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Abstract We consider both the planar and axisym-
metric steady, laminar Poiseuille flows of a weakly
compressible Newtonian fluid assuming that slip occurs
along the wall following Navier’s slip equation and that
the density obeys a linear equation of state. A perturba-
tion analysis is performed in terms of the primary flow
variables using the dimensionless isothermal compress-
ibility as the perturbation parameter. Solutions up to
the second order are derived and compared with avail-
able analytical results. The combined effects of slip,
compressibility, and inertia are discussed with emphasis
on the required pressure drop and the average Darcy
friction factor.
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Introduction

In a recent paper (Taliadorou et al. 2009), we derived
second-order perturbation solutions of both the planar
and axisymmetric Poiseuille flows of weakly compress-
ible Newtonian fluids using a methodology in which
the primary flow variables, i.e., the velocity components
and pressure, are perturbed, a linear equation of state
is employed, and compressibility serves as the pertur-
bation parameter. The same solutions were derived
by Venerus (2006) and Venerus and Bugajsky (2010)
respectively for the axisymmetric and planar flow prob-
lems using a streamfunction/vorticity formulation. We
have recently extended the primary-variable methodol-
ogy to derive perturbation solutions of the planar and
axisymmetric Poiseuille flows of a weakly compress-
ible Oldroyd-B fluid (Housiadas and Georgiou 2011;
Housiadas et al. 2012). The aforementioned references
provide useful reviews of previous perturbation and
other approximate solutions of the flow problems un-
der consideration.

The objective of the present paper is to extend our
previous work for a Newtonian liquid allowing linear
slip at the wall in order to study the combined effects
of weak compressibility, slip and inertia. The impor-
tance of slip in a variety of macroscopic flows and
processes has been emphasized in numerous studies in
the past few decades (Denn 2001; Hatzikiriakos and
Migler 2005, and references therein). Strong interest
has also been recently generated due to the effects
of slip in microfluidic applications (Stone et al. 2004).
Slip of molten polymers has been recently reviewed by
Hatzikiriakos (2012).

In flows of liquids, such as polymer melts and
waxy crude oils, compressibility may become important
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when the liquids are processed at high pressures, which
is the case with polymer extrusion (Hatzikiriakos and
Dealy 1992; Piau and El 1994) or with flow through
long tubes (Vinay et al. 2006; Wachs et al. 2009).
The stick-slip polymer extrusion instability, referring
to the sustained pressure and flow rate oscillations
observed under constant throughput, is attributed to
the combination of compressibility with nonmonotonic
slip laws relating the wall shear stress to the slip veloc-
ity (Hatzikiriakos and Dealy 1992; Georgiou 2005) as
confirmed by one-dimensional phenomenological mod-
els (Dubbeldam and Molenaar 2003) as well numerical
simulations (Taliadorou et al. 2007). Tang and Kalyon
(2008a, b) also developed a mathematical model de-
scribing the time-dependent pressure-driven flow of
compressible polymeric liquids subject to pressure-
dependent slip and reported that undamped periodic
pressure oscillations in pressure and mean velocity
are observed when the boundary condition changes
from weak to strong slip. Taliadorou et al. (2008) re-
ported extrusion simulations showing that severe com-
pressibility combined with inertia may lead to stable
steady-state free surface oscillations, similar to those
observed experimentally with liquid foams. Mitsoulis
and Hatzikiriakos (2009) carried out steady flow simu-
lations of polytetrafluoroethylene (PTFE) paste extru-
sion under severe slip taking into account the significant
compressibility of these pastes.

The above material flows are weakly compressible,
which means that the Mach number, Ma, is low, i.e.
Ma << 1. The latter number is defined as the ratio
of the characteristic speed of the flow to the speed
of sound in the fluid. Georgiou and Crochet (1994)
pointed out that taking into account the weak com-
pressibility of the fluid may not have an effect on
the steady flow solution but changes dramatically the
flow dynamics. Similarly, Felderhof and Ooms (2011)
studied the flow of a viscous compressible fluid in a cir-
cular tube generated by an impulsive point source and
reported that compressibility has a significant effect on
the flow dynamics in confined geometries.

The combination of slip with compressibility is
also very important in rarefied gas flows through mi-
crochannels and need to be taken into account in the
micro-electro-mechanical systems technology (Beskok
and Karniadakis 1999; Zhang et al. 2009). There are
of course some important differences from the liquid
flow problem under consideration: (a) the continuum
assumption may not be valid and slip velocity is ex-
pressed in terms of the Knudsen number Kn (the ratio
of the mean free path of the gas to the characteristic
dimension of the tube); (b) the ideal gas law is used
instead of the linear equation of state; and (c) the flow is

non-isothermal. Arkilic and Schmidt (1997) and, more
recently, Qin et al. (2007) derived perturbation approx-
imations for compressible gas flow in microchannels
with slip at the wall using the aspect ratio as the pertur-
bation parameter. According to conventional theory,
continuum-based models for channels apply as long as
the Knudsen number is lower than 0.01 (Kohl et al.
2005). On the other hand, according to Venerus and
Bugajsky (2010), effects of slip in microchannels can
be neglected for Knudsen numbers less than 0.001.
Therefore, the present analysis concerns not only flows
of compressible liquids with slip at the wall but also gas
flows for 0.001 < Kn < 0.01.

The paper is organized as follows: first, the govern-
ing equations and boundary conditions for the steady,
compressible plane Poiseuille flow with slip at the wall
are presented; the results for the axisymmetric flow
are provided in the Appendix. Both the state and slip
equations are assumed to be linear. Then, the per-
turbation method in terms of the primary variables
with the isothermal compressibility as the perturbation
parameter is outlined and a solution is derived up to the
second order. Explicit analytical solutions for the two
non-zero velocity components, the pressure, and the
density are obtained. Finally, the results are analyzed
and discussed with the emphasis given on the combined
effects of slip and compressibility on the pressure drop
and the Darcy friction factor.

Governing equations

We consider the steady, laminar plane Poiseuille flow
of a Newtonian fluid in a slit of length L* and width
2H* in Cartesian coordinates (x*, y*), as shown in
Fig. 1. Note that throughout the text, dimensional
quantities are denoted by a star; symbols without a
star denote dimensionless variables and numbers. It is

*
xu

*
wu

* * *
w wuτ β  =

*L

*H
*x

*y

Fig. 1 Geometry and symbols for plane Poiseuille flow with slip
along the wall
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assumed that slip occurs along the wall according to a
linear slip equation,

τ ∗
w = β∗u∗

w, (1)

where τ ∗
w is the wall shear stress, β* is the constant slip

coefficient, and u∗
w is the slip velocity. The limiting case

β*→ ∞ corresponds to the no-slip boundary condition
(u∗

w → 0), whereas β* = 0 corresponds to the theoreti-
cal case of full slip in which the velocity profile is plug.

Let us consider first the incompressible, one-
dimensional flow under constant pressure gradient,
(−∂p∗/∂x∗). The velocity u∗

x (y∗) is given by

u∗
x

(
y∗) = H∗

β∗

(
−∂p∗

∂x∗

)
+ 1

2η∗

(
−∂p∗

∂x∗

)
(
H∗2 − y∗2)

(2)

where η* is the constant viscosity. Obviously, the slip
velocity is given by

u∗
w = u∗

x

(
H∗) = H∗

β∗

(
−∂p∗

∂x∗

)
(3)

If the fluid is compressible, the flow becomes bidirec-
tional and the two velocity components, u∗

x and u∗
y, are

in general functions of both x* and y*. The isothermal
compressibility is a measure of the ability of the ma-
terial to change its volume under applied pressure at
constant temperature. This is defined by

κ∗ ≡ − 1
V∗

0

(
∂V∗

∂p∗

)

p∗
0,T

∗
0

(4)

where V* is the specific volume and V∗
0 is the specific

volume at the reference pressure, p∗
0, and temperature,

T∗
0 . Assuming that κ* is constant, the above equation

can be integrated yielding an exponential equation of
state. In the present work, however, we employ a linear
equation of state,

ρ∗ = ρ∗
0

[
1 + κ∗ (

p∗ − p∗
0

)]
, (5)

where ρ* is the density and ρ∗
0 is the density at the

reference pressure and temperature. Equation 5 ap-
proximates well the exponential equation of state for
small values of κ* and for small pressures. The value of
κ* is of the order of 0.001 MPa−1 for molten polymers
(Hatzikiriakos and Dealy 1994) and increases by an
order of magnitude (0.0178–0.0247 MPa−1) in the case
of PTFE pastes (Mitsoulis and Hatzikiriakos 2009).
Mitsoulis and Hatzikiriakos (2009) suggest that for
weakly compressible flows, the values of κ* range
between 0 (incompressible fluids) and 0.02 MPa−1

(slightly to moderately compressible materials). The
linear equation of state can also be viewed as a special
case of the well-established Tait equation and its vari-
ants for liquids and polymer melts (Guaily et al. 2011).

In order to dedimensionalize the governing equa-
tions and the boundary conditions of the flow, we scale
x* by the length of the channel L*, y* by the channel
half-width H*, the density ρ* by the reference density
ρ∗

0 , the horizontal velocity, u∗
x, by the mean velocity at

the channel exit U*,

U∗ ≡ Ṁ∗

ρ∗
0 H∗W∗

where Ṁ∗ is the mass flow rate and W* is the unit length
in the z*-direction, and the transversal velocity, u∗

y, by
U∗ H∗/L∗. The Mach number is defined by

Ma ≡ U∗

σ ∗ (6)

where

σ ∗ ≡
[
γ

(
∂p∗

∂ρ∗

)

T∗

]1/2

=
(

γ

κ∗ ρ∗
0

)1/2

(7)

is the speed of sound in the fluid, γ being the heat
capacity ratio or adiabatic index (γ ≡ c∗

p/c∗
v).

