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Abstract We consider the time-de-
pendent shear flow of an Oldroyd-B
fluid with slip along the fixed wall.
Slip is allowed by means of a gen-
eric slip equation predicting that the
shear stress is a non-monotonic
function of the velocity at the wall.
The complete one-dimensional sta-
bility analysis to one-dimensional
disturbances is carried out and the
corresponding neutral stability dia-
grams are constructed. Asymptotic
results for large values of the
elasticity number and finite element
calculations are also presented. The
instability regimes are within or

coincide with the negative-slope
regime of the slip equation. The
numerical calculations agree with
the linear stability results when the
size of the initial perturbation is
small. Large perturbations may de-
stabilize a linearly stable steady
state, leading to a periodic solution.
The period and the amplitude of the
periodic solutions increase with
elasticity.
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Introduction

In a recent paper, Georgiou (1996) numerically solved
the time-dependent shear flow of an Oldroyd-B fluid
with non-linear slip along the fixed wall, demonstrating
that the combination of non-linear slip and viscoelastic-
ity results in periodic solutions. This mechanism of in-
stability may be used to explain some of the instabil-
ities observed during the extrusion of polymer melts.
Other mechanisms of instability have been proposed in
the literature, in the past few years (Larson, 1992).
Among them, the combination of slip and compressibil-
ity (Pearson, 1985; Hatzikiriakos and Dealy, 1992a,b;
Georgiou and Crochet, 1994a,b) and constitutive in-
stabilities (Malkus et al., 1991; Larson, 1992) are the
most popular. The latter mechanism is restricted to con-
stitutive models that predict a non-monotonic shear
stress-shear rate relationship in steady shear flow.

The Oldroyd-B model exhibits a monotonic steady-
shear response in the absence of slip and, therefore, the

mechanism proposed in Georgiou (1996) is different
from the constitutive instability mechanism that is
based on the multi-valuedness of the stress constitutive
equation (Malkus et al., 1991 and references therein).
The instabilities are caused by the multi-valuedness of
the slip equation, instead, and elasticity just provides
the means to sustain the oscillations by storing and
releasing elastic energy.

In Georgiou (1996), the stability of the steady-state
solutions of the problem under study was investigated
by means of a simple one-dimensional linear stability
analysis and by finite element calculations. Certain con-
straints on the material parameters were imposed so as
to avoid the existence of multiple steady-state solutions.
It was found that the instability regimes are always
within or coincide with the negative-slope regime of the
slip equation. Both the linear stability analysis and the
numerical calculations showed that the Newtonian solu-
tions are everywhere stable and that the interval of in-
stability grows as one moves from the Newtonian to the
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upper-convected Maxwell model. Perturbing an unstable
steady-state solution leads to periodic solutions, the am-
plitude and the period of which increase with elasticity.
However, the numerical instability regimes were much
broader than those predicted by the simple linear stabili-
ty analysis. This is explained by the fact that, in solving
the resulting eigenvalue problem, it was assumed that
the eigenvalues were real. In the present work, we relax
this assumption and obtain improved linear stability dia-
grams. The finite element calculations agree with the
predictions of the present analysis when the size of the
initial perturbation is small.

The governing equations and the boundary conditions
for the time-dependent shear flow of an Oldroyd-B fluid
with slip along the fixed wall are presented in the second
section. The steady-state solutions are also given there. In
the third and fourth sections, the linear stability analysis
to one-dimensional disturbances is carried out and neu-
tral stability curves are constructed for various values of
the material parameters. In the fifth section, the asympto-
tic results for large values of the elasticity number are
obtained. The linear stability results are compared with
numerical calculations in the final section.

Governing equations

We consider the time-dependent shear flow of an
Oldroyd-B fluid. The geometry and the boundary condi-
tions of the flow are illustrated in Fig. 1. The two
plates are separated by a distanceH. The flow is as-
sumed to be one-dimensional and, hence, only thex-
componentvx of the velocity vectorv is not zero. The
extra stress tensorT and the velocity componentvx are
functions of they coordinate and the timet: T�T (y, t)
and vx � vx �y; t�. The lower plate moves with a con-

stant speedV1. It is assumed that no slip occurs along
this wall and thus

vx �0; t� � V1 : �1�
Along the upper plate, which is fixed, it is assumed that
slip occurs according to the following generic slip equa-
tion:

rw � ÿF �vw� at y � H ; �2�
whererw is the shear stress andvw is the slip velocity
of the fluid at the upper wall.

In the case of the Oldroyd-B model, the extra stress
tensor is decomposed as follows (Crochet et al., 1984):

T � T1 � g2 ��rv� � �rv�T � ; �3�
whereT1 is the viscoelastic part, the second term in the
RHS of Eq. (3) is the purely viscous part of the extra
stress tensorT, g2 is a material parameter and the super-
script T denotes the transpose. The tensorT1 is defined
by

T1 � k

�
@ T1
@ t
� v � rT1 ÿ �rv�T � T1 ÿ T1 � �rv�

�
� g1 ��rv� � �rv�T � ; �4�

whereg1 and k are material parameters. The shear vis-
cosity is given byg1+g2. The Newtonian and the upper-
convected Maxwell models are recovered by settingg2
equal to 1 and 0, respectively.

Scaling the lengths byH, the velocity by a character-
istic velocity V, the stress components by (g1+g2)V/H,
and the time byH/V, leads to two dimensionless num-
bers, the Reynolds number

Re � qVH

g1 � g2
; �5�

whereq is the density, and the Weissenberg number

We � kV

H
: �6�

For the one-dimensional flow problem studied here, the
x-component of the momentum equation and thexy-
and xx-components of the constitutive Eq. (4) are writ-
ten as follows:

Re
@ vx
@ t
� @ T

xy
1

@ y
� g2

@2 vx
@ y2

; �7�

Txy1 �We
@ Txy1
@ t
� g1

@ vx
@ y

; �8�

Txx1 �We
�
@ Txx1
@ t
ÿ 2 @ vx

@ y
Txy1

�
� 0 : �9�

As pointed out in Georgiou (1996), Eq. (9) forTxx1 is
not coupled with Eqs. (7) and (8) and theyy stress
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Fig. 1 Boundary conditions for the time-dependent shear flow with
slip at the fixed wall



componentTyy1 is zero and remains so at all times pro-
vided the problem remains one dimensional. All the
variables in the above three equations are dimension-
less, includingg1 and g2 which are scaled by the shear
viscosity (the dimensionless shear viscosityg1 + g2 is
equal to unity).

The steady-state solution is easily obtained. The ve-
locity vx varies linearly withy and the shear stress is
constant:

vx � V1 � �vw ÿ V1� y ; �10�
and

Txy � vw ÿ V1 ; �11�
where the slip velocityvw satisfies the condition:

vw ÿ V1 � ÿF �vw� : �12�
Demanding that the velocityV1 � vw � F �vw� is a
monotonic function of vw or, equivalently, that the
steady-state solution for a given value ofV1 is unique,
leads to the following constraint for the slip functionF:

F 0 �vw� � dF �vw�
dvw

> ÿ1 : �13�

Linear stability analysis

In this section, the stability of the steady-state solutions
to one-dimensional infinitestimal disturbances is studied
by means of a linear stability analysis. Let��vx; �Txy1 � be
a steady-state solution given by Eqs. (10) and (11), and
�v̂x �y� ejt; T̂xy1 ejt� be a small one-dimensional pertur-
bation. The sign of the real part ofj determines
whether the perturbation will grow or decay over a
finite period of time. From the time-dependent govern-
ing Eqs. (7) and (8), one obtains:

Re jv̂x � dT̂
xy
1

dy
� g2

d2 v̂x
dy2

�14�

and

T̂xy1 �
g1

1�We j
dv̂x
dy

: �15�

Combining the above two equations leads to the follow-
ing ordinary differential equation:

d2 v̂x
dy2
ÿ Re j �1�We j�

1� g2 We j
v̂x � 0 : �16�

The corresponding linearized boundary conditions are:

v̂x � 0 ; at y � 0 �17�

�
1� g2 We j

1�We j
�
dv̂x
dy
� ÿF 0 ��vw� v̂x ; at y � 1:

(18)

Equations (16)–(18) constitute an eigenvalue problem
for the eigenvaluej which might be complex, because
the problem is not self-adjoint. The general solution of
Eq. (16) is the sum of terms of the following form:

v̂x �y� � C1 sin �my� � C2 cos �my� ; �19�
where the constantsC1 and C2 and the parameterm
might be complex. The constantC2 is zero due to the
boundary condition aty=0. Imposing the other bound-
ary condition aty=1 leads to the characteristic equation

Re j
cot m

m
� F 0 ��vw� �20�

wherej andm are related through the expression

m2 � ÿRe j �1�We j�
1� g2 We j

: �21�

The system of Eqs. (20) and (21) represents the desired
eigenvalue relation. For given values of the parameters
(We; Re; g2), one can calculate the values ofj and m
by solving the above system.

The next step is to determine the loci of points such
that Real (j)=0, i.e. the curves of neutral stability. The
critical relationship between the parameters that yields
the curve of neutral stability is determined by assuming
that j is imaginary, i.e.j � i ji. Equations (20) and
(21) then become

i Rej
cot m

m
� F 0 ��vw� ; �22�

m2 � ÿ i Rej �1� iERek�
1� i g2 ERek

; �23�

where

Rek � Re ji ; �24�
Wek �We ji ; �25�

andE is the elasticity number given by

E�We
Re
�Wek
Rek

: �26�
Let nowmr andmi be the real and imaginary parts of
m, respectively. After substituting into Eqs. (20) and
(21) and equating real and imaginary parts, one obtains
the following system of four equations in six real vari-
ables:

m2r ÿm2i �
ERe2k �1ÿ g2�
1� g22 E

2 Re2k
; �27�
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2mr mi � ÿRek �1� g2 E
2 Re2k�

�1ÿ g22 E
2 Re2k�

; �28�

mi sinh �2mi� ÿmr sin �2mr� � 0 ; �29�
Rek sin �2mr� � F 0 ��vw�mi �cos �2mr�

ÿ cosh �2mi�� � 0 : �30�
To construct the neutral stability curves, we solved the
system of Eqs. (27)–(30) using AUTO, a numerical
software for continuation and bifurcation in algebraic
systems and ordinary differential equations (Doedel et
al., 1994). For a given value ofg2, we have chosen the
elasticity numberE as the continuation parameter. We
first solved the system at a high value ofE, i.e.E=100,
using the Newton-Raphson method and then traced the
solution branch for smaller values ofE. The neutral sta-
bility curves for various values ofg2 are plotted in Fig.
2. Our calculations verified thatjr changes sign across
the curves of Fig. 2, hence these are marginal stability
curves (Drazin and Reid, 1985) separating stable from
unstable solutions. Steady-state solutions above such a
curve are linearly unstable. Furthermore, on the calcu-
lated neutral stability curves the imaginary partji of j
is non-zero, which suggests that the time-dependent so-
lution is oscillatory. This is confirmed by the numerical
calculations discussed below. It should be emphasized
that a small disturbance of a basic solution excites all
the modes, whereas the marginal stability curves deter-
mine the stability of a single mode. Numerical calcula-
tions for the system of Eqs. (27)–(30) and the asymptot-
ic analysis results of the next section verify that this
single mode is the most dangerous.
As illustrated in Fig. 2, for a giveng2, the stability of a
basic solution is determined from the values ofF 0 ��vw�
and E. If F 0 ��vw� > 0, the solution is stable indepen-
dently of the value of the elasticity numberE. If
F 0 ��vw� < 0, the solution is unstable if

ÿ1 < ÿF 0 ��vw� < Scrit < 0 ;

where Scrit is an increasing function ofE. Note that
F 0 ��vw� cannot be less than –1 due to our assumption
that V1 is a monotonic function ofvw in steady state.
As noted in Georgiou (1996), increasing the value ofg2
reduces the size of the instability regime. Moreover, the
Newtonian flow (E=0 or g2=1) is always stable.

Asymptotic results

In the limit of zero Reynolds number, the shear stress
componentTxy1 and the velocity gradientdvxdy are con-
stant and the velocityvx is linear at all times. It can be
then shown that the calculated marginal stability curves
approach asymptotically the valueg2 (Georgiou, 1996).
In this section, approximate solutions for large values
of the elasticity numberE are derived. In what follows,
the avariablesF 0 ��vw�; Rek, and m are assumed to be
functions ofE andg2 and will be expanded in a pertur-
bation series lor largeE.

Starting with an order of magnitude analysis form,
one observes that the absolute value ofm2 (Eq. (21)) is

jmj2 �
Rek

����������������������
1� E2 Re2k

q
���������������������������
1� g22 E

2 Re2k

q :

In the case of largeE, the above equation is simplified
to

jmj2 � Re2k E

g2 Rek E
� Rek

g2
:

If Rek � g2, then jmj � 1 and Eq. (21) can be ex-
panded in a Laurent series aboutm=0:

i Rek
cot m

m
� i Rek

�
1

m2
ÿ 1
3
ÿm

2

45
�O �m4�

�
� F 0 ��vw� : �31�

It should be pointed out that the caseg2 � 0 is singular
and will be treated separately. The important step here
is to reveal the dependency ofRek on E. The procedure
can be found in any book on singular perturbation tech-
niques (i.e., Holmes, 1991). The correct expansion is of
the form

Rek � Rek1���
E
p � Rek3

E3=2
�O

�
1

E5=2

�
; �32�

whereRek1 and Rek3 are functions ofg2 to be deter-
mined. Expandingm2 and 1/m2 (Eq. (23)) for largeE
gives

m2 � ÿi Rek1
g2

���
E
p � 1ÿ g2

g22 E
�O

�
1

E3=2

�
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Fig. 2 Stability curves for the shear flow of an Oldroyd-B fluid with
slip along the fixed wall. The flow is unstable above the correspond-
ing curve. The curves go tog2 asE??



and

1

m2
�i g2

���
E
p

Reki
� 1ÿ g2
Re2k1

� i 1ÿ g2 ÿ g2 Rek1 Rek3���
E
p

Re3k1

� �g2 ÿ 1� �1� 2Rek1 Rek3�
ERe4k1

�O
�
1

E3=2

�
:

Substituting the above expressions in Eq. (31) and se-
parating into real and imaginary parts lead to the fol-
lowing two expressions:

F 0 ��vw� � ÿg2 �
g2 ÿ 1ÿ Re4k1=�45 g2�

ERe2k1
�O

�
1

E2

�
;

�33�
and

i
�3ÿ 3 g2 ÿ Re2k1�

3
���
E
p

Rek1
�O

�
1

E3=2

�
� 0 : �34�

From the latter equation it is easily found that
Rek1 �

����������������
3ÿ 3 g2

p
. Substituting into Eq. (33) gives

F 0 ��vw� � ÿg2 ÿ
�4 g2 � 1�
15 g2 E

�O
�
1

E2

�
: �35�

This procedure can be pursued to higher orders to ob-
tain:

Rek �
����������������
3ÿ 3 g2

p ���
E
p ÿ 8 g22 ÿ 2 g2 � 1

14
����������������
3ÿ 3 g2

p
g22 E

3=2

ÿ 2944 g
4
2 ÿ 2976 g32 � 2264 g22 � 324 g2 ÿ 631
15 400 �3ÿ 3 g2�3=2 g42 E5=2

�O
�
1

E7=2

�
; �36�

F 0 ��vw� � ÿ g2 ÿ
�4 g2 � 1�
15 g2 E

� 48 g
2
2 ÿ 36 g2 � 23
1575 g32 E

2

ÿ 2 �4991 g
3
2 ÿ 9133 g22 � 4063 g2 � 2004�

1 819 125 g52 E
3

�O
�
1

E4

�
: �37�

Note that the above expression yields the asymptotic
value ofÿg2 as E goes to infinity, in agreement with
the analysis of Georgiou (1996).

The caseg2 � 0 is treated in a similar manner. Equa-
tion (23) simplifies to

m2 � Re2k Eÿ i Rek ;
and thus for largeE and small Rek, one gets
m � Rek

���
E
p

. Because, in this asymptotic case,m is a

real number, the only possible solution of Eq. (22) is
F 0 ��vw� � 0 with m � np=2; n � 1; 2; ::: : Numerical
and analytical results revealed that the solution with
m � p=2 corresponds to a broader instability region and
hence dictates the stability of a steady-state solution.
The corresponding asymptotic result is the following

Rek � p

2
���
E
p �O

�
1

E3=2

�
:

As before, we assume an expansion forRek of the form
(32) and expandcot mm aboutm � p=2. The procedure
for obtaining the higher order approximations is similar
to the one used for non-zerog2 but algebraicaly more
complicated. The results are

Rek � p

2
���
E
p ÿ 3

4 pE3=2
ÿ �3� 4 p

2�
48 p3 E5=2

�O
�
1

E7=2

�
;

F 0 ��vw� � ÿ 1

2E
� �p

2 � 12�
24 p2 E2

ÿ �p
4 ÿ 120� 50 p2�
240 p4 E3

�O
�
1

E4

�
: �38�

In Fig. 3, we show a comparison between the exact so-
lution of Eqs. (27)–(30) versus the asymptotic solutions
(36) and (38). Generally, there is good agreement for all
values ofE although the present theory was developed
for largeE.
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Fig. 3 Comparison between numerical (solid curves) and asymptotic
results (dashed curves)



Discussion

The marginal stability curves of Fig. 2 lie below the
corresponding curves of Georgiou (1996). The pre-
dicted instability regimes are larger and agree quantita-
tively with the finite element calculations for small
sizes of the initial perturbation. The numerical calcula-
tions show that perturbing a linearly unstable steady-
state solution leads to a periodic solution the amplitude
and the period of which increase with elasticity (Geor-
giou, 1996). A large perturbation may destabilize a
linearly stable solution and lead to a periodic solution.
In other words, the linearly stable solutions are not nec-
essarily globally stable (Joseph, 1976). Calculating the
radius of attraction of conditionally stable steady-state
solutions and constructing the global stability curves are
out of the scope of the present work. The objective is
to demonstrate that the combination of elasticity and
nonlinear slip leads to periodic solutions as is the case
with the stick-slip instability.

In order to make comparisons between the linear sta-
bility and the numerical results, we employ the follow-
ing dimensionless slip equation

F �vw� � A1
�
1� A2

1� A3 v2w

�
vw ; �39�

where A1=1, A2=15 and A3=100 (Georgiou, 1996).
With the above choice of parameters,F �vw� in nonmo-
notonic as required. Consider the case ofV1=1.01,
Re=0.01 andg2=0.1. The linear stability analysis pre-
dicts that the flow is marginally stable forWe=0.0078.
From the value ofki on the marginal curve, one can
also obtain the period with which the oscillatory insta-
bility sets in, which is equal toT=2p/ki =0.0496. In
Fig. 4, we plot the evolution ofvw for different initial
perturbations, i.e. forV0=1.005, 1.004 and 0, whereV0
is the initial velocity of the lower plate which is
changed toV1 at time t=0. In all cases, the time-depen-
dent solution is oscillatory. For small perturbations (i.e.,
when V0 is greater than 1.004) the oscillations decay
with time and the solution converges to the perturbed
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Fig. 4 Evolution of vw for V=1.01, We=0.0078,Re=0.01, g2=0.1
with various initial perturbations: (a)V0=1.005; (b) V0=1.004;
(c) V0=0

Fig. 5 Evolution of vw for V=1.01, We=0.007, Re=0.01, g2=0.1
with various initial perturbations: (a)V0=1; (b) V0=0.5; (c)V0=0



steady-state solution. Note that the calculated period of
the decaying oscillations agrees well with the prediction
of the linear stability analysis. For smaller values ofV0
(i.e., for larger perturbations), the oscillations grow and
the solution becomes periodic at large times (Figs. 4b
and c). The amplitude and the period of the periodic
solutions is independent of the initial perturbation. An
interesting observation is that the period of the periodic
solution (T=0.0516) is slightly larger than that of the
decaying oscillations obtained for small perturbations.

The effect of the initial perturbation is also illus-
trated in Fig. 5, where we show results forV=1.01,
Re=0.01, g2=0.1 and We=0.007. The corresponding
steady-state solution is linearly stable. The numerical

calculations show that for values ofV0 as small as 0.5
the solution converges to the steady-state solution (Figs.
5a and b). However, for larger perturbations (i.e. for
V0=0, Fig. 5c), the time-dependent solution becomes
periodic. For lower values of the Weissenberg number
(i.e. for We=0.006), the steady-state solution is stable
irrespective of the size of the perturbation, i.e. it is
globally stable.
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(UniversitéCatholique de Louvain) for his invaluable suggestions and
criticism and to Prof. J.R. Anthony Pearson (University of Cam-
bridge) for his comments.

67M.M. Fyrillas and G.C. Georgiou
Linear stability of shear flow

References

Crochet MJ, Davies AR, Walters K (1984)
Numerical simulation of non-Newtonian
flow. Elsevier Science Publishers

Doedel EA, Wang X, Fairgrieve T (1994)
AUTO94: Software for continuation and
bifurcation problems in ordinary differen-
tial equations. California Institute of
Technology Applied Mathematics Report

Drazin PG, Reid WH (1985) Hydrodynamic
stability. Cambridge University Press,
Cambridge

Georgiou GC, Crochet MJ (1994a) Compres-
sible viscous flow in slits with slip at the
wall. J Rheol 38:639–654

Georgiou GC, Crochet MJ (1994b) Time-de-
pendent compressible extrudate-swell
problem with slip at the wall. J Rheol
38:1745–1755

Georgiou GC (1996) On the stability of the
shear flow of a viscoelastic fluid with slip
along the fixed wall. Rheol Acta 35:39–
47

Hatzikiriakos SG, Dealy JM (1992a) Wall
slip of molten high density polyethylenes.
II. Capillary Rheometer studies. J Rheol
36:703–741

Hatzikiriakos SG, Dealy JM (1992b) Role of
slip and fracture in the oscillating flow of
HDPE in a capillary. J Rheol 36:845–884

Holmes MH (1991) Introduction to perturba-
tion methods. Springer, New York

Joseph DD (1976) Stability of fluid motions
I. Springer, New York

Larson RG (1992) Instabilities in viscoelastic
flows. Rheol Acta 31:213–263

Malkus DS, Nohel JA, Plohr BJ (1991) Anal-
ysis of new phenomena in shear flow of
non-Newtonian fluids. SIAM J Appl
Math 51:899–929

Pearson JRA (1985) Mechanics of polymer
processing. Elsevier, London


