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Abstract The axisymmetric extrudate swell flow of a com-
pressible Herschel–Bulkley fluid with wall slip is solved
numerically. The Papanastasiou-regularized version of the
constitutive equation is employed, together with a linear equa-
tion of state relating the density of the fluid to the pressure.
Wall slip is assumed to obey Navier’s slip law. The combined
effects of yield stress, inertia, slip, and compressibility on the
extrudate shape and the extrudate swell ratio are analyzed for
representative values of the power-law exponent. When the
Reynolds number is zero or low, swelling is reduced with the
yield stress and eventually the extrudate contracts so that the
extrudate swell ratio reaches a minimum beyond which it
starts increasing asymptotically to unity. Slip suppresses both
swelling and contraction in this regime. For moderate Reyn-
olds numbers, the extrudate may exhibit necking and the
extrudate swell ratio initially increases with yield stress
reaching a maximum; then, it decreases till a minimum corre-
sponding to contraction, and finally, it converges asymptoti-
cally to unity. In this regime, slip tends to eliminate necking
and may initially cause further swelling of the extrudate,
which is suppressed if slip becomes stronger. Compressibility

was found to slightly increase swelling, this effect being more
pronounced for moderate yield stress values and wall slip.
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Introduction

The extrudate swell flow is a well-known benchmark problem
in the rheological community, characterized by the presence
of a free surface and a boundary stress singularity at the die
exit. This flow has been studied both experimentally on many
different materials, such as polymer melts and pastes, and
numerically for different (e.g., generalized Newtonian and
viscoelastic) constitutive equations with a variety of numerical
methods. Nevertheless, swelling is observed only at low
Reynolds numbers, i.e., beyond a critical Reynolds number,
the extrudate actually contracts (Omodei 1980; Georgiou et al.
1988; Georgiou and Boudouvis 1999). In Newtonian flow, the
extrudate swell ratio, χ, defined as the ratio of the final
extrudate radius to that of the die, is a decreasing function of
the Reynolds number approaching asymptotically the limit for
inviscid flow, which actually corresponds to contraction rather
than to swelling, since it is less than unity (Georgiou et al.
1988). In other words, inertia tends to reduce swelling. This is
not the case with slip, which reduces swelling at low and
contraction at higher Reynolds numbers (Silliman and Scriven
1980; Kountouriotis et al. 2013). Hence, inertia and slip
effects on the extrudate surface are similar at low and
competing at higher Reynolds numbers. The numerical
simulations of Kountouriotis et al. (2013) for the Newtonian
flow demonstrated that this competition leads to inter-
esting stable extrudate shapes at moderate slip and
Reynolds numbers.

Research highlights • The combined effects of inertia, slip, and
compressibility in extrudate swell flow of yield stress fluids are
investigated.
• Interesting extrudate shapes due to the competition of inertia and yield
stress
• Slip may enhance swelling at moderate Reynolds numbers.
• Compressibility effects are found to be more pronounced for moderate
yield stress values and wall slip.
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Compressibility is another factor affecting the extrudate
swell ratio. In the case of Newtonian flow at low Reynolds
numbers, it is well established that this ratio initially decreases
slowly and then increases rapidly with compressibility, i.e., it
passes through a minimum (Mitsoulis et al. 2012). Hence,
beyond this minimum compressibility enhances swelling op-
posing inertia effects. Kountouriotis et al. (2013) investigated
the combined effects of compressibility, Navier slip, and
inertia on the shape of the Newtonian extrudate and found
that at low Reynolds numbers, slip reduces swelling and
alleviates compressibility effects: the extrudate swell ratio
decreases (initially) more slowly with compressibility, and
the minimum is moved to the right. At higher Reynolds
numbers, the jet contracts at low and expands at higher com-
pressibility values. Moreover, compressibility at moderate
Reynolds numbers leads to stable steady states in which the
extrudate surface exhibits oscillations that decay downstream
and are suppressed by slip (Kountouriotis et al. 2013;
Taliadorou et al. 2008).

u being the velocity vector and ∇u the velocity-gradient
tensor. The magnitudes of γ̇ and τ, denoted by γ̇ and τ,
respectively, are defined by γ̇≡

ffiffiffiffiffiffiffiffiffiffi
ΙΙγ:=2

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̇ : γ̇=2

p
and τ≡

ffiffiffiffiffiffiffiffiffiffiffi
ΙΙτ=2

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ : τ=2

p
where II denotes the second invariant

of a tensor. Setting n=1 in Eq. (1), we recover the Bingham
model; in this case, k represents the plastic viscosity. The
Bingham model is reduced to the Newtonian model when
the yield stress is zero.

A difficulty that arises when solving flows of fluids obey-
ing a two-branch constitutive equation is the need of deter-
mining the regions where either branch of the equation is
applied, i.e., the so-called unyielded (τ≤τ0) and yielded re-
gions (τ>τ0). This task may be trivial in the case of steady,
one-dimensional flows amenable to analytical solutions.
However, it becomes extremely difficult in transient one-
dimensional flows or in steady two- or three-dimensional
flows. There are two main approaches in tackling this prob-
lem. The first is the regularization of the constitutive equation
so that the same expression is valid uniformly for any value of
γ̇ . The second is based on the use of augmented Lagrangian
methods (ALMs).

Regularization methods are easily implemented on
existing, validated codes. The most popular regularization is
the one proposed by Papanastasiou (1987) originally for the
Bingham plastic. This was extended to the Herschel-Bulkley
model by Ellwood et al. (1990), as follows:

τ ¼ τ0
1−exp −mγ̇

� �
γ̇

þ kγ̇
n−1

2
4

3
5γ̇ ð3Þ

where m is a stress growth parameter. Equation (3) approxi-
mates Eq. (1) for sufficiently large values of m. Once a
viscoplastic flow is solved by means of Eq. (3), the interface
of yielded/unyielded regions can approximately be tracked
down a posteriori by using the criterion τ=τ0 (Mitsoulis
2007). The Papanastasiou regularization has been employed
by different groups in solving various viscoplastic flows [see
Mitsoulis (2007) and references therein]. The method is
known to exhibit convergence difficulties at high values of
m and may lead to inaccurate results (Frigaard and Nouar.
2005). However, it performs very well for low and moderate
yield stress values. The Papanastasiou as well as other regu-
larization models used in the literature have been reviewed by
Frigaard and Nouar (2005).

An alternative method to solve the aforementioned prob-
lems is the ALM developed by Fortin and Glowinski (1983).
The advantage of that method is the accurate prediction of
yielded and unyielded regions due to the use of variational
inequalities, either rate-of-strain minimization or stress maxi-
mization. However, augmented Lagrangian methods are more
complex, difficult to implement, and computationally costly
(Glowinski andWachs 2011; Dimakopoulos et al. 2013). Both
augmented Lagrangian and regularization methods have been
applied successfully to the numerical solution of various flows
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In the present work we focus on the extrudate swell
flow of fluids with yield stress. The class of yield stress
or viscoplastic fluids includes a wide range of materials
of industrial importance (slurries, pastes, suspensions,
gels, semisolids, foams, food products, nanocomposites,
waxy crude oil, well drilling fluids, and others). As
pointed out by Rabideau et al. (2010), the extrusion
behavior of pasty (i.e., yield stress) materials is much
less well known than that of polymers. Our objective is
to investigate the combined effects of inertia, slip, and
compressibility in the axisymmetric viscoplastic
extrudate swell flow.

The main feature of yield stress materials is that they do not
deform when subjected to a stress below the yield stress, τ0.
The simplest constitutive equation with a yield stress is the
Bingham model, introduced by Bingham (1922). The Her-
schel–Bulkley model is the combination of the Bingham
model with the power-law model, which accounts for shear-
thinning or shear-thickening effects. In incompressible flow,
this is written as follows:

γ̇¼ 0; τ ≤ τ0

τ ¼ τ0

γ̇
þ kγ̇

n−1
 !

γ̇; τ > τ0

8><
>: ð1Þ

where k is the consistency index, n is the power-law exponent,
τ is the stress tensor, andγ̇ is the rate-of-strain tensor:

γ̇ ¼ ∇uþ ∇uð ÞT ð2Þ
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(Glowinski and Wachs 2011). Their pros and cons are
summarized in the recent review article of Balmforth et al.
(2014) who note that “pragmatically, the choice between
augmented Lagrangian and regularization is related to wheth-
er one needs to determine the position of the yield surface, or
whether a reasonable approximation to the velocity field is
sufficient.”

In his pioneering paper where he introduced his regularized
equation, Papanastasiou (1987) presented preliminary results
for the creeping, planar extrudate swell flow of a Bingham
plastic showing that swelling is reduced with the yield stress.
The same conclusion was reached by Beverly and Tanner
(1989) who analyzed the effects of yield stress on the axisym-
metric extrudate swell flow of a viscoelastic material with
yield stress (by means of biviscosity formulation) and by
Hurez et al. (1990) who employed the augmented Lagrangian
method to solve the extrusion flow of Herschel–Bulkley fluids
from planar and round dies. Ellwood et al. (1990) reported
similar results for the creeping extrudate swell flow from both
round and slit dies and presented results for moderate Reyn-
olds numbers and relatively low values of the yield stress.
Mitsoulis and co-workers (Abdali et al. 1992; Mitsoulis et al.
1993) showed that in the creeping extrudate swell flow of a
Bingham plastic, the extrudate swell ratio is reduced as the
yield stress is increased and beyond a certain value, the jet
actually contracts slightly reaching a minimum and then starts
increasing to reach unity asymptotically. Contraction reaches
about 5 % for the planar and about 2 % for the axisymmetric
die. The appearance of the minimum at high yield stress
values was attributed to the fact that the surrounding yielded
layer of the fluid is less viscous than the unyielded plug-flow
core. Abdali et al. (1992) also noted that the extrudate con-
tracts when the viscosity ratio is low and the relative radius of
the core is close to unity. Hence, inertia is expected to compete
yield stress effects at high values of the latter. Moreover, slip is
expected to oppose yield stress effects in an intermediate
range of yield stress values (where the extrudate contracts
but the extrudate swell ratio is still decreasing with yield
stress). Belblidia et al. (2009) solved numerically the time-
dependent, weakly compressible extrudate swell flow of a
Herschel–Bulkley fluid. They reported that extrudate swell
is unaltered by compressibility under no-slip wall conditions
and noted that this result may be altered by considering
wall slip.

The assumption of creeping flow may be valid for a large
number of applications with yield stress fluids (Mitsoulis
2007). However, moderate or even high Reynolds numbers
are encountered in many important processes, such as oil
drilling, and cement and foam flows. To our knowledge, no
systematic results have been presented in the literature for the
inertia effects in extrudate swell flow of yield stress fluids.
Ellwood et al. (1990) reported that as the yield stress increases,
swelling at low and contraction at higher Reynolds numbers

are reduced, due to the increased tendency for the center core
of the jet to exit the die as a solid plug when the yield stress
increases. Ellwood et al. (1990) did present free surface pro-
files of the axisymmetric extrudate for a moderate value of the
Reynolds number at which the jet actually contracts. They
noted that in this regime necking occurs as the yield stress
increases and vanishes if the latter is further increased.

Sochi (2011) notes that wall slip with yield stress fluids is
common place while Yilmazer and Kalyon (1989) point out
that slip may lead to spectacular effects. The effects of com-
pressibility on the Newtonian extrudate swell flow have been
investigated by Beverly and Tanner (1993) and Georgiou
(1995) and, more recently, by Taliadorou et al. (2008) and
Kountouriotis et al. (2013). Georgiou (2003) studied the com-
pressible extrudate swell flow of a Carreau fluid with nonlin-
ear slip at the wall, in an attempt to simulate the stick–slip
extrusion instability. Damianou et al. (2013) compiled exper-
imental works demonstrating slip with yield stress materials as
well as numerical works concerning weakly compressible
flows of yield stress fluids, such as the transport of waxy
crude oils. They also derived approximate semi-analytical
solutions of the steady, creeping, weakly compressible plane
and axisymmetric Poiseuille flows of a Herschel–Bulkley
fluid with slip at the wall. These solutions reveal that when
the yield stress fluid is compressible, the upstream velocity
tends to become plug, an effect enhanced by slip. In the case
of incompressible flow, the velocity becomes plug at a
finite critical value of the (inverse) slip parameter which
is inversely proportional to the yield stress. This implies
that for a given Navier slip coefficient, there is an upper
bound for the admissible yield stress of the material and
vice versa.

In the present work, we are interested in the position and
the shape of the free surface and not in the yielded and
unyielded regions in the extrudate swell flow domain. We
thus employ the Papanastasiou regularization, following pre-
vious works (Papanastasiou 1987; Ellwood et al. 1990;
Mitsoulis 2007; Abdali et al. 1992). To our knowledge, the
ALM has been used only by Hurez et al. (1990) in solving the
extrudate swell flow of Herschel–Bulkley fluids. However,
they presented only sample results. The paper can be viewed
as an extension of our recent work on the Newtonian
extrudate swell problem (Kountouriotis et al. 2013). This is
organized as follows. In Governing equations, the governing
equations and boundary conditions are presented and then
nondimensionalized. To account for wall slip and compress-
ibility effects, we use Navier’s slip law (Navier 1827) and an
exponential equation of state relating the fluid density to the
pressure (Taliadorou et al. 2008). In Numerical results and
discussion, the numerical method is briefly described and the
numerical results are presented and the effects of the various
dimensionless numbers are discussed. Finally, our conclu-
sions are summarized in Concluding remarks.
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Governing equations

We consider the steady, creeping, axisymmetric extrudate
swell flow of a compressible Herschel–Bulkley fluid
neglecting gravity. The continuity equation and momentum
equation are as follows:

∇⋅ ρuð Þ ¼ 0 ð4Þ

and

ρ u⋅∇uð Þ ¼ −∇pþ ∇⋅τ; ð5Þ

where ρ is the density, and p is the pressure. Under the
assumption of zero bulk viscosity, the tensorial form of the
constitutive equation of compressible Herschel–Bulkley fluid
is given by

γ̇ ¼ 0; τ ≤ τ0

τ ¼ τ0

γ̇
þ kγ̇

n−1
 !

γ̇−
2

3
∇⋅uI

� �
; τ > τ0

8><
>: ð6Þ

where I is the identity tensor. In the present work, we use the
following Papanastasiou regularization of Eq. (6):

τ ¼ τ0
1−exp −mγ̇

� �
γ̇

þ kγ̇
n−1

2
4

3
5 γ̇−

2

3
∇⋅uI

� �
ð7Þ

For weakly compressible flows, the fluid density, ρ, can be
assumed to vary exponentially with pressure (Wachs et al.
2009):

ρ ¼ ρ0e
β p−p0ð Þ; ð8Þ

where ρ0 is the density at the atmospheric pressure p0, and β is
the isothermal compressibility, assumed to be constant.

The geometry and boundary conditions of the axisymmet-
ric extrudate swell problem are shown in Fig. 1. The radius of
the capillary is denoted by R. The standard symmetry condi-
tions for zero radial velocity and shear stress along the axis of
symmetry are assumed. Along the capillary wall, the radial
velocity is set to zero (no penetration) and the axial velocity
obeys Navier’s slip condition,

τw ¼ 1

a
uw; ð9Þ

where uw is the slip velocity, τw is the wall shear stress, and a is
an inverse slip parameter depending on the material properties
for a given wall. When a=0, the no-slip boundary condition is
recovered. In the case of a nonyield stress fluid, there is no
bound on the permissible values of a; in the limit a→∞, full

slip is achieved. As discussed below, in the case of yield stress
fluids, there exists an upper bound on the value of a, which
depends on the yield stress. Equation (9) and its power-law
generalization have been employed by various groups in
analyzing slip flows of Herschel–Bulkley fluids (see Aktas
et al. (2014) and references therein).

The inlet plane is taken far upstream of the exit at a distance
L1=20R so that the flow can be taken as fully developed, i.e.,
ur=0 and the axial velocity is given by the standard steady-
state axisymmetric Poiseuille flow of a Herschel–
Bulkley fluid:

uz rð Þ ¼ uw þ nG
1=n

2
1=n nþ 1ð Þk

1=n

R−r0ð Þ1=nþ1 ; 0≤ r≤ r0
R−r0ð Þ1=nþ1− r−r0ð Þ1=nþ1

h i
; r0≤r≤R

(

ð10Þ

where G≡(−dp/dz) is the imposed pressure gradient, uw is the
slip velocity, given by

uw ¼ aRG

2
ð11Þ

and r0 is the yield point:

r0 ¼ 2τ0
G

< R ð12Þ

It should be noted that there is no flow when the pressure
gradient is below 2τ0/R.

The outlet plane is taken at a distance L2=50R from the exit
so that the flow can be considered uniform. Hence, under the
assumption of zero surface tension the total normal stress and
the shear stress vanish, −p+τzz=0 and τrz=0. Finally, on the
free surface, vanishing normal and tangential stresses are
imposed along with the kinematic condition:

∂h
∂t

þ uz
∂h
∂z

−ur ¼ 0 ð13Þ

Fig. 1 Geometry and dimensionless boundary conditions for the axi-
symmetric extrudate swell flow of a compressible Herschel–Bulkley fluid
with wall slip
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This last equation is in fact used in order to calculate the
unknown position h=h(z) of the free surface (full-Newton
iteration).

Nondimensionalization

The governing equations are nondimensionalized by scaling
the lengths by the radius R of the tube, the velocity vector by
the mean velocity U at the inlet of the tube, the pressure and
the stress tensor components by kUn/Rn, and the density by ρ0.
The dimensionless forms of the continuity and momentum
equations are

∇*⋅ ρ*u*
� � ¼ 0 ð14Þ

and

ρ*Re u*⋅∇*u*
� � ¼ −∇*p* þ ∇*⋅τ*; ð15Þ

where the stars denote dimensionless variables and

Re ≡
ρU2−nRn

k
ð16Þ

is the Reynolds number. The equation of state (8) becomes:

ρ* ¼ eΒp
*
; ð17Þ

where B is the compressibility number:

B ≡
βkUn

Rn ð18Þ

Similarly, the dimensionless form of the Papanastasiou-
regularized constitutive equation is

τ* ¼ Bn
1−exp −Mγ̇*

� �
γ̇*

þγ̇*n−1
	 


γ̇*−
2

3
∇⋅u*I

� �
ð19Þ

where

Bn ≡
τ0Rn

kUn ð20Þ

is the Bingham number and

M ≡
mU

R
ð21Þ

is the dimensionless growth exponent.

The dimensionless velocity profile imposed at the inlet is

u*z rð Þ ¼ u*w þ nG�1=n

2
1=n nþ 1ð Þ

1−r0*
� �1=nþ1

; 0≤r*≤r0*

1−r0*
� �1=nþ1− r−r0*

� �1=nþ1
h i

; r0
*≤r*≤1

8<
:

ð22Þ

where

r0
* ¼ 2Bn

G* < 1 ð23Þ

and the dimensionless pressure gradient is the root of the
following equation

21=n
3nþ 1

n
1−u*w
� �

G*3 ¼ G*−2Bn
� �1=nþ1

G*3 þ 4nBn

2nþ 1
G* þ 8n2Bn2

nþ 1ð Þ 2nþ 1ð Þ
	 


ð24Þ

which is obtained by demanding that the dimensionless volu-
metric flow rate is Q*=π.

The dimensionless form of the slip equation is

uw
* ¼ Aτ*w ð25Þ

where

A≡
kaUn−1

Rn ð26Þ

is the slip number. It is important to note that for a given slip
number, there is an upper bound for the Bingham number,
which cannot be exceeded. This limiting value corresponds to
the pressure gradient at which the fluid yields. From
Eqs. (24)–(26), it is easily deduced that when Bn is equal to
Bncrit=1/A, both r0

* and uw
* become 1 (Damianou et al. 2013).

Similarly, for a given Bingham number, the slip number
should not exceed 1/Bn.

Numerical results and discussion

The finite element method is used for solving the system of
governing equations and boundary conditions presented in
Governing equations. The free surface profile is computed
simultaneously with the velocity and pressure fields (u-v-p-h
formulation), and the mesh is updated at each iteration step by
means of a spine scheme. Standard biquadratic basis functions
are used for the two velocity components and bilinear ones for
the pressure field, while the unknown position of the free
surface, h, is approximated by quadratic basis functions. The
standard Galerkin forms of the continuity, momentum, and
kinematic equations are used. The nonlinear system of equa-
tions is solved with the Newton–Raphson iterative scheme
with a convergence tolerance equal to 10−4. All the numerical
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simulations in this section concern the steady-state axi-
symmetric flow of a Herschel–Bulkley fluid. The
lengths of the die and the extrudate (L1

*=20 and L2
*=

50) are considered sufficient for the range of Re exam-
ined (0–100). Finite element meshes of different refine-
ments have been used in order to ensure the conver-
gence of the numerical solutions.

When using a regularized constitutive equation, such as the
Papanastasiou model, converged results can be obtained only
up to a critical value, Mc, of the growth exponent, which
depends on the flow parameters and mesh refinement. In our
simulations of incompressible flow, Mc≥500 for Bn≤20. For
some moderate and high Bingham numbers, Mc≥300,
depending on the values of Re and A. Some points in
the range 50<Bn<100, used in constructing plots of the
extrudate swell ratio versus the Bingham number, were
calculated with Mc≥100.

We first studied the combined effects of yield stress and
inertia on the extrudate surface in the case of Bingham flow
(n=1) with no wall slip. Figure 2 shows free surfaces obtained
for Re=0, 1, and 10 and various Bingham numbers in the
range [0, 100], which is much larger than the range [0, 1]
covered by Ellwood et al. (1990). According to Mitsoulis
(2007), most of the interesting viscoplastic phenomena occur
for 1<Bn<10. As already discussed, in creeping flow
(Fig. 2a), swelling is reduced as the Bingham number is
increased and beyond a critical Bingham number, the jet
actually contracts till a minimum (roughly at Bn=10 for n=
1) beyond which the extrudate swell ratio goes asymptotically
to unity (Abdali et al. 1992; Mitsoulis 2007). The results for
Re=1 are similar (Fig. 2b); swelling at low values of Bn is
actually less than that for the creeping case and the differences
diminish as the Bingham number is increased (see Fig. 3a).
The fact that inertia reduces swelling in the case of a Newto-
nian jet and beyond a critical Reynolds number the jet actually
contracts is well known (Georgiou et al. 1988; Taliadorou
et al. 2008). Nevertheless, the present results show that in
the case of Bingham flow inertia enhances swelling initially
and only beyond a critical number swelling is reduced. In
Fig. 2c (Re=10), we observe that the extrudate contracts when
Bn=0 (Newtonian fluid). More precisely, the extrudate con-
tracts only for a small distance after the die exit and then
expands slightly so that the extrudate swell ratio is less than
unity. When the Bingham number is increased, the initial
contraction is reduced while the expansion downstream be-
comes more pronounced, resulting in the appearance of neck-
ing. At higher Bingham numbers, the extrudate swell ratio
actually exceeds unity, i.e., the extrudate swells, while the
neck becomes less severe. However, beyond a critical Bing-
ham number, swelling starts reducing and contraction is ob-
served again up to a critical Bingham number beyond which
the jet expands again and the extrudate swell ratio tends
asymptotically to unity.

The variation of the extrudate swell ratio with the Bingham
number is illustrated in Fig. 3a, where the results for Re=0, 1,
5, and 10 are shown. The results for Re=0 coincide with those
of Abdali et al. (1992) who used a different definition for the
Bingham number (Bi=2Bn). As indicated by one of the

Fig. 2 Free surface profiles in incompressible (B=0) Bingham flow (n=
1) for A=0 (no slip) and various Bingham numbers: a Re=0, b Re=1, and
c Re=10
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referees, the flow at large Bingham numbers just inside the
tube is close to being a rod of radius 1-Δhwith a shear layer of
thickness Δh. Due to the conservation of mass the jet
radius far downstream must be 1-Δh/2, i.e., the jet
contraction is Δh/2. It is then clear that contraction
tends to zero as the Bingham number and/or the slip
number are increased. For moderate Reynolds numbers,
the extrudate swell ratio increases with the Bingham
number to reach a global maximum (above unity) and
then a local minimum (below unity) before converging
to unity. At higher Reynolds numbers, the maximum of
the extrudate swell ratio is expected to correspond to
contraction (χ<1); however, carrying out such simula-
tions is outside the scope of the present work. Figure 3b
shows the variation of the extrudate swell ratio for Bn=
0, 1, and 10 versus the Reynolds number. This de-
creases monotonically only in the Newtonian case
(Bn = 0) reaching the asymptot ic value 0.8660
(Kountouriotis et al. 2013; Ellwood et al. 1990). When
the Bingham number is nonzero, the extrudate swell
ratio initially increases slightly reaching a maximum

(above unity) which is shifted to the right as the Bing-
ham number is increased. This trend is followed even
when the extrudate contracts which is the case for Bn=
10. After the maximum the extrudate swell ratio

Fig. 3 a Extrudate swell ratios in Bingham flowwith Re=0, 1, 5, and 10;
b Extrudate swell ratios in Bingham flow with Bn=0, 1, and 10; the
dotted lines indicate the asymptotic limits for infinite Reynolds number

Fig. 4 Free surface profiles in incompressible (B=0) Bingham flow (n=
1) for Re=0 and various slip numbers: a Bn=0, b Bn=1, c Bn=10, and d
Bn=100
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decreases monotonically reaching the corresponding as-
ymptotic value. This value increases with the Bingham
number from 0.8660 (Bn=0) to unity (infinite Bn). The
asymptotic extrudate swell ratio has been derived by

Ellwood et al. (1990). Using the notation of the present
paper, this is given by

χ∞≡
4
ffiffiffiffiffi
15

p

2Bn=G*−1
� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16Bn2 þ 12BnG* þ 5G*2
p ð27Þ

Fig. 5 Free surface profiles in incompressible (B=0) Bingham flow (n=
1) for Re=10 and various slip numbers: a Bn=0, b Bn=1, c Bn=10, and d
Bn=100

Fig. 6 Extrudate swell ratios in incompressible (B=0), creeping (Re=0)
Herschel–Bulkley flow: a n=0.5, b n=1, and c n=1.5. Note that the y-
scale is not the same in all graphs

798 Rheol Acta (2014) 53:791–804

Author's personal copy



where G* is the largest root of

3G*4−8 Bnþ 3ð ÞG*3 þ 16Bn4 ¼ 0 ð28Þ

The effect of slip on the incompressible extrudate swell
flow of a Bingham fluid (n=1) was studied next. It is well

established that in the Newtonian case, slip reduces swelling at
low and contraction at higher Reynolds numbers
(Kountouriotis et al. 2013). As illustrated in Fig. 4, where free
surfaces for the creeping flow obtained for different Bingham
and slip numbers are shown, in the case of Bingham flow, slip
reduces swelling at low and contraction at high Bingham

Fig. 7 Extrudate swell ratios in incompressible (B=0) Herschel–Bulkley
flow for Re=5: a n=0.5, b n=1, and c n=1.5. Note that the y-scale is not
the same in all graphs

Fig. 8 Extrudate swell ratios in incompressible (B=0) Herschel–Bulkley
flow for Re=10: a n=0.5, b n=1, and c n=1.5. Note that the y-scale is not
the same in all graphs
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numbers. At intermediate values of the Reynolds number, i.e.,
for Re=10 (Fig. 5), slip reduces contraction at low and high
Bingham numbers. In the intermediate regime in which the jet
exhibits necking, slip may initially result in further swelling
and the elimination of the necking. Eventually, however, when

slip becomes stronger, swelling is suppressed and the
extrudate tends to become cylindrical.

The effect of slip on the incompressible, creeping (Re=0)
extrudate swell flow of a Herschel–Bulkley fluid was studied
for three values of the power-law exponent: n=0.5, 1, and 1.5.

Fig. 9 Extrudate swell ratios in incompressible (B=0) Herschel–Bulkley
flowwith n=0.5 for various Reynolds numbers: a A=0 (no slip), b A=0.1
(moderate slip), and c A=1 (strong slip). Note that the y-scale is not the
same in all graphs

Fig. 10 Extrudate swell ratios in incompressible (B=0) Bingham flow
(n=1) for various Reynolds numbers: a A=0 (no slip), b A=0.1 (moderate
slip), cA=1 (strong slip). Note that the y-scale is not the same in all graphs
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In Fig. 6, the calculated extrudate swell ratios for five different
slip numbers (A=0, 0.01, 0.1, 1, and 2) are plotted versus the
Bingham number up to the corresponding critical value
Bncrit=1/A. It is well established that swelling increases with
the power-law index (Huynh 1982; Mitsoulis 2007). From

Fig. 6, it is deduced that the contraction of the extrudate at
higher Bingham numbers also increases with the power-law
index. We observe again that slip reduces swelling at low and
contraction at higher Bn. In the presence of slip, contraction is
observed at lower Bingham numbers. When slip is strong,

Fig. 11 Extrudate swell ratios in incompressible (B=0) Herschel–
Bulkley flow with n=1.5 for various Reynolds numbers: a A=0
(no slip), b A=0.1 (moderate slip), c A=1 (strong slip). Note that
the y-scale is not the same in all graphs

Fig. 12 Extrudate swell ratios in incompressible (B=0) Bingham flow
(n=1) for various Reynolds numbers: a Bn=0, b Bn=1, and c Bn=10.
Note that the y-scale is not the same in all graphs
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swelling is suppressed quickly and no contraction is observed.
As the power-law index is increased, swelling is also in-
creased along with the value of the critical Bingham number
at which the extrudate swell becomes essentially 1.

In addition to the creeping flow results of Fig. 6, we have
carried out simulations for low and moderate values of the
Reynolds number. The calculated extrudate swell ratios for
Re=5 and 10, the three representative power-law exponents
and different slip numbers are shown in Figs. 7 and 8, respec-
tively. Comparing the results of Figs. 6, 7, and 8, we observe
that inertia reduces the range of the extrudate swell ratios and
postpones contraction at slightly higher Bingham numbers.
The results for Re=5 and 10 reveal that slip and inertia effects
are competing. In general, swelling and contraction are re-
duced further; however, in these two cases, the extrudate swell
ratio increases initially with the Bingham number reaching a
maximum which moves to the right as the power-law expo-
nent is increased. Interestingly, for Re=5 and n=0.5 (shear-
thinning fluid), the extrudate swell ratio initially increases
with slip (Fig. 7a). This is also the case when Re=10, the jet
actually contracts at least for low Bingham numbers, as illus-
trated in Fig. 8. The contraction of the jet is reduced with slip
and the jet actually expands when slip becomes strong.

The competition between slip and inertia for n=0.5, 1, and
1.5 is also illustrated in Figs. 9, 10, and 11, where the extrudate
swell ratios obtained with A=0 (no slip), 0.1 (moderate slip),
and 1 (strong slip), and Re=0, 1, 5, and 10 are plotted versus
the Bingham number. It should be noted that the extrudate
swell ratio of the shear-thinning fluid initially increases with
the Reynolds number. When slip is strong (A=1), the
extrudate swell ratio increases for all the Reynolds numbers
examined. In the case of the Bingham flow (Fig. 10), the
extrudate swell ratio decreases with the Reynolds number
only when both the Bingham and slip numbers are low. The
extrudate swell ratios are plotted versus the slip number in
Fig. 12 for different Bingham and Reynolds numbers.

The present simulations are general in the sense that we
have not considered any specific material. In order to investi-
gate compressibility effects, we carried out simulations for
small compressibility numbers, e.g., of the order 10−3 to 10−5,

 100

 1000

 10000

 0.001  0.01  0.1  1  10  100
Bn

DPw

Fig. 13 Pressure drop in incompressible Bingham flowwith nowall slip;
B=0, n=1, A=0, and L1=20

Fig. 14 Free surface profiles in compressible creeping Bingham flow
(n=1) for B=0.0001 and various slip numbers: a Bn=0, b Bn=1, and c
Bn=10. The dotted lines indicate the corresponding results for incom-
pressible flow
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with Mc≥500 for Bn≤20 and Mc≥100 for Bn=100. These
values of the compressibility number are consistent, for ex-
ample, with the values reported by Vinay et al. (2006) for
waxy crude oils in pipelines. The latter authors noted that the
order of magnitude of BRe usually varies from 10−9 to 10−3.

As expected, the pressure drop required to drive the
extrudate swell flow of a viscoplastic material increases rap-
idly with yield stress. As illustrated in Fig. 13, where the
pressure drop for creeping incompressible Bingham flowwith
no wall slip is plotted versus the Bingham number, for Bn>1,
increasing Bn by one order of magnitude raises the required
pressure drop by an order of magnitude too. This increase may
be even more dramatic in the case of a longer die. Such
dramatic increases of the pressure would then lead to dramatic
density changes not admissible for liquid and viscoplastic
materials, which cause the divergence of the numerical code.

The effect of compressibility is illustrated in Fig. 14, where
free surface profiles for the compressible (B=0.0001) creep-
ing (Re=0) flow of a Bingham plastic with different Bingham
and slip numbers are plotted (similar results have been obtain-
ed for B=0.00005). The dotted lines show the corresponding
results for the incompressible flow (B=0). As expected, for a
Newtonian fluid (Fig. 14a), weak compressibility (B=0.0001)
has no effect on extrudate swell. It is well known in the
literature that in creeping flow (Re=0), increasing compress-
ibility initially leads to a small reduction of the extrudate swell
ratio and then enhances swelling but this effect can only be
realized when much higher values of B are considered
(Silliman and Scriven 1980; Kountouriotis et al. 2013;
Mitsoulis et al. 2012). For Bn=1, compressibility tends to
increase swelling, while for Bn=10, compressibility enhances
the contraction of the jet, especially at moderate slip numbers.
Obviously, this effect is opposite to that of slip, which prevails
as the slip number is increased.

In Fig. 15, we plotted the extrudate swell ratios calculated
with A=0, 0.1, and 1 (corresponding to no slip, moderate slip,
and strong slip, respectively) and B=0, 0.00005, and 0.001.
The latter value of the compressibility number is rather unre-
alistic; this was chosen simply in order to enhance compress-
ibility effects. We observe that compressibility tends to in-
crease the extrudate swell ratio for Bingham numbers in the
range [0.1, 10], especially when slip is not strong.

Concluding remarks

The axisymmetric extrudate swell flow of a compressible
Herschel–Bulkley fluid was solved numerically using the
Papanastasiou-regularized version of the constitutive equa-
tion. The effects of yield stress, inertia, slip, and compressibil-
ity on the free surface shape and the extrudate swell-ratio have
been studied. For that purpose, Navier’s slip condition and an
exponential equation of state relating the density to the pres-
sure have been employed.

For low Reynolds numbers, the extrudate swell ratio, χ,
initially decreases with the Bingham number reaching a min-
imum corresponding to contraction and then increases asymp-
totically to unity. For moderate Reynolds numbers, however,

Fig. 15 Extrudate swell ratios for Bingham flow (n=1) with Re=0 and
B=0 (bullets), 0.00005 (solid), and 0.001 (dashed): a A=0 (no slip), b A=
0.1 (moderate slip), and c A=1 (strong slip)
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χ initially increases with the Bingham number reaching a
maximum after which yield stress effects prevail and the
behavior of χ is similar to that at low Reynolds numbers. As
a consequence of the competition between inertia and yield
stress effects, χ is not a strictly decreasing function of the
Reynolds number; it initially increases slightly with Re
reaching a maximum which is shifted to the right as Bn is
increased. Inertia is found to reduce the range of attainable
extrudate swell ratios and delays the contraction of the
extrudate at higher Bingham numbers. Increasing the power-
law index enhances swelling at low and contraction at mod-
erate values of the Bingham number.

When the Reynolds number is low, slip suppresses
both swelling and contraction of the extrudate, depend-
ing on the value of the Bingham number. For moderate
Reynolds numbers at which the extrudate exhibits neck-
ing, slip tends to eliminate necking and may initially
cause further swelling of the extrudate, which is sup-
pressed if slip becomes stronger.

The simulations for the compressible flow indicate that an
ideal viscoplastic material even with a moderate yield stress
can be only weakly compressible, since high pressure require-
ments result in unrealistically high values of the density, even
in short dies. Compressibility tends to increase swelling, es-
pecially when slip is not strong and the yield stress is
moderate.
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