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ABSTRACT

We consider the annular Poiseuille flow of a Bingham fluid with wall slip. First, the analytical solution is derived for the case in which
Navier-slip conditions are applied at the two cylinders. A sliding (pure plug) regime is observed below a critical pressure gradient, and a
yielding regime is eventually encountered above another critical pressure gradient in which the material yields near the two walls and moves
as a plug in a core region. An intermediate semi-sliding regime is observed when different slip laws apply at the two walls in which the mate-
rial yields only near the wall corresponding to weaker slip and the unyielded plug slides along the other. Next, we consider the case where
wall slip occurs above a critical wall shear stress, the slip yield stress, which is taken to be less than the yield stress, in agreement with experi-
mental observations. In this case, a no-flow regime is observed below a critical pressure gradient, followed by the sliding and yielding regimes.
The critical values of the pressure gradient defining the various flow regimes are determined, and the closed-form solutions are provided for
all cases. These are compared with available theoretical and experimental results in the literature.
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I. INTRODUCTION

Yield-stress or viscoplastic materials are encountered in many
processes of industrial interest, such as in pharmaceutics, cosmetics,
food processing, oil drilling and transport, construction, and waste
management, as well as in biophysical and geophysical processes.1–4

These include various types of materials, such as concentrated suspen-
sions, colloidal gels, emulsions, foams, pastes, drilling fluids, granular
materials, nanocomposites, slurries, semisolid materials, biofluids (e.g.,
blood), and geomaterials.5,6 Comprehensive reviews of viscoplasticity
have been reported by Barnes,1 Balmforth et al.,2 Coussot,3,5 Malkin
et al.,4 and Frigaard.7

Ideal viscoplastic materials behave as elastic solids when the
applied stress is below a threshold value, the yield stress, s�y ; once the
latter value is exceeded, the material behaves as a liquid. This dual
behavior can be described by a two-branch constitutive law, such as
the Bingham-plastic model,8 the scalar form of which reads as follows:

_c� ¼ 0; s� � s�y ;

s� ¼ s�y þ l� _c�; s� > s�y ;

(
(1)

where s� is the shear stress, _c� is the shear rate, and l� is the plastic
viscosity. It should be noted that throughout this paper stars denote

dimensional quantities. The two-branch form of the viscoplastic consti-
tutive equation requires the determination of the so-called yielded
(fluid) and unyielded (rigid) regions of the flow field, corresponding,
respectively, to s� > s�y and s� � s�y . The Newtonian model is recov-
ered by setting s�y ¼ 0. A popular generalization of the Bingham model
is the Herschel–Bulkley model, which is a combination of the Bingham
and power-law models.9 Being non-linear, this model rules out the pos-
sibility of deriving analytical solutions in many rheometric flows of
interest, with the exception of certain values of the power-law exponent.

It is well established that yield stress materials tend to slip at the
walls.1,10 As noted by Wilms et al.,11 the apparent wall slip is an inte-
gral part of the pressure-driven flow of concentrated suspensions. In
the case of suspensions, this phenomenon is attributed to the forma-
tion of a depleted slip layer near the wall where the particle concentra-
tion is much lower than in the bulk, which results in a steep velocity
gradient interpreted as apparent slip.1,12,13 The slip velocity, u�w,
defined as the relative velocity of the fluid particles adjacent to a wall
with respect to that of the wall, is assumed to be a function of the wall
shear stress, s�w. The simplest slip equation is the one proposed by
Navier,14

s�w ¼ b�u�w; (2)
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where b� is the slip coefficient, which generally varies with tempera-
ture, normal stress and pressure, the fluid properties, the materials of
construction, and the wall surface characteristics.15,16 Ortega-Avila
et al.12 note, in particular, that the slip coefficient depends on the slip
layer thickness and the viscosity of the fluid constituting this layer. It
should be noted that wall slip becomes stronger as b� is reduced.
When b� ! 1, Eq. (2) becomes equivalent to the no-slip boundary
condition (u�w ¼ 0), while when b� ¼ 0 “full slip” is achieved. Navier’s
slip law is generalized to the power-law model15

s�w ¼ b�u�sw ; (3)

where s is the exponent, also referred to as the slip index.17 This model
is often employed with viscoplastic microgels16 and highly concen-
trated suspensions.11

Experiments indicate that slip is usually observed above a thresh-
old value of the wall shear stress, s�c , which is called sliding or slip yield
stress.15,18 Thus, Eq. (3) is further generalized as follows:

u�w ¼ 0; s�w � s�c ;

s�w ¼ s�c þ b�u�sw ; s�w > s�c :

(
(4)

Equation (4) has been employed for various yield-stress materials, for
example, for Carbopol gels19 and hard-sphere colloidal suspensions.20

Notwithstanding the obvious exception of non-viscoplastic generalized
Newtonian fluids, for example, Newtonian and power-law fluids,
exhibiting slip with non-zero slip yield stress, to our knowledge, in all
experimental reports on viscoplastic materials, the slip yield stress is
below the yield stress (see Ref. 21 and references therein).

The dual behavior of slip equation (4) is similar to that of the
Bingham plastic constitutive equation. Different flow regimes are
observed depending on the relative values of the yield stress s�y and the
slip yield stress s�c . The number of these different regimes increases in
rheometric flows with two characteristic wall shear stresses, such as
the circular Couette and the annular Poiseuille flows. As a result of
slip, the apparent shear rate does not coincide with the apparent shear
rate and their difference is geometry dependent; for example, it varies
with the gap size in a Couette rheometer. Therefore, slip effects need
to be accounted for in order to obtain reliable estimates of the rheolog-
ical parameters.15,22 This is more crucial with yield stress fluids due to
the heterogeneous nature of their flow profile, since regions of slip-,
shear-, and plug flow can co-exist instead of pure shear flow.17 Yield
stress fluids may also slide in the presence of slip21,23 in which case the
actual shear rate is zero, while the apparent one is finite.

Recently, analytical solutions of certain viscometric flows of vis-
coplastic materials exhibiting wall slip with non-zero slip yield stress
have been reported in the literature. These include the parallel plate
flow Herschel–Bulkley fluids,20,24 the axisymmetric Poiseuille flow of a
Herschel–Bulkley fluid,25 and the Couette flow of a Bingham plastic.21

In all the above works, different flow regimes were identified along
with the critical conditions defining the transition from one regime to
the other.

The objective of the present paper is to analyze the implications
of wall slip on the apparent flow curve in the case of steady annular
Poiseuille flow of a Bingham plastic. This flow is of interest in oil-
drilling, food processing, wire coating, etc.26 We investigate, in particu-
lar, the effects of applying different slip laws at the inner and outer cyl-
inders and of non-zero slip yield stress.

The analytical solution of fully developed flow of a Bingham
fluid in a concentric annular tube has been derived in the classical
papers of Fredrickson and Bird27 under the assumption of no slip;
see also Ref. 28. Brunn and Abu-Jdayil29 solved the same flow for a
Bingham fluid with position-dependent yield stress, akin to elec-
tro- and magnetorheological fluids. Ioannou and Georgiou30

derived a semi-analytical solution of the annular Poiseuille flow of
a Bingham fluid with pressure-dependent plastic viscosity and
yield stress for the special case where both parameters vary linearly
with pressure with the same growth coefficient. More recently,
Huilgol and Georgiou31 proposed a fast numerical scheme for solv-
ing the annular Poiseuille flow of non-Newtonian fluids, including
Bingham and Herschel–Bulkley fluids.

Ortega-Avila et al.12 studied both experimentally and numerically
the annular flow of a Herschel–Bulkley fluid in the presence of wall
slip for which there is no analytical solution, with the exception of cer-
tain values of the power-law exponent. However, they considered only
the case where the same slip law with zero slip yield stress applies
along the two cylinders. They thus identified two flow regimes, the
sliding (plug-flow) and yielding regimes depending on whether the
absolute values of the shear stresses at the two walls were below or
above the yield stress. Ortega-Avila et al.12 obtained velocity distribu-
tions within the annulus by means of particle image velocimetry and
compared them with their numerical predictions for fully developed
flow. They also reported that, for high values of the radii ratio (i.e., for
small gaps), the slip velocities as well as the absolute values of the wall
shear stress were similar, and thus, the flow is viscometric. Chatzimina
et al.32 investigated the annular Poiseuille flow a Newtonian fluid in
the presence of slip. They employed different slip models and investi-
gated the flow stability; in the case, a non-monotonic slip is equation is
applied at the two walls. Also, Ferr�as et al.26 provided analytical and
numerical solutions for axial and helical flows of linear, quadratic, and
exponential Phan-Thien–Tanner viscoelastic fluids under no-slip and
slip boundary conditions.

In Sec. II, the annular Poiseuille flow of a Bingham plastic is ana-
lyzed and general expressions for the solution are presented in terms
of the two slip velocities, which are independent from the slip laws
applied at the two walls. More specifically, the solutions below a critical
pressure gradient where the material moves as a solid (sliding or pure-
plug regime) and above another critical value, where the material
yields near both walls and moves as a plug in an intermediate annular
core (yielding regime) are provided. In Sec. III, we analyze the flow in
the case when different Navier laws apply on the two cylinders.
Considering different slip equations may be justified even when the
materials of construction of the two walls are the same. The thickness
of the apparent slip layer changes with the wall shear stress,12,33 and
thus, the corresponding slip coefficients may be different, especially if
the annular gap is not small. It is demonstrated that there exists an
intermediate semi-sliding regime between the sliding and yielding
regimes in which the material yields only near the wall of weaker slip
and slides unyielded along the other. Then, in Sec. IV, we consider the
case of non-zero slip yield stress, but for the sake of simplicity, it is
assumed that the same slip law applies at the two walls. In this case,
the no-flow regime is followed by the sliding and yielding regimes.
The critical pressure gradients defining the various regimes are
obtained and comparisons are made with available results in the
literature.
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II. GENERAL SOLUTION

Consider the steady flow between infinitely long, coaxial cylin-
ders of inner and outer radii jR� and R�, where 0 < j < 1, driven by
a pressure gradient G� in the positive z-direction. Integrating the
z-momentum equation for any generalized Newtonian fluid gives

s�rz ¼ �
G�r�

2
þ c�

r�
; (5)

where c� is an integration constant determined from any of the two
boundary conditions for the axial velocity. Upon observing that the
shear stress is positive in the interval ½jR�; kR�Þ and negative in
ðkR�;R��, where j < k < 1,31 the constant c� can be replaced by k,
such that the shear stress s�rz vanishes at r� ¼ kR�. Thus, one finds
that27

s�rz ¼
G�R�

2
k2R�

r�
� r�

R�

� �
: (6)

Hence, the wall shear stresses at the inner and outer cylinders, respec-
tively, read

s�w1 ¼ js�rzðjR�Þj ¼ s�rzðjR�Þ ¼
G�R�

2j
k2 � j2ð Þ (7)

and

s�w2 ¼ js�rzðR�Þj ¼ �s�rzðR�Þ ¼
G�R�

2
1� k2ð Þ: (8)

The above equations hold for any generalized Newtonian fluid and are
independent of the boundary conditions. In this section, we derive
generic expressions of the solution in terms of the two slip velocities
u�w1 ¼ u�ðjR�Þ and u�w2 ¼ u�ðR�Þ.

Assume now that the fluid is viscoplastic with yield stress s�y . In
the general case, a sliding, a semi-sliding, and a yielding regime may
be observed, which are defined by two critical values, G�1 and G�2, of
the pressure gradient. In the sliding (or pure-plug) regime (G� � G�1),
there is no deformation in the bulk; the material slides unyielded (i.e.,
as a solid) at a constant velocity, and thus, the two slip velocities are
equal. In the no-slip case, the material remains stationary. Bulk defor-
mation only starts when G� > G�2 (yielding regime); the material is
yielded near the walls and unyielded in an intermediate annular core
where the velocity is flat. When the same slip law is applied at both cyl-
inders, G�1 ¼ G�2. Thus, an intermediate semi-sliding regime
(G�1 < G� � G�2) is observed only when different slip laws apply at the
two walls. This also includes the cases where slip occurs only along
one cylinder. In the semi-sliding regime, the material yields only near
the wall of weaker slip and slides unyielded along the other; that is, the
plug extends until the wall where slip is stronger. The sliding and
yielding regimes are discussed below. The semi-sliding regime is ana-
lyzed in Sec. III, where different Navier slip laws are considered at the
two walls.

In the sliding regime (G� � G�1), the slip velocities at the two cylin-
ders are equal and the velocity and the volumetric flow rate are given by

u�ðr�Þ ¼ u�w1 ¼ u�w2; G� � G�1 (9)

and

Q� ¼ pu�w1R
�2 1� j2ð Þ; G� � G�1: (10)

In the yielding regime (G� > G�2), the material yields near both the
walls and remains unyielded in an intermediate region, as illustrated
in Fig. 1. In Regions I and II corresponding, respectively, to jR� < r�

< k1R� and k2R� < r� < R�, where j < k1 < k2 < 1, the material is
yielded. In the intermediate Region III (k1R� � r� � k2R�), the mate-
rial is unyielded and moves as a solid with a constant velocity.
Substituting s�rzðk1R�Þ ¼ �s�rzðk2R�Þ ¼ s�y into Eq. (6), one finds that

k1k2 ¼ k2 and k2 � k1 ¼ 2Bn; (11)

where

Bn �
s�y

G�R�
(12)

is the Bingham number, which can also be viewed as an inverse
dimensionless pressure gradient, G ¼ 1=Bn � G�R�=s�y . By means of
Eq. (11), the two wall shear stresses in Eqs. (7) and (8) can be written
as follows:

s�w1 ¼
G�R�

2j
k2ðk2 � 2BnÞ � j2
� �

¼
s�y

2jBn
k2ðk2 � 2BnÞ � j2
� �

(13)

and

s�w2 ¼
G�R�

2
1� k2ðk2 � 2BnÞ½ � ¼

s�y
2Bn

1� k2ðk2 � 2BnÞ½ �: (14)

The analysis, which up to this point holds for any yield-stress fluid,
continues below for the special case of a Bingham fluid. The analysis
for a Herschel–Bulkley fluid can be found in Refs. 12 and 31. There is
no analytical solution for the velocity in the general case, except for
certain values of the power-law exponent, for example, when 1=n is
integer.

In Region I, the velocity derivative is positive, and thus,
s�rz ¼ s�y þ l�du�=dr�. Substituting into Eq. (6) gives

du�I
dr�
¼ G�R�

2l�
k2R�

r�
� r�

R�
� 2Bn

� �
; (15)

FIG. 1. Geometry and boundary conditions of annular viscoplastic Poiseuille flow
with wall slip. Above a critical pressure, there are two yielded regions (I and II) adja-
cent to the walls and an unyielded annular core (region III).
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which upon integration and application of the condition u�I ðjR�Þ
¼ u�w1 gives

u�I ðr�Þ ¼ u�w1 þ
G�R�2

4l�
2k2 ln

r�

jR�
� r�2

R�2
þ j2 � 4Bn

r�

R�
� j

� �� �
;

jR� � r� � k1R
�: (16)

In Region II, the velocity derivative is negative, and thus, s�rz ¼ �s�y
þl�du�=dr� and

du�II
dr�
¼ �G�R�

2l�
� k2R�

r�
þ r�

R�
� 2Bn

� �
: (17)

Integrating and applying u�IIðR�Þ ¼ u�w2 give

u�IIðr�Þ ¼ u�w2 þ
G�R�2

4l�
�2k2 ln R�

r�
þ 1� r�2

R�2
� 4Bn 1� r�

R�

� �� �
;

k2R
� � r� � R�: (18)

The velocity of the unyielded core (Region III) is u�IIIðr�Þ
¼ u�I ðk1R�Þ ¼ u�IIðk2R�Þ, which leads to the following condition:

u�w1 � u�w2 ¼
G�R�2

4l�

�
�2k2 ln k1

j
þ k21 � j2 þ 4Bn k1 � jð Þ

� 2k2 ln
1
k2
þ 1� k22 � 4Bn 1� k2ð Þ

�
: (19)

Equation (19) is further simplified by means of Eq. (11) to the follow-
ing non-linear equation for k2:

2k2ðk2 � 2BnÞ ln k2 � 2Bn
jk2

� 1þ 4Bnð1� k2Þ

þ ð2Bnþ jÞ2 þ 4l�

G�R�2
u�w1 � u�w2
� 	

¼ 0: (20)

The velocity profile when G� > G�2 can be written as follows:

u�ðr�Þ ¼

u�w1 þ
G�R�2

4l�
2k2 ln

r�

jR�
� r�2

R�2
þ j2 � 4Bn

r�

R�
� j

� �� �
; jR� � r� � k1R� ;

u�w1 þ
G�R�2

4l�
2k2 ln

k1
j
� k21 þ j2 � 4Bn k1 � jð Þ

� �
; k1R� � r� � k2R�;

u�w2 þ
G�R�2

4l�
�2k2 ln R�

r�
þ 1� r�2

R�2
� 4Bn 1� r�

R�

� �� �
; k2R� � r� � R�:

G� > G�2;

8>>>>>>>>>><
>>>>>>>>>>:

(21)

For the volumetric flow rate, it is easily demonstrated that

Q� ¼ 2p
ðR�

jR�
u�ðr�Þr�dr�

¼ pR�2 u�w2 � j2u�w1
� 	

� p
ðR�

jR�

du�

dr�
r�2dr�: (22)

Since the unyielded region has zero contribution to the last integral,

Q� ¼ pR�2 u�w2 � j2u�w1
� 	

� p
ðk1R�

jR�

du�I
dr�

r�2dr� � p
ðR�

k2R�

du�II
dr�

r�2dr�;

(23)

which gives

Q� ¼ pR�2 u�w2 � j2u�w1
� 	

þ pG�R�4

2l�

�
1
4

k41 � j4
� 	

þ 2Bn
3

k31 � j3
� 	

� k2

2
k21 � j2
� 	

þ 1
4

1� k42
� 	

� 2Bn
3

1� k32
� 	

� k2

2
1� k22
� 	�

; (24)

and by means of Eq. (11),

Q� ¼ pR�2 u�w2 � j2u�w1
� 	

þ pG�R�4

8l�

�
1� j4

� 2ð1� j2Þðk2 � 2BnÞk2 �
8
3
ð1þ j3ÞBn

þ 16
3
ðk2 � BnÞ3Bn

�
; G� > G�2: (25)

The slip velocities that appear in the above equations are calculated by
means of the governing slip law. Setting the two slip velocities to zero
yields the special cases of Eqs. (20) and (25) for the no-slip case.28,34

A. Non-dimensionalization

For convenience, we will nondimensionalize the flow variables as
follows:

r � r�

R�
; u � u�

s�yR
�=l�

; Q � Q�

ps�yR
�3=l�

;

s � s�

s�y
; G � G�

s�y=R
� :

(26)

It should be noted that with these scales the non-dimensional pressure
gradient is now the inverse of the Bingham number; see Eq. (12). The
dimensionless shear stress is given by [cf. Eq. (6)]

srz ¼
k2

r
� r

� �
G
2
; (27)
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while the inner and outer wall shear stresses read

sw1 ¼ k2 � j2ð Þ G
2j

and sw2 ¼ 1� k2ð ÞG
2
: (28)

In the sliding regime (G � G1), uðrÞ ¼ uw1 ¼ uw2 and Q
¼ uw1ð1� j2Þ. In the yielding regime (G > G2), k1 and k2 satisfy

k1k2 ¼ k2 and k2 � k1 ¼
2
G
; (29)

and the wall shear stresses are given by

sw1 ¼
G
2j

k2 k2 �
2
G

� �
� j2

� �
and

sw2 ¼
G
2

1� k2 k2 �
2
G

� �� �
; G > G2:

(30)

Hence, the nonlinear equation to be solved for k2 [taking Eq. (29) into
account] becomes

2k2 ln
k1
jk2
� k21 þ j2 � 4

G
ðk1 � jÞ � 1þ k22

þ 4
G
ð1� k2Þ þ

4
G

uw1 � uw2ð Þ ¼ 0; (31)

or

2k2 ln
k1
jk2
� 1þ 4

G
ð1� k2Þ þ

2
G
þ j

� �2

þ 4
G

uw1 � uw2ð Þ ¼ 0:

(32)

The velocity and the volumetric flow rate are given by

uðrÞ ¼

uw1þ
G
4

2k2 ln
r
j
� r2þj2� 4

G
r�jð Þ

� �
; j� r � k1;

uw1þ
G
4

2k2 ln
k1
j
� k21þj2� 4

G
k1�jð Þ

� �
; k1 � r � k2;

uw2þ
G
4
�2k2 ln 1

r
þ 1� r2� 4

G
1� rð Þ

� �
; k2 � r � 1;

8>>>>>>>><
>>>>>>>>:

(33)

and

Q ¼ G
2

�
1
4

k41 � j4
� 	

þ 2
3G

k31 � j3
� 	

� k2

2
k21 � j2
� 	

þ 1
4

1� k42
� 	

� 2
3G

1� k32
� 	

� k2

2
1� k22
� 	�

þ uw2 � j2uw1;

(34)

or

Q ¼ G
8

�
1� j4 � 2ð1� j2Þk2 � 8

3G
ð1þ j3Þ

þ 16
3G

k2 �
1
G

� �3�
þ uw2 � j2uw1: (35)

III. NAVIER SLIP

In this section, we consider the case where Navier slip occurs at
both walls, with slip coefficients b�1 and b�2,

swi ¼
1
Bi
uwi; i ¼ 1; 2; (36)

where

Bi ¼
l�

b�i R
� ; i ¼ 1; 2; (37)

are the dimensionless slip numbers. Note that Bi ¼ 0 implies
no-slip at the corresponding wall. Substituting Eq. (36) into Eq.
(28), we find the following expressions for the two slip
velocities:

uw1 ¼
B1G
2j

k2 � j2ð Þ; uw2 ¼
B2G
2

1� k2ð Þ; (38)

and, thus,

uw1 � uw2 ¼
B1

j
k2 � j2ð Þ � B2 1� k2ð Þ

� �
G
2

(39)

and

uw2 � j2uw1 ¼ B2 1� k2ð Þ � B1j k2 � j2ð Þ
� �G

2
: (40)

A. Sliding regime

In the sliding regime (G � G1), the slip velocities are equal and
Eq. (38) yields

k2 ¼ jðjB1 þ B2Þ
B1 þ jB2

: (41)

Substituting k2 back to Eq. (38), one gets

u ¼ uw1 ¼ uw2 ¼
B1B2 1� j2ð ÞG
2ðB1 þ jB2Þ

; G � G1: (42)

Also, the two wall shear stresses are

sw1 ¼
B2 1� j2ð ÞG
2ðB1 þ jB2Þ

and sw2 ¼
B1 1� j2ð ÞG
2ðB1 þ jB2Þ

; G � G1: (43)

The volumetric flow rate is then given by

Q ¼ B1B2 1� j2ð Þ2G
2ðB1 þ jB2Þ

; G � G1: (44)

When the same slip law applies at the two walls (B1 ¼ B2), the wall
shear stresses sw1 and sw2 remain equal as the imposed pressure
gradient G is increased. Hence, the fluid yields at both walls when
G ¼ G1. If, however, the slip laws differ, the material first yields at
the wall where slip is weaker and the corresponding wall shear
stress is bigger. Hence, the material yields first at the inner or outer
cylinder depending on whether B1 < B2 or B1 > B2, and G1 is
smaller than the critical pressure gradient G2 at which yielding
occurs near both walls. The three cases may be summarized as
follows:
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(a) When B1 ¼ B2, G1 ¼ G2 and the sliding regime ð0;G1� is fol-
lowed by the yielding regime ðG1;1Þ, as illustrated in Fig. 2(a).

(b) When B1 < B2, the sliding regime ð0;G1� is followed by a
semi-sliding regime ðG1;G2� where the material yields only
near the inner cylinder and slides along the outer one, as
shown in Fig. 2(b). In other words, Region II is not observed
and appears only above G2.

(c) When B1 > B2, we have the three regimes shown in Fig. 2(c).
In the semi-sliding regime ðG1;G2�, Region I is not observed
and the material yields near the outer wall and slides along
the inner wall.

Before analyzing the above three cases and obtaining the corre-
sponding critical values of the pressure gradient, we discuss the yield-
ing regime, which is present in all cases.

B. Yielding regime

The velocity profile in the yielding regime (G > G2) is given by
Eq. (33). Upon substitution of the slip velocities from Eq. (39), Eq.
(32) for k2 becomes

2k2 ln
k1
jk2
� 1þ 4

G
ð1� k2Þ þ

2
G
þ j

� �2

þ 2
B1

j
k2 � j2ð Þ � B2 1� k2ð Þ

� �
¼ 0;

G > G2: (45)

Similarly, substituting Eq. (40) into Eq. (35), the following expression
is obtained for the volumetric flow rate:

FIG. 2. Flow regimes of annular visco-
plastic Poiseuille flow with Navier wall slip
(zero slip yield stress) when: (a) the same
slip law applies at the two cylinders; (b)
slip at the inner cylinder is weaker; (c) slip
at the inner cylinder is stronger.
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Q ¼ G
8

�
1� j4 � 2ð1� j2Þk2 � 8

3G
ð1þ j3Þ

þ 16
3G

k2 �
1
G

� �3

þ 4B2 1� k2ð Þ � 4B1j k2 � j2ð Þ
�
: (46)

At high pressure gradients, the solution tends asymptotically to the
Newtonian one. Setting G!1 and k1 ¼ k2 ¼ k (so that Region III
disappears) in Eq. (45), we find that

kN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2 þ 2 jB1 þ B2ð Þ
2 ln ð1=jÞ þ B1=jþ B2½ �

s
: (47)

Substituting the above value into Eq. (46), we find the Newtonian vol-
umetric flow rate

QN ¼
G
8

1� j4 þ 4 B1j
3 þ B2

� 	
� 1� j2 þ 2ðjB1 þ B2Þ
� �2
ln ð1=jÞ þ B1=jþ B2

( )
:

(48)

At high values of the pressure gradient, the volumetric flow rate in
Eq. (46) may also be approximated by setting k1 ¼ k2 ¼ kN (the plug
region is small compared with the dimensions of the annulus),

Q � G
8

�
1� j4 � 2ð1� j2Þk2N �

8
3G
ð1þ j3Þ þ 16

3G
k3N

þ 4B2 1� k2N
� 	

� 4B1j k2N � j2
� 	�

: (49)

This expression generalizes the approximation obtained by
Fredrickson and Bird27 for the no-slip case.

C. Same slip laws along the two walls (B1 ¼ B2)

If the same slip law applies at the two cylinders, then in the slid-
ing regime sw1 ¼ sw2. The critical pressure gradient above which the
fluid yields (at both walls) corresponds to sw1 ¼ sw2 ¼ 1 and hence
from Eq. (28) one obtains k2 ¼ j,

FIG. 3. Effect of Navier slip on the dimensionless yield radii k1 and k2 and the radius k
of zero shear stress. The solid lines correspond to B ¼ 0 (no slip, solid lines) and
B ¼ 0:1 (strong slip, dashed lines): (a) j ¼ 0:1; (b) j ¼ 0:5; (c) j ¼ 0:8. k increases
from the value of

ffiffiffi
j
p

at G ¼ G1 to the limiting value kN of Eq. (56) as G!1.

FIG. 4. Velocity profile in the semi-sliding regime when wall slip is weaker at the
inner cylinder. The material yields only near the inner cylinder and slides along the
external one; Region II is not observed.
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sw1 ¼ sw2 ¼
1
2
ð1� jÞG; G1 � G � G2; (50)

and

G1 ¼ G2 ¼
2

1� j
: (51)

In fact, Eq. (51) holds for any yield-stress fluid. Given that
B1 ¼ B2 ¼ B, where B ¼ g�=ðb�R�Þ is the slip number, the velocity
and the volumetric flow rate in the sliding regime become

u ¼ B
2

1� jð ÞG; 0 � G � G1; (52)

and

Q ¼ B
2

1þ jð Þ 1� jð Þ2G; 0 � G � G1: (53)

In the yielding regime, that is, for G > G1 ¼ G2, Eqs. (45) and (46)
are simplified as follows:

2k2 ln
k1
jk2
� 1þ 4

G
ð1� k2Þ þ

2
G
þ j

� �2

þ 2Bð1þ 1=jÞ k2 � jð Þ ¼ 0; G > G2 (54)

and

Q ¼ G
8

�
1� j4 � 2ð1� j2Þk2 � 8

3G
ð1þ j3Þ

þ 16
3G

k2 �
1
G

� �3

þ 4B 1þ j3 � ð1þ jÞk2
� ��

; G > G2:

(55)

Equations (47) and (48) for the Newtonian solution become

kN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2 þ 2 1þ jð ÞB

2 ln ð1=jÞ þ ð1þ 1=jÞB½ �

s
(56)

and

QN ¼
G
8

1� j4 þ 4 1þ j3ð ÞB� 1� j2 þ 2ð1þ jÞB
� �2
ln ð1=jÞ þ ð1þ 1=jÞB

( )
: (57)

The above expressions, though much simpler, are equivalent to the
Newtonian solution reported in Ref. 32, where a less convenient defi-
nition of the slip number was used. It is easily shown that k is an
increasing function of the pressure gradient G, ranging from

ffiffiffi
j
p

at
G ¼ G1 to the limiting value kN of Eq. (56) as G!1. This is illus-
trated in Fig. 3, where k1; k2; and k are plotted vs the pressure gradi-
ent for B ¼ 0 (no-slip) and B ¼ 0:1(strong slip) and three different
radii ratios (j ¼ 0:1; 0:5; and 0:8). One observes that as slip is
increased, the unyielded region is shifted toward the inner cylinder.

D. Weaker slip at the inner wall (B1 < B2)

The semi-sliding regime is defined by the critical values G1 and
G2 of the pressure gradient, which correspond to sw1 ¼ 1 and
sw2 ¼ 1, respectively. G1 is determined by means of Eq. (43),

G1 ¼
2ðB1 þ jB2Þ
B2 1� j2ð Þ ; (58)

whereas G2 will be determined below. Since the material adjacent to
the outer cylinder is unyielded (no region II), k2 is not relevant (see
Fig. 4). The velocity in ½G1;G2� is given by

uðrÞ ¼ uw1 þ
G
4

2k2 ln
r
j
� r2 þ j2 � 4

G
r � jð Þ

� �
; j � r � k1;

uw2; k1 � r � 1 ;

8<
:

(59)

FIG. 5. Velocity profile in the semi-sliding regime when wall slip at the inner cylinder
is stronger. The material yields only near the outer cylinder and slides along the
internal one; Region I is not observed.

TABLE I. Critical pressure gradients when Navier slip applies at the two walls.

B1 ¼ B2 B1 < B2 B1 > B2

No semi-sliding regime

G1 ¼ G2 ¼
2

1� j

Semi-sliding regime: ½G1;G2�

G1 ¼
2ðB1 þ jB2Þ
B2ð1� j2Þ , G2 ¼

2

1� k2c
¼ 2

1� k1c
k1c

k1c is a root of Eq. (67)

Semi-sliding regime: ½G1;G2�

G1 ¼
2ðB1 þ jB2Þ
B1ð1� j2Þ , G2 ¼

2j

k2c � j2
¼ 2

k2c � j
k2c

k2c is a root of Eq. (79)

If B1 ¼ B2 ¼ 0,
no sliding in ½0;G1�

If B1 ¼ 0, no sliding in ½0;G1� with G1 ¼
2j

1� j2
If B2 ¼ 0, no sliding in ½0;G1� with G1 ¼

2
1� j2

If B1 is finite and B2 !1 (full slip), G1 !
2j

1� j2
If B2 is finite and B1 !1 (full slip), G1 !

2
1� j2
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FIG. 6. Variation of the two critical pressure gradients G1 (dashed) and G2 (solid)
with the outer slip number B2 when j ¼ 0:1: (a) B1 ¼ 0:01 (weak slip); (b) B1 ¼ 1
(moderate slip); (c) B1 ¼ 100 (strong slip).

FIG. 7. Variation of the two critical pressure gradients G1 (dashed) and G2 (solid)
with the inner slip number B1 when j ¼ 0:1: (a) B2 ¼ 0:01 (weak slip); (b) B2 ¼ 1
(moderate slip); (c) B2 ¼ 100 (strong slip).
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or

uðrÞ ¼

B1G
2j

k2 � j2ð Þ þ G
4

2k2 ln
r
j
� r2 þ j2 � 4

G
r � jð Þ

� �
;

j � r � k;
B2G
2

1� k2ð Þ; k1 � r � 1 :

8>>>>><
>>>>>:

(60)

The constants k and k1 are found by demanding that srzðk1Þ ¼ 1 and
uIðk1Þ ¼ uw2, which yield

k2 ¼ k1 k1 þ
2
G

� �
(61)

and

G
4

2k2 ln
k1
j
� k21 þ j2 � 4

G
k1 � jð Þ

� �
þ uw1 � uw2 ¼ 0: (62)

Combining the last equation with Eq. (39) leads to the following equa-
tion for k1:

2k2 ln
k1
j
� k21 þ j2 � 4

G
k1 � jð Þ

þ 2
B1

j
k2 � j2ð Þ � B2 1� k2ð Þ

� �
¼ 0: (63)

Once k1 is calculated, all other quantities of interest can be calculated,
that is, k from Eq. (61), the wall shear stresses from Eq. (28), and the
velocity from Eq. (60). Since there is no region II, the volumetric flow
rate is given by [see Eq. (34)]

FIG. 8. Flow curves when j ¼ 0:1 and B1 ¼ 0:01 (weak slip, left column), 0.1 (moderate slip, middle column), and 0.5 (strong slip, right column) for various values of the
outer slip number: (a) B2 ¼ 0:01; (b) B2 ¼ 0:1; (c) B2 ¼ 0:5.
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Q ¼ G
2

1
4

k41 � j4
� 	

þ 2
3G

k31 � j3
� 	

� k2

2
k21 � j2
� 	� �

þ uw2 � j2uw1; (64)

which after substituting the slip velocities reads

Q ¼ G
8

�
k41 � j4 þ 8

3G
k31 � j3
� 	

� 2k2 k21 � j2
� 	

þ 4B2 1� k2ð Þ � 4B1j k2 � j2ð Þ
�
: (65)

The critical pressure gradient G2 corresponds to sw2 ¼ 1. Combining
Eqs. (28) and (61), we deduce that k2c ¼ k1c, and, thus,

G2 ¼
2

1� k2c
¼ 2

1� k1c
: (66)

Substituting into Eq. (63), we get the following equation for k1c :

2k1c ln
k1c
j
þ k1c � jð Þ2 � 2 k1c � jð Þ

þ 2
B1

j
k1c � j2
� 	

� B2 1� k1cð Þ
� �

¼ 0: (67)

When B1 ¼ B2 ¼ B, the solution of the above equation is k1c ¼ j and
the two critical pressure gradients given by Eqs. (58) and (66) coincide,
G1 ¼ G2 ¼ 2=ð1� jÞ; that is, the semi-sliding regime is not observed.
When there is no slip at the inner wall (B1 ¼ 0), the first critical
pressure-gradient is

FIG. 9. Slip velocities when j ¼ 0:1 and B1 ¼ 0:01 (weak slip, left column), 0.1 (moderate slip, middle column), and 0.5 (strong slip, right column) for various values of the
outer slip number: (a) B2 ¼ 0:01; (b) B2 ¼ 0:1; (c) B2 ¼ 0:5.
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G1 ¼
2j

1� j2
: (68)

The same value is attained asymptotically when B2 !1 (full slip)
and B1 is finite.

WhenG � G1, the material does not move and u ¼ 0 (no sliding).
In ½G1;G2�, the velocity is given by

uðrÞ ¼

G
4

2k2 ln
r
j
� r2 þ j2 � 4

G
r � jð Þ

� �
; j � r � k1;

B2G
2

1� k2ð Þ; k1 � r � 1;

8>>><
>>>:

(69)

and when G > G2,

uðrÞ ¼

G
4

2k2 ln
r
j
� r2 þ j2 � 4

G
r � jð Þ

� �
; j � r � k1;

G
4

2k2 ln
k1
j
� k21 þ j2 � 4

G
k1 � jð Þ

� �
; k1 � r � k2;

B2G
2

1� k2ð Þ þ G
4
�2k2 ln 1

r
þ 1� r2 � 4

G
1� rð Þ

� �
;

k2 � r � 1:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(70)

FIG. 10. Flow curves when j ¼ 0:5 and B1 ¼ 0:01 (weak slip, left column), 0.1 (moderate slip, middle column), and 0.5 (strong slip, right column) for various values of the
outer slip number: (a) B2 ¼ 0:01; (b) B2 ¼ 0:1; (c) B2 ¼ 0:5.
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E. Stronger slip at the inner wall (B1 > B2)

The critical values G1 and G2 of the pressure gradient defining
the semi-sliding regime when slip at the inner wall is stronger corre-
spond to sw2 ¼ 1 and sw1 ¼ 1, respectively. Using Eq. (43), the follow-
ing expression is obtained for G1:

G1 ¼
2ðB1 þ jB2Þ
B1 1� j2ð Þ : (71)

When G1 < G � G2, the material adjacent to the inner cylinder is
unyielded (k1 is not relevant, as there is no region I). As illustrated in
Fig. 5, the velocity is given by

uðrÞ ¼
uw1; j � r � k2;

uw2 þ
G
4
�2k2 ln 1

r
� r2 þ 1� 4

G
1� rð Þ

� �
; k2 � r � 1;

8><
>:

(72)

FIG. 11. Slip velocities when j ¼ 0:5 and B1 ¼ 0:01 (weak slip, left column), 0.1 (moderate slip, middle column), and 0.5 (strong slip, right column) for various values of the
outer slip number: (a) B2 ¼ 0:01; (b) B2 ¼ 0:1; (c) B2 ¼ 0:5.

FIG. 12. The slip velocities are intersecting when slip at the outer cylinder is slightly
stronger; j ¼ 0:1, B1 ¼ 0:1, and B2 ¼ 0:2.
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FIG. 13. Velocity profiles for j ¼ 0:1 at G ¼ G1=2 (sliding regime, first column), G ¼ ðG1 þ G2Þ=2 (semi-sliding regime, middle column), and G ¼ 1:5G2 (yielding regime, right
column): (a) B1 ¼ 0:1; B2 ¼ 0:01 (G1 ¼ 2:0404; G2 ¼ 3:3418); (b) B1 ¼ B2 ¼ 0:1 (G1 ¼ G2 ¼ 2:2222, no semi-sliding regime); (c) B1 ¼ 0:1; B2 ¼ 0:5 (G1 ¼ 0:6061;
G2 ¼ 2:7290). The dashed lines indicate the yield radii k1 and k2.

FIG. 14. Flow regimes of annular visco-
plastic Poiseuille flow with wall slip with
non-zero slip yield stress such that
Bc ¼ s�c=s

�
y < 1.
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or

uðrÞ ¼

B1G
2j

k2 � j2ð Þ; j � r � k2;

B2G
2

1� k2ð Þ þ G
4
�2k2 ln 1

r
� r2 þ 1� 4

G
1� rð Þ

� �
;

k2 � r � 1:

8>>>>><
>>>>>:

(73)
To determine k and k2, we apply the conditions �srzðk2Þ ¼ 1 and
uIIðk2Þ ¼ uw1, which lead to

k2 ¼ k2 k2 �
2
G

� �
(74)

and

G
4

2k2 ln
1
k2
� 1þ k22 þ

4
G

1� k2ð Þ
� �

þ uw1 � uw2 ¼ 0; (75)

which, upon substitution of the slip velocity difference [Eq. (39)], takes
the form

2k2 ln
1
k2
� 1þk22þ

4
G

1� k2ð Þþ 2
B1

j
k2�j2ð Þ�B2 1�k2ð Þ

� �
¼ 0:

(76)

The volumetric flow rate is given by [see Eq. (34)]

Q ¼ G
8

�
1� k42 �

8
3G

1� k32
� 	

� 2k2 1� k22
� 	

þ 4B2 1� k2ð Þ

� 4B1j k2 � j2ð Þ
�
: (77)

Setting sw1 ¼ 1 in Eq. (28), we find that at the critical pressure gradi-
ent G2, k

2
c ¼ jk2c, and, thus,

FIG. 15. Volumetric flow rates with Bc ¼ 0 (zero slip yield stress, left column), Bc ¼ 0:5 (middle column) and Bc ¼ 1 (the slip yield stress is the same as the yield stress, right
column) and B ¼ 0 (no slip), 0.1, and 0:5 (very strong slip): (a) j ¼ 0:1; (b) j ¼ 0:5; (c) j ¼ 0:9.
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G2 ¼
2j

k2c � j2
¼ 2

k2c � j
: (78)

Substituting in Eq. (76), we derive the following equation for k2c:

2jk2c ln
1

k2c
� 1þ k22c þ 2 k2c � jð Þ 1� k2cð Þ

þ 2 B1 k2c � jð Þ � B2 1� jk2cð Þ½ � ¼ 0: (79)

In the special case where B1 ¼ B2 ¼ B, k2c ¼ 1, k2c ¼ j, and G1

¼ G2 ¼ 2=ð1� jÞ (the semi-sliding regime is not observed). Another
interesting special case is when B2 ¼ 0, that is, when there is no slip in
the outer cylinder (uw2 ¼ 0). Equation (71) gives the first critical pres-
sure gradient

G1 ¼
2

1� j2
; (80)

below which the material does not move. The solutions in the other
flow regimes are recovered by simply setting B2 ¼ 0. Finally, Eq. (80)
is also attained asymptotically when B2 is finite and B1 !1.

The critical pressure gradients G1 and G2 in all the above cases
are tabulated in Table I. The variations of G1 and G2 with the two slip
numbers B1 and B2 when j ¼ 0:1 are illustrated in Figs. 6 and 7,
respectively, in the range from 10�2 (weak slip) to 102 (strong slip).
One observes that G1 increases with B1 when this is below B2 and
vice versa. In summary, G1 ¼ G2 ¼ 2=ð1� jÞ when B1 ¼ B2, G1

! 2=ð1� j2Þ as B1 !1 when B2 is finite, and G1 ! 2j=ð1� j2Þ
as B2 !1 when B1 is finite.

In Fig. 8, the flow curves (i.e., the plots of the volumetric flow rate vs
the pressure gradient) for j ¼ 0:1 and B1;B2 ¼ 0:01, 0.1, and 0.5 are
shown while the corresponding slip velocities uw1 and uw2 are plotted in
Fig. 9. Figures 10 and 11 show similar results obtained with j ¼ 0:5.
Note that if slip at the inner wall is the same or stronger that that at the

FIG. 16. Slip velocities with j ¼ 0:1 and Bc ¼ 0 (zero slip yield stress, left column), Bc ¼ 0:5 (middle column) and Bc ¼ 1 (the slip yield stress is the same as the yield
stress, right column): (a) B ¼ 0:01 (weak slip); (b) B ¼ 0:1; (c) B ¼ 0:5 (very strong slip).
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outer wall (B1 � B2), then in the semi-sliding and yielding regimes, uw1
is bigger than uw2. When slip at the outer wall is much stronger then uw1
is lower than uw2 for the entire range of pressure gradients beyond the
sliding regime. If, however, slip at the outer wall is only slightly stronger,
then uw2 is higher than uw1 only initially and beyond a certain pressure
gradient uw1 grows bigger. This is illustrated in Fig. 12, where the slip
velocities for j ¼ 0:1, B1 ¼ 0:1, and B2 ¼ 0:2 are plotted. Figure 13
shows representative velocity profiles for j ¼ 0:1 and B1;B2 ¼ 0:01, 0.1,
and 0.5 in all flow regimes, that is, for G ¼ G1=2 (sliding regime), G
¼ ðG1þG2Þ=2 (semi-sliding regime), andG¼ 1:5G2 (yielding regime).

By comparing those results in Figs. 9 and 11 (for j ¼ 0:1 and
0.5, respectively) where the same slip law applies at the two walls
(B1 ¼ B2), one observes that the two slip velocities become similar at
higher values of j, which implies that the absolute values of the wall
shear stresses are also similar. For values of j approaching unity (say
for j > 0:95), the solution approaches asymptotically the symmetric

plane Poiseuille flow solution. Ortega-Avila et al.12 in their experi-
ments with an annulus of j ¼ 0:78 observed that the maximum dif-
ference between the slip velocities was 1.7% for the highest flow rate.
They then obtained an approximate expression for the wall shear
stress under the assumption that the two slip velocities are the same.
Indeed, one obtains from Eqs. (28) and (29),

k2 � j; k1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
G2
þ j

r
� 1
G
; k2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
G2
þ j

r
þ 1
G
; (81)

and

sw1 � sw2 � 1� jð ÞG
2
: (82)

Substituting Eq. (81) into Eq. (33) results in approximate explicit
expression for the velocity distribution, while Eqs. (35) and (55)
become

FIG. 17. Slip velocities with j ¼ 0:5 and Bc ¼ 0 (zero slip yield stress, left column), Bc ¼ 0:5 (middle column) and Bc ¼ 1 (the slip yield stress is the same as the yield
stress, right column): (a) B ¼ 0:01 (weak slip); (b) B ¼ 0:1; (c) B ¼ 0:5 (very strong slip).
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Q � G
8

1� j2ð Þ2 � 8
3G
ð1þ j3Þ þ 16

3G
1
G2
þ j

� �3=2
" #

þ 1� j2ð Þuw (83)

and

Q � G
8

�
1� j2ð Þ2 � 8

3G
ð1þ j3Þ þ 16

3G
1
G2
þ j

� �3=2

þ 4 1� jð Þ2ð1þ jÞB
�
: (84)

For a given slip model, the slip velocity can be determined in terms
of the approximate wall shear stress (82) and substituted in

Eq. (83). Equation (84) is the resulting equation when Navier slip
is applied.

IV. SLIP WITH NON-ZERO SLIP YIELD STRESS

We consider here the special case of slip law (4) when the expo-
nent s is unity,

uw ¼ 0; sw � Bc;

sw ¼ Bc þ
uw
B
; sw > Bc;

8<
: (85)

where Bc is the ratio of the slip yield stress to the yield stress

Bc ¼
s�c
s�y
: (86)

FIG. 18. Velocity profiles for j ¼ 0:1 and
Bc ¼ 0 (Navier slip) at G ¼ 1:2G2 (left
column) and G ¼ 2G2 (right column): (a)
B ¼ 0:01 (weak slip); (b) B ¼ 0:1; (c)
B ¼ 0:5 (very strong slip). The dashed
lines indicate the yield radii k1 and k2.
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As mentioned above, experimental observations on various viscoplas-
tic materials show that the slip yield stress is lower than the yield
stress,21 and thus, Bc � 1.

When 0 < Bc < 1, three regimes are encountered as the imposed
pressure gradient is increased, that is, the no-flow, the sliding, and the
yielding regimes, which are illustrated in Fig. 14. Below the critical
value G1, no slip occurs and the material remains stationary (no-flow
regime). It should be noted that when Bc ¼ 0 (zero slip yield stress),
this regime is not encountered and Fig. 9 degenerates to Fig. 2(a) for
Navier slip. Between G1 and a second critical value G2, the material
slides as a solid (sliding regime). In this case, the wall shear stresses
are equal, with Bc < sw1 ¼ sw2 � 1. From Eq. (28), it is deduced
that k2 ¼ j, and thus, the wall shear stresses are given by Eq. (50).

Since uw1 ¼ Bðsw1 � BcÞ, we get the following generalizations of
Eqs. (87) and (88):

u ¼ uw1 ¼ uw2 ¼ B 1� jð ÞG
2
� Bc

� �
; G1 < G � G2 (87)

and

Q ¼ 1� j2ð ÞB 1� jð ÞG
2
� Bc

� �
; G1 < G � G2: (88)

The critical pressure gradients G1 and G2 are determined by demand-
ing that sw1 ¼ sw2 ¼ Bc and sw1 ¼ sw2 ¼ 1, respectively,

FIG. 19. Velocity profiles for j ¼ 0:5 and
Bc ¼ 0 (Navier slip) at G ¼ 1:2G2 (left
column) and G ¼ 2G2 (right column): (a)
B ¼ 0:01 (weak slip); (b) B ¼ 0:1; (c)
B ¼ 0:5 (very strong slip). The dashed
lines indicate the yield radii k1 and k2.
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G1 ¼
2Bc

1� j
and G2 ¼

2
1� j

: (89)

When G > G2, the material yields near both walls (yielding regime). It
turns out that Bc does not affect the value of k2, which is the admissi-
ble root of Eq. (54). The two wall shear stresses are now given by
Eq. (30). The slip velocities are readily obtained by means of Eq. (85),

uw1 ¼ B sw1 � Bcð Þ ¼ B k2 � j2ð Þ G
2j
� Bc

� �
; G > G2 (90)

and

uw2 ¼ B sw2 � Bcð Þ ¼ B 1� k2ð ÞG
2
� Bc

� �
; G > G2: (91)

The velocity profile is given by Eq. (33). The volumetric flow is
given by

Q ¼ G
8

�
1� j4 � 2ð1� j2Þ k2 �

2
G

� �
k2 �

8
3G
ð1þ j3Þ

þ 16
3G

k2 �
1
G

� �3

þ 4B

�
1þ j3 � ð1þ jÞ k2 �

2
G

� �
k2

� Bc 1� j2ð Þ 2
G

��
; G > G2; (92)

which generalizes Eq. (55). It is clear that when Bc ¼ 1, the two critical
pressure gradients coincide, G1 ¼ G2 ¼ 2=ð1� jÞ, and the sliding
regime is not observed. The slip velocities and the volumetric flow rate
are obtained from Eqs. (90)–(92) by setting Bc ¼ 1.

FIG. 20. Velocity profiles for j ¼ 0:1 and
Bc ¼ 1 at G ¼ 1:2G2 (left column) and
G ¼ 2G2 (right column): (a) B ¼ 0:01
(weak slip); (b) B ¼ 0:1; (c) B ¼ 0:5
(very strong slip). The dashed lines indi-
cate the yield radii k1 and k2.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 033103 (2022); doi: 10.1063/5.0086511 34, 033103-20

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


Figure 15 shows flow curves obtained for three radii ratios (j ¼ 0:1,
0.5, and 0.9) and three values of the slip yield stress, that is, Bc ¼ 0
(zero slip yield stress), 0.5 (s�c ¼ s�y=2), and 1 (s�c ¼ s�y). In each case,
the flow curves for B ¼ 0 (no slip), 0.1 (moderate slip), and 0.5 (strong
slip) are plotted. The no-flow regime is not encountered when Bc ¼ 0
(Navier slip). As expected, the slope of the flow curve in the yielding
regime is higher than in the sliding regime. It also increases with the
slip number and decreases with the radii ratio.

The effects of the slip-yield-stress and slip numbers on the inner
and outer slip velocities are illustrated in Figs. 16 and 17, for j ¼ 0:1
and 0.5, respectively. The slip velocities coincide in the sliding regime,
while in the yielding regime, the inner slip velocity uw1 is always bigger
than uw2. The difference between the two slip velocities increases with
the pressure gradient, the gap size, and the slip number B, since the

velocity profile tends to become more symmetric as the gap size and
slip are reduced.

Figures 18 and 19 show representative velocity profiles in the
case of Navier slip (Bc ¼ 0) for j ¼ 0:1 and 0.5, respectively,
G ¼ 1:2G2 and 2G2, and B ¼ 0:01 (weak slip), 0.1 and 0.5. These pro-
files become less symmetric as wall slip is enhanced, that is, as the slip
number B is decreased, or as the radii ratio j is reduced. Finally, in
Figs. 20 and 21, similar results are provided for the case the slip yield
stress and the yield stress are equal, that is, Bc ¼ 1.

V. CONCLUSIONS

The pressure-driven flow of a Bingham plastic in an annulus has
been analyzed under the assumption of wall slip along the two walls.
After deriving the form of the solution in the general case in terms of

FIG. 21. Velocity profiles for j ¼ 0:5 and
Bc ¼ 1 at G ¼ 1:2G2 (left column) and
G ¼ 2G2 (right column): (a) B ¼ 0:01
(weak slip); (b) B ¼ 0:1; (c) B ¼ 0:5
(very strong slip). The dashed lines indi-
cate the yield radii k1 and k2.
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the slip velocities, two important special cases have been considered.
In the first, slip yield stress is zero and different Navier slip laws apply
at the two walls. In the second, the same slip law with non-zero slip
yield stress is used along the two walls. In the former case, it has been
demonstrated that there are three flow regimes, the sliding regime at
low pressure gradients, the yielding regime at high values of the pres-
sure gradient, and an intermediate semi-sliding regime, where the
material slides unyielded along the wall where slip is stronger. The
semi-sliding regime, thus, exists only when the slip coefficients at
the two walls are different. The critical values of the pressure gradient,
G1 and G2, defining the three flow regimes have been obtained, and
their asymptotic values have been discussed.

In the case of non-zero slip yield stress, it has been assumed that
this is less than or equal to the yields stress, that is, Bc � 1, an assump-
tion consistent with experimental reports, and that the slip parameters at
the two walls are the same (B1 ¼ B2 ¼ B). A no-flow regime is observed
in this case, followed by the sliding and yielding regimes as the pressure
gradient is increased. The effects of the slip parameters and the geometry
(i.e., the radii ratio j) have been discussed and comparisons with avail-
able solutions and experimental results in the literature have been made.

The various flow regimes discussed in this work are encountered
with all yield-stress fluids, for example, a Herschel–Bulkley fluid. In
fact, the solutions in the sliding regime including the corresponding
critical pressure gradients are general and hold for all viscoplastic flu-
ids, depending only on the yield stress and not on the constitutive
equation. Analytical solutions for the velocity, the volumetric flow
rate, and the other critical pressure gradients may be obtained only for
certain values of the power-law exponent.

The results obtained employing different slip laws at the two walls
and allowing the possibility of no-slip along one of them are relevant
not only for processes with big annular gaps, which result in apparent
slip layers of different thicknesses, but also for processes involving rela-
tively small gaps when the wall materials of construction are different.
Hence, they can guide analyses aiming at optimized tailoring of these
materials and the roughness of the inner and outer walls.12

In this work, it has been assumed that the same slip model applies
in both the sliding and yielding regimes for a given fluid/wall system.
However, it is well established from various experimental studies that
wall slip occurs differently in these two regimes.12,24,35 The analysis of
data on a Carbopol gel obtained in an annular geometry by Ortega-
Avila et al.12 yielded different power-law slip equations. More recently,
Moud et al.24 analyzed torsional flow data for colloidal suspensions of
kaolinites and deduced that different slip models with non-zero slip-
yield-stress parameters apply in the “elastic slip” (sliding) regime and
the regime where the material yields and flows. In order to avoid a slip
velocity jump at the transition from the sliding to the yielding regime,
the slip parameters of the two models were calculated requiring that
the slip velocity is a continuous function of the wall shear stress. A pos-
sible extension of the present work would, thus, be the analysis of annu-
lar Poiseuille flow of a Herschel–Bulkley fluid when different slip
models apply in the two regimes. Such an analysis would be most inter-
esting if it is combined with experimental observations.
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