With the above scalings, the dimensionless slip equa-
tion becomes

τw = B uw (8)

where all variables are now dimensionless and B is the
slip number defined by

B ≡ β∗ H∗

η∗ (9)

The dimensionless velocity profile in the case of incom-
pressible flow becomes

ux(y) = 3
B + 3

+ 3B
2 (B + 3)

(
1 − y2) (10)

or

ux (y) = B̄
B

+ B̄
2

(
1 − y2) (11)

where

B̄ ≡ 3B
B + 3

(12)

is an auxiliary slip number. In the no-slip limit, B → ∞
and B → 3. Therefore,

u(0)
x (y) = 3

2

(
1 − y2) (13)
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which is the standard velocity profile for incompressible
flow with no slip at the wall.

By demanding that the dimensionless pressure drop
in the case of incompressible flow with no slip at
the wall be equal to 1, the pressure scale should be
3η∗L∗U∗/H∗2. The dimensionless form of the equation
of state (Eq. 5) is then

ρ = 1 + εp (14)

where

ε ≡ 3κ∗η∗L∗U∗

H∗2 (15)

is the compressibility number. The Mach number takes
the form

Ma =
√

εα Re
3γ

⇔ ε =
(

3γ

αRe

)
Ma2 (16)

The present work deals with weakly compressible
flows, e.g. Ma < 0.3. Assuming that γ is of the order
of unity, there must be εαRe < 0.27.

The dimensionless forms of the continuity and the
x-and y-momentum equations in the case of compress-
ible Poiseuille flow under the assumptions of zero
bulk velocity and zero gravity (Taliadorou et al. 2009)
are

∂ (ρux)

∂x
+ ∂

(
ρuy

)

∂y
= 0 (17)

αRe ρ

(
ux

∂ux

∂x
+ uy

∂ux

∂y

)
= −3

∂p
∂x

+ α2 ∂2ux

∂x2 + ∂2ux

∂y2

+α2

3

(
∂2uy

∂x∂y
+ ∂2ux

∂x2

)
(18)

α3 Reρ
(

ux
∂uy

∂x
+uy

∂uy

∂y

)
= −3

∂p
∂y

+α4 ∂2uy

∂x2 + α2 ∂2uy

∂y2

+α2

3

(
∂2ux

∂x∂y
+ ∂2uy

∂y2

)
(19)

where

Re ≡ ρ∗
0 H∗U∗

η∗ (20)

is the Reynolds number, and

α ≡ H∗

L∗ (21)

is the aspect ratio of the channel.

As for the boundary conditions, the usual symmetry
conditions are applied along the symmetry plane; along
the wall ux obeys the slip equation (Eq. 8) while uy van-
ishes. Moreover, the pressure at the upper right corner
of the flow domain is set to zero and the mass flow
rate at the exit plane should be equal to 1. Therefore,
the conditions that close the system of the governing
equations are the following:

∂ux

∂y
(x, 0) = uy(x, 0) = 0 (22)

−∂ux

∂y
(x, 1) = B ux(x, 1) and uy(x, 1) = 0 (23)

p(1, 1) = 0 (24)

∫ 1

0
ρuxdy

∣
∣
∣∣
x=1

= 1 (25)

As in Venerus (2006) and Taliadorou et al. (2009), no
boundary conditions for the velocity are imposed at
the entrance and exit planes (x = 0 and 1). The flow
problem defined by Eqs. 14, 17–19 and 22–25 involves
four dependent variables, ux, uy, p, and ρ, and four
dimensionless numbers: ε, B, Re and α. Even though
the density ρ can be eliminated by means of Eq. 14,
it is kept in order to facilitate the derivation of the
perturbation solution.

Perturbation solution

The present work deals with weakly compressible
flows, that is the Mach number is small, typically Ma
< 0.3. From Eq. 16, it is deduced that as long as Ma is
small and γ /(αRe) is of the order of unity or smaller,
the compressibility number ε is also a small number
that can be used as the perturbation parameter. We
thus perturb all primary variables, ux, uy, p, and ρ, as
follows:

ux = u(0)
x + εu(1)

x + ε2u(2)
x + O

(
ε3

)

uy = u(0)
y + εu(1)

y + ε2u(2)
y + O

(
ε3

)

p = p(0) + εp(1) + ε2 p(2) + O
(
ε3

)

ρ = ρ(0) + ερ(1) + ε2ρ(2) + O
(
ε3

)
(26)

