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The lubrication flow of a Herschel-Bulkley fluid in a symmetric long channel of varying width, 2h(x),
is modeled extending the approach proposed by Fusi et al. [“Pressure-driven lubrication flow of a
Bingham fluid in a channel: A novel approach,” J. Non-Newtonian Fluid Mech. 221, 66–75 (2015)]
for a Bingham plastic. Moreover, both the consistency index and the yield stress are assumed to be
pressure-dependent. Under the lubrication approximation, the pressure at zero order depends only
on x and the semi-width of the unyielded core is found to be given by σ(x) = �(1 + 1/n)h(x) + C,
where n is the power-law exponent and the constant C depends on the Bingham number and the
consistency-index and yield-stress growth numbers. Hence, in a channel of constant width, the width
of the unyielded core is also constant, despite the pressure dependence of the yield stress, and the
pressure distribution is not affected by the yield-stress function. With the present model, the pressure
is calculated numerically solving an integro-differential equation and then the position of the yield
surface and the two velocity components are computed using analytical expressions. Some analytical
solutions are also derived for channels of constant and linearly varying widths. The lubrication solu-
tions for other geometries are calculated numerically. The implications of the pressure-dependence of
the material parameters and the limitations of the method are discussed. Published by AIP Publishing.
https://doi.org/10.1063/1.5002650

I. INTRODUCTION

Yield-stress fluids, also known as viscoplastic fluids, are
encountered in a variety of industrial applications, such as
oil drilling and transport, fresh concrete manufacturing, waste
management, and food processing, and in many environmen-
tal, geological, and biological processes.1,2 Viscoplastic mate-
rials are commonly assumed to behave as fluids only if the
stress exceeds the yield stress τ∗y ; otherwise, they behave as
solids. (It should be noted that throughout this paper, symbols
with stars denote dimensional quantities.) For an update on
the ongoing debate about the concept of a yield-stress fluid
and the definition of yield stress, the reader is referred to the
recent reviews by Malkin et al.3 and by Dinkgreve et al.4 As
noted by Coussot et al.,5 most researchers now consider that
the yield stress marks a limit between the existence of steady-
state flows—above the yield stress—and the observation of
continuously slowed down flows.

The most popular constitutive equation describing vis-
coplastic behavior is the Bingham-plastic equation.6 This
involves two material parameters, i.e., the yield stress and the
plastic viscosity µ∗, and has the following tensorial form:




D∗ = 0, τ∗ ≤ τ∗y

τ∗ = 2
(
τ∗y
γ̇∗ + µ∗

)
D∗, τ∗ > τ∗y

, (1)

a)Author to whom correspondence should be addressed: georgios@ucy.ac.cy.
Tel.: +357292612. Fax: +35722895352.

where τ∗ is the viscous stress tensor,

D∗ ≡
1
2

[
∇∗v∗ + (∇∗v∗)T

]
(2)

is the rate of deformation tensor, v∗ is the velocity vector,

and γ̇∗ ≡
√

trD∗2/2 and τ∗ ≡
√

trτ∗2/2 are the magnitudes of
2D∗ and τ∗, respectively. Setting τ∗y = 0, the Bingham plastic
is reduced to the Newtonian constitutive equation and µ∗ is
simply the familiar Newtonian viscosity. A generalization of
the Bingham-plastic equation is the Herschel-Bulkley model,7

which involves three material parameters,




D∗ = 0, τ∗ ≤ τ∗y

τ∗ = 2
(
τ∗y
γ̇∗ + k∗γ̇∗n−1

)
D∗, τ∗ > τ∗y

, (3)

where k∗ is the consistency index and n is the flow index
(power-law exponent). Setting the latter to unity yields the
Bingham-plastic model. Setting τ∗y = 0 results in the power-
law model, which is able to account for shear-thinning (n < 1)
and shear-thickening (n > 1) effects.

Due to the two-branch nature of viscoplastic constitutive
equations, the flow domain consists of yielded regions (viscous
domain) where τ∗ > τ∗y and unyielded regions (rigid domain)
where τ∗ ≤ τ∗y . The latter regions include stagnant zones where
the velocity is zero and zones where the material moves as a
solid body. The location of the interface between yielded and
unyielded regions is not known a priori and causes severe
difficulties in solving viscoplastic flows, especially in two and
three dimensions.8
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The effects of the dependence of the rheological param-
eters on the pressure are of interest in the present work. The
idea of a fluid with pressure-dependent viscosity was intro-
duced by Stokes.9 Much later, Barus proposed an exponential
isothermal equation of state for the Newtonian viscosity of the
form10

η∗(p∗) = η∗0 exp
[
α∗(p∗ − p∗0)

]
, (4)

where p∗ is the pressure, η∗0 is the viscosity at the reference
pressure p∗0, and α∗ is the viscosity growth or piezoviscous
coefficient, which is positive, α∗ ≥ 0. Equation (4) indi-
cates that the viscosity increases with pressure. As noted by
Rajagopal11 the dependence of the viscosity on pressure for
fluids like polymer melts and lubricants may be several orders
of magnitude stronger than that of density, which justifies
the study of incompressible flows with pressure-dependent
viscosity. The pressure-dependence of the viscosity becomes
important in high-pressure processes, such as polymer pro-
cessing, fluid film lubrication, microfluidics, and geophysics
(see Ref. 12 and the references therein). Goubert et al. reviewed
measurement techniques for evaluating the pressure depen-
dence of viscosity.13 The viscosity growth coefficient is typ-
ically 1-5 × 10�8 Pa�1 for polymer melts,14 1-2 × 10�8 Pa�1

for mineral oils,15 and 2-5 × 10�8 Pa�1 for heavy petroleum
fractions.16

Other equations describing the pressure-dependence of
the viscosity have also been proposed. For more informa-
tion, the reader is referred to the review paper of Málek and
Rajagopal.17 The linear equation

η∗(p∗) = η∗0
[
1 + α∗(p∗ − p∗0)

]
, (5)

which has also been used by various investigators,12,18 is essen-
tially the approximation of the Barus equation (4) at low
pressures and/or for low values of the viscosity growth coef-
ficient. A source of major concern with Eq. (5) is the fact
that it does not guarantee positive definiteness of the viscosity
which requires the pressure to remain positive.19 This limita-
tