is of order 2, as M !1, since we are using piecewise linear functions and measuring
the error in the L2-norm. It is well known from interpolation theory that if piecewise polynomials of degree k are used as
basis functions then the error in the L2 norm is of order kþ 1 [6]. This is readily verified in Fig. 7 where we compare the errors
in the first EFIF for N = 70 when constant (k = 0) and linear (k = 1) basis functions are employed; the slopes of the two curves
are respectively 1 and 2.

5. Conclusions

We have extended the SFBIM to three-dimensional Laplacian problems with a boundary straight-edge singularity. The
EFIFs are approximated locally by low degree polynomials of degree k = 0, 1 and the corresponding coefficients are primary
unknowns along with the discrete Lagrange multipliers, which are employed in enforcing the Dirichlet boundary conditions.
The method has been applied to a model Laplacian problem yielding accurate results for the EFIFs which converge with order
k + 1 in the L2-norm. In other words, in three dimensions exponential convergence is not feasible, since the convergence rate
is limited by the lower-order approximation of the EFIFs in the z-coordinate.

Our current research efforts focus on the application of the method to more realistic 3-D Laplacian problems, like those
considered by Omer et al. [24], the theoretical convergence analysis of the method, and possible extensions to problems with
vertex singularities similar to those considered by Zaltzman and Yosibash [36]. Another direction for future work is the
extension of the method to three-dimensional elasticity problems with edges. Costabel et al. [9] presented a method to com-
pute the singularity exponents and the associated singular functions, the knowledge of which is a prerequisite of the SFBIM,
in the case of piecewise homogeneous media near three-dimensional edges.
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