By substituting expansions (Eq. 26) into the governing
Eqs. 14, 17–19 and also in the boundary conditions
22–25 and by collecting the terms of a given order in
ε the corresponding perturbation equations and the
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boundary conditions are obtained. These can be found
in Taliadorou et al. (2009) who present the more gen-
eral case with non-zero bulk viscosity. As for the slip
equation, it can easily be shown that

−∂u(k)
x

∂y
(x, 1) = B u(k)

x (x, 1), k = 0, 1, 2, . . . (27)

where k is the order of the perturbation. The deriva-
tion of the leading-order solutions, which is based
on the assumption that the transverse velocity uy

is zero, is straightforward and the methodology is
described in detail by Poyiadji (2012). The pertur-
bation solution of the flow problem up to second
order is:

ux = B
2B

(
B+2−By2)

+ ε

[

− B
2

6B

(
B+2−By2)(1−x)−αReB

4

7560B2

[
5B2+45B+98−3

(
11B2+77B+140

)
y2+35

(
B2+5B+6

)
y4−7

(
B2+3B

)
y6]

]

+ ε2

[
B

3

12B

(
B + 2 − By2) (1 − x)2 − αReB

5

7560B4

× [
19B4+171B3+658B2+1260B+840+3

(
3B4+21B3−140B

)
y2−35

(
B4+5B3+6B2)y4+7

(
B4+3B3)y6]

× (1−x)− α2 B
4

648B2

[
B2+3B+8 + 2

(
B2+7B

)
y2 − 3

(
B2 + 3B

)
y4] − α2 Re2 B

7

314344800B5

× [
2193B5 + 35088B4 + 221641B3 + 731346B2 + 1409100B + 1358280

− 4
(
2839B5 + 39746B4 + 239316B3 + 803880B2 + 1576575B + 1455300

)
y2

+ 2310
(
B5+12B4+111B3+602B2+1470B+1260

)
y4+924

(
13B5+130B4+448B3+560B2+105B

)
y6

−5775
(
B5 + 8B4 + 21B3 + 18B2) y8 + 616

(
B5 + 6B4 + 9B3) y10]

]

+ O
(
ε3) (28)

uy = ε2 αReB
5

11340B2 y
(
1 − y2) [

5B2 + 45B + 98 − 2
(
3B2 + 16B + 21

)
y2 + (

B2 + 3B
)

y4] + O
(
ε3) (29)

p = B
3

(1 − x) + ε

[

− B
2

18
(1 − x)2 + αReB

4

315B3

(
2B3 + 14B2 + 35B + 35

)
(1 − x) + α2 B

2

54

(
1 − y2)

]

+ ε2

[
B

3

54
(1−x)3− αReB

5

945B3

(
4B3+28B2+70B+70

)
(1−x)2− α2 B

4

486B2

[
11B2+53B+72−3

(
B2 + 3B

)
y2] (1 − x)

+ α2 Re2 B
7

29469825B6

(
3044B6+42616B5+267036B4+951720B3+1964655B2+2182950B+1091475

)
(1 − x)

+ α3 ReB
5

204120B3

[
97B3 + 889B2 + 2310B + 1260 − 3

(
79B3 + 553B2 + 1120B + 420

)
y2

+175
(
B3 + 5B2 + 6B

)
y4 − 35

(
B3 + 3B2) y6]

]

+ O
(
ε3) (30)
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ρ =1+ε
B
3

(1 − x)

+ ε2

[

− B
2

18
(1−x)2+ αReB

4

315B3 (2B3+14B2

+35B+35)(1−x)+ α2 B
2

54

(
1−y2)

]

+O
(
ε3) (31)

Letting B → ∞ we get the solution obtained by
Taliadorou et al. (2009) and Venerus and Bugajsky
(2010) for flow with no-slip at the wall. The perturba-
tion solution of the axisymmetric flow is given in the
Appendix.

The volumetric flow rate,

Q (x) ≡
∫ 1

0
ux (x, y) dy (32)

is given by

Q(x)=1−ε
B
3

(1 − x)

+ ε2

[
B

2

6
(1−x)2− αReB

4

315B3

(
2B3+14B2+35B+35

)

× (1−x)− α2 B
3

405B
(2B+5)

]

+O
(
ε3) (33)

Discussion

Let us first discuss the effect of the slip number on
the two velocity components. In creeping flow (Re =
0), the transverse velocity component, uy, is zero at
second order. The effect of the slip number B on the
transverse velocity is shown in Fig. 2. The transverse
velocity is reduced as the slip number is reduced from

2

yu

Reα ε

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

Fig. 2 Effect of the slip number on the transverse velocity
component

infinity (no slip) to zero (full-slip). As slip becomes
stronger the velocity in the flow direction tends to be-
come more uniform and thus the flow tends to become
one-dimensional. Given that the transverse velocity
component is always positive (Eq. 29), the streamlines
of the flow under study are either horizontal or have a
slight positive slope which reaches its maximum value
roughly in the middle of the y-interval [0,1]. The effect
of slip on the transverse velocity component is more
clearly illustrated in Fig. 3 where the reduced mean
value,

uy

αRe ε2 ≡ 1
αRe ε2

∫ 1

0
uy(y)dy

= B3

1120 (B+3)5

(
19B2+209B+504

)+O(ε3) (34)

is plotted versus the slip number B. Appreciable slip
occurs in the range 1 < B < 100 and slip may be
considered as strong for B < 1. In conclusion, the
unidirectionality assumption is valid when the flow is
creeping and/or slip is strong.

In Fig. 4, the contours of the velocity in the flow
direction for B = ∞ (no slip) and 1 (strong slip) with Re
= 0, ε = 0.1, and α = 0.01 are compared. Even though
the contour patterns are similar, the main difference is
that the range of the velocity values, which in the case
of no-slip is the interval [0, 1.5], shrinks with slip. This
is demonstrated in Fig. 5, where the velocity profiles
at the inlet-, mid-, and outlet-planes are plotted for
B = ∞ and 1 (moderate slip). In the extreme case of
full slip, ux is uniform and equal to unity at the channel
exit.

The effect of the compressibility number ε on the
contours of ux for Re = 0, α = 0.01 and B = 1 (strong
slip) is illustrated in Fig. 6. The incompressible flow
(ε = 0) is one-dimensional and thus the contour lines

10-2 100 102 104
0

0.005

0.01

0.015

0.02

B

2

yu

Reα ε  

Full slip

No slip

Fig. 3 The mean transverse velocity as a function of the slip
number



Rheol Acta (2012) 51:497–510 503

 

 

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

0.8

0.9

1

1.1

Fig. 4 Contours of ux for B = ∞ (no slip) and 1 (strong slip);
Re = 0, ε = 0.1, and α = 0.01

are horizontal. In the case of compressible flow (ε =
0.1) fluid particles accelerate as they are decompressed
downstream, due to the conservation of mass. As a
result, the contours remain parallel only near the exit
plane and tend towards the plane of symmetry up-
stream.

In Fig. 7, the velocity contours obtained with Re = 0
and 100 and B = 1, ε = 0.1, and α = 0.01 are shown.
The results are essentially the same, since higher-order
contributions contain the product αRe which is small.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0.6

0.8

1

1.2

x=0

x=1

x=1

x=0

Fig. 5 Profiles of the velocity in the flow direction at x = 0, 0.5
and 1 for B = ∞ (no slip) and 1; ε = 0.1, Re = 0, and α = 0.01
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0.8

0.9

1

1.1

Fig. 6 Contours of ux for ε = 0 (incompressible flow) and 0.1;
Re = 0, B = 1 and α = 0.01

To magnify the effect of αRe, the velocity contours for
a shorter channel with aspect ratio α = 0.1 are plotted
in Fig. 8. It is observed that the effect of Reynolds
number becomes significant. The acceleration of the
fluid particles within the slit increases with inertia.
Note that, the Mach number corresponding to Re =
100, ε = 0.1, and α = 0.1 is equal to 0.6 (γ is of
unity order) and the flow can no longer be considered
weakly compressible. However, the asymptotic expan-
sions are still valid since the compressibility number is
still small. Note that, since Re = 3 (γ /aε) Ma2, when
the compressibility number ε and the Mach number
are small (<0.3), solutions are admissible only below
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Fig. 7 Contours of ux for Re = 0 and 100; α = 0.01 (long channel),
B = 1, and ε = 0.1
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Fig. 8 Contours of ux for Re = 0 and 100; α = 0.1 (shorter
channel), B = 1, and ε = 0.1

a critical value of the Reynolds number (for example,
the critical value for Re is 270 for the data in Fig. 7
and is reduced to 27 in Fig. 8 where α is increased from
0.01 to 0.1). Generally, as the channel becomes shorter
(α increasing) the admissible Reynolds numbers get
smaller—the flow tends to creeping flow.

Another way to investigate the validity of our so-
lution arises by looking into the volumetric flow rate
given by Eq. 33. Since the solution is up to second order,
Q is a parabolic function of ε for any value of x. At the
exit plane,

Q (1) = 1 − α2 B2 (2B + 5)

15 (B + 3)3 ε2 + O
(
ε3) (35)

Obviously, Q(1) is slightly below unity, given that αε

is small. Since the flow is compressible, the volumetric
flow rate is reduced as we move upstream. A solution
is assumed to be admissible if the volumetric flow rate
Q(0) at the inlet is a decreasing function of ε and
positive. In Fig. 9, Q(0) is plotted versus ε for various
Reynolds numbers, with B = ∞ (no slip) and α = 0.01.
In creeping flow (Re = 0), solutions are admissible for
ε < 1/3. As the Reynolds number is increased, Q(0)
decreases faster with ε and may become negative for
even smaller compressibility numbers. In other words,
given the compressibility number, the aspect ratio, and
the Mach number, solutions are admissible only below
a critical value of the Reynolds number, which has also
be noted above. As shown in Fig. 10, slip weakens
the compressibility effects and reduces the reduction
of the volumetric flow rate upstream. As a result, slip
extends the range of admissible solutions by shifting the
minimum of Q(0) to the right (Fig. 11).
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Fig. 9 The volumetric flow rate at the inlet plane for different
Reynolds numbers with α = 0.01 and no slip at the wall (B = ∞)

From Eq. 31, we see that the density ρ at the exit
plane is 1 at leading order. At the inlet plane, where
the density obviously is maximized, we have

ρ (x = 0) = 1 + B
B + 3

ε + O
(
ε2) (36)

The maximum value for ρ, obtained in the case of no
slip (B = ∞), is given by

ρmax = 1 + ε + O
(
ε2) (37)

and is independent of Re and α. In creeping flow, ε

< 1/3 and thus the maximum admissible value of the
density for any α is ρmax = 4/3, which restricts the range
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Fig. 10 Variations of the slip velocity and the volumetric flow in
the channel for different slip numbers, ε = 0.1, Re = 0 and α =
0.01
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Fig. 11 Effect of slip number on the volumetric flow rate at the
entrance plane; Re = 0, α = 0.01

of validity of the solution. However, more compression,
which is expected for very small values of α (for very
long channels), can be obtained only if higher values
of the compressibility number are admissible, i.e., for
lower values of the Reynolds number. In other words,
moderately compressible flow is associated with finite,
moderate Reynolds numbers. Recalling that for weakly
compressible flow we have αεRe < 0.27, such a combi-
nation of ε and Re is allowed only for smaller values of
the aspect ratio α.

Generally, slip reduces the pressure in the channel
and the required pressure drop. In Fig. 12, we show
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Fig. 12 Variation of the pressure along the centreline for various
slip numbers; ε = 0.1, Re = 0, α = 0.01

the distribution of the pressure along the centreline for
different slip numbers, ε = 0.1, Re = 0 and α = 0.01.
As the slip number tends to zero (full slip) the pressure
tends to become zero everywhere. Following Venerus
and Bugajsky (2010) we calculate the mean pressure
drop as follows

�p ≡ p(0) − p(1) ≡
∫ 1

0

[
p (0, y) − p (1, y)

]
dy (38)

which gives

�p= B
3

−
[

B
2

18
− αReB

4

315B3

(
2B3+14B2+35B+35

)
]

ε

+
[

B
3

54
−2αReB

5

945B3

(
2B3+14B2+35B+35

)− α2 B
4

243B2

× (
5B2 + 25B + 36

) + α2 Re2 B̄7

29469825B6

× (
3044B6+42616B5+267036B4+951720B3

+1964655B2 + 2182950B + 1091475
)
]

ε2

+O
(
ε3) (39)

Equation 39 gives the pressure drop for channel
flow of a compressible Newtonian fluid with slip at
the wall. This is a generalization of the result provided
by Venerus and Bugajsky (2010) for the no-slip case
(B = ∞):

�p = 1 −
(

1
2

− 18
35

αRe
)

ε

+
(

1
2

− 5
3
α2− 36

35
αRe+ 3044

13475
α2 Re2

)
ε2+O

(
ε3)

(40)

(It should be noted that the Reynolds number in
Venerus and Bugajsky (2010) is twice the present
Reynolds number.) It is clear that the required pres-
sure drop decreases with compressibility and increases
with inertia, as illustrated in Fig. 13. The effect of
slip is illustrated in Fig. 14 where the pressure drops
for various slip numbers are plotted. Slip leads to the
reduction of the pressure difference required to drive
the flow and consequently alleviates compressibility
effects. This is, of course, expected and also noted in
previous works. For example, Zhang et al. (2009), in
their analysis of slip flow characteristics of compressible
gases in microchannels, reported that “slip effect makes
the flow less compressible”. For the set of values used
to construct Figs. 13 and 14, the wall and centerline
pressures are essentially constant, i.e. the pressure is
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Fig. 13 Effect of the Reynolds number on the mean pressure
drop; no slip, α = 0.01

essentially a function of x. Hence, the pressure contours
are practically straight lines, parallel to the inlet and
exit planes (Fig. 15). This is not the case for short
channels, e.g. when α = 1, since the contributions of the
higher-order terms become more important; this effect
is illustrated in Fig. 16.

The mean pressure drop for axisymmetric Poiseuille
flow of a compressible Newtonian fluid with slip at the
wall, defined by

�p ≡ p (0) − p (1) ≡ 2
∫ 1

0

[
p (0, z) − p (1, z)

]
rdr (41)
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Fig. 14 Effect of the slip number on the mean pressure drop;
Re = 0, α = 0.01
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Fig. 15 Pressure contours for different slip numbers, ε = 0.2
Re = 0, and α = 0.01 (long channel)

is:

�p = B
8

−
[

B
2

128
− αReB

3

2048B2

(
B2 + 4B + 8

)
]

ε

+
[

B
3

1024
− αReB

4

8192B2

(
B2 + 4B + 8

) − α2 B
4

294912B2

×(
49B2 + 300B + 576

) + α2 Re2 B
6

14155776B5

×(
2B5+24B4+171B3+648B2+1080B+864

)
]

ε2

+ O
(
ε3) (42)
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Fig. 16 Pressure contours for different compressibility numbers,
ε = 0.2, Re = 0, and α = 1 (short channel)
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The above equation generalizes the result in Venerus
(2006) for the no-slip case:

�p = 1 −
(

1
2

− αRe
4

)
ε

+
(

1
2

− αRe
2

− 49α2

72
+ α2 Re2

27

)
ε2+O

(
ε3) (43)

We have derived a solution for Eqs. 17–19 and 22–
25 which is valid for all values of the channel aspect
ratio α. It is, moreover, obvious from Eq. 19 that
we recover the lubrication approximation (α2 << 1)
with the transverse pressure gradient being zero when
αRe << 1 if all terms of order α2 or higher are neglected
(the aspect ratio α cannot be identically zero, since, in
this limiting case, the pressure scale, i.e. the pressure
required to drive the flow in a channel of infinite length
with no slip at the wall, is infinite). Therefore, our
solution gives the lubrication-theory solution in the
presence of slip if we neglect the terms of order α2

or higher and assume that αRe << 1. The transverse
velocity component vanishes, the pressure and the den-
sity are functions of x only, and the pressure drop is
given by

�p = B
3

− B
2

18
ε + B

3

54
ε2 + O

(
ε3) (44)

The velocity in the flow direction is simplified to:

ux = B
2B

(
B + 2 − By2)

×
[

1− B
3

(1−x) ε+ B
2

6
(1−x)2 ε2

]

+O
(
ε3) (45)

As already discussed, such a solution is admissible if
Q(0) is a decreasing function of the compressibility
number ε. This condition is satisfied when

ε <
B + 3

3B
= 1

B
(46)

If a more refined solution is desired, one could con-
struct perturbation expansions using α as the perturba-
tion parameter (for any compressible flow) or double
asymptotic expansions where both ε and α are pertur-
bation parameters.

In the case of the axisymmetric Poiseuille flow, the
average Darcy friction factor, defined by

f ≡ − 8
Re

∫ 1

0

∂uz

∂r
(1, z) dz (47)

is of interest (Housiadas et al. 2012). Integrating the
above equation yields

Re f
32

= B
B + 4

×
{

1− B
B + 4

[
1
2

− B
12 (B+4)

αRe
]

ε + B2

(B + 4)2

×
[

1
2

− 13B + 12
72 (B + 4)

α2 − B2 + 2B + 4
4B (B + 4)

αRe

+17B3+78B2+360B+1440
2160 (B+4)3 α2 Re2

]
ε2

}

+O
(
ε3) (48)

In the no-slip limit (B → ∞), one finds that

Re f
32

= 1−
(

1
2

− 1
12

αRe
)

ε

+
(

1
2

− 13
72

α2− 1
4
αRe+ 17

2160
α2 Re2

)
ε2+O

(
ε3)

(49)

Venerus (2006) compared the pressure drop and the
friction factor for the no-slip case, defined respec-
tively by Eqs. 43 and 49, and noted that the effect
of inertia on pressure drop is significantly larger than
on drag force. He also pointed out that the one-
dimensional models for the no-slip case overpredict the
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Fig. 17 The average Darcy friction factor for the axisymmetric
Poiseuille flow versus αRe for various slip numbers; ε = 0.2 and
α = 0.01
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Fig. 18 Average Darcy friction factor for the axisymmetric
Poiseuille flow versus the slip number for Re = 0 and 50; ε = 0.2
and α = 0.1

friction factor by roughly 10%. Similarly to the pressure
drop, the average Darcy friction factor is reduced dra-
matically with slip, as shown in Fig. 17. For a given slip
number, it is essentially constant for a wide range of the
parameter αRe corresponding to the weak compress-
ibility regime and then increases rapidly. In Fig. 18, the
average Darcy friction factor for Re = 0 and 50, ε =
0.2 and α = 0.1 is plotted versus the slip number B. It
can be seen that the friction factor is reduced with slip

following a sigmoidal curve and also that the Reynolds
number effect becomes weaker by slip.

Conclusions

We have derived perturbation solutions of the weakly
compressible plane and axisymmetric Poiseuille flows
with Navier’s slip at the wall thus generalizing previ-
ous results by Taliadorou et al. (2009) and Venerus
and Bugajsky (2010). The density is assumed to be a
linear function of pressure and the associated isother-
mal compressibility number is used as the perturbation
parameter. In the proposed derivation, the primary
flow variables, i.e., the two velocity components, the
pressure, and the density, are perturbed. Solutions have
been obtained up to second order. The corresponding
expressions of the volumetric flow rate and the pressure
drop are also provided and discussed. As expected, slip
weakens the y-dependence of the solution. The unidi-
rectionality assumption is valid if the Reynolds number
is very small and/or slip along the wall is strong. We
are currently studying approximate solutions of weakly
compressible Newtonian Poiseuille flows with pressure-
dependent viscosity.

Appendix

In the case of compressible, axisymmetric Newtonian
Poiseuille flow with slip at the wall, the perturbation
solution is as follows:

uz(r, z)= B
4B

(
B+2−Br2

)

+ε

[

− B
2

32B

(
B+2−Br2

)
(1−z)+ αReB

4

73728B2

[
−2

(
B2+10B+24

)
+9

(
B2+8B+16

)
r2−9

(
B2+6B+8

)
r4+2

(
B2+4B

)
r6

]
]

+ ε2

[
3B

3

512B

(
B+2−Br2

)
(1−z)2 − αReB

5

196608B4

×
[
B4+10B3+72B2+240B+192+6

(
B4+8B3+12B2−16B

)
r2−9

(
B4+6B3+8B2

)
r4+2

(
B4+4B3

)
r6

]

× (1−z) + α2 B
4

294912B2

[
B2 + 32B − 48 − 4

(
7B2 + 48B

)
r2 + 27

(
B4 + 4B3

)
r4

]
+ α2 Re2 B

7

459848300B5

×
[
43B5+774B4+1328B3−42720B2−268800B−460800−200

(
5B5+80B4+360B3−96B2−4032B−6912

)
r2

+100
(

33B5+462B4+2112B3+2736B2−3456B−6912
)

r4−1200
(

3B5+36B4+148B3+224B2+64B
)

r6

+1425
(

B5 + 10B4 + 32B3 + 32B2
)

r8 − 168
(

B5 + 8B4 + 16B3
)

r10
]
]

+ O
(
ε3

)
(50)
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ur (r) = ε2 αReB
5

1179648B2 r
(
1 − r2) [

4
(
B2 + 10B + 24

) − (
5B2 + 32B + 48

)
r2 + (

B2 + 4B
)

r4] + O
(
ε3) (51)

p (r, z) = B
8

(1 − z) + ε

[

− B
2

128
(1 − z)2 + αReB

4

16384B3

(
B3 + 8B2 + 24B + 32

)
(1 − z) + α2 B

2

768

(
1 − r2)

]

+ ε2

[

− B
3

1024
(1 − z)3 − αReB

5

65536B3

(
B3 + 8B2 + 24B + 32

)
(1 − z)2 − α2 B

4

147456B2

× [
29B2 + 168B + 228 − 9

(
B2 + 4B

)
r2] (1 − z) + α2 Re2 B

7

113246208B6

× (
2B6 + 32B5 + 267B4 + 1332B3 + 3672B2 + 5184B + 3456

)
(1 − z) + α3 ReB

5

14155776B3

× [
19B3 + 202B2 + 576B + 288 − 18

(
3B3 + 24B2 + 52B + 16

)
r2 + 45

(
B3 + 6B2 + 8B

)
r4

−10
(
B3 + 4B2) r6]

]

+ O
(
ε3) (52)

ρ(r, z) = 1+ε
B
8

(1−z) +ε2

[

− B
2

128
(1−z)2 + αReB

4

16384B3

(
B3 +8B2 +24B+32

)
(1−z)

α2 B
2

768
(1 − r2)

]

+O
(
ε3) (53)

In the above solution, z* is scaled by the tube length
L*, r* by the tube radius R*, the axial velocity by U∗ =
Ṁ∗/

(
πρ∗

0 R∗2
)
, the radial velocity by U∗ R∗/L∗, and the

pressure by 8η∗L∗U∗/R∗2. The dimensionless numbers
are defined as follows:

α ≡ R∗

L∗ , Re ≡ ρ∗
0 U∗ R∗

η∗ , ε ≡ 8κ∗η∗L∗U∗

R∗2 ,

B ≡ β∗ R∗

η∗ , B ≡ 8B
B + 4

(54)

The volumetric flow rate,

Q (z) ≡ 2
∫ 1

0
uz (r, z) rdr (55)

is given by

Q (z)=1−ε
B
8

(1 − z)

+ ε2

[
3B

2

128
(1−z)2− αReB

3

2048B2

(
B2+4B+8

)
(1−z)

− α2 B
3

9216B
(B + 3)

]

+ O
(
ε3) (56)

For ε = 0 the standard fully-developed Poiseuille flow
solution with slip at the wall is recovered with

uz (r) = B
2B

+ B
4

(
1 − r2) (57)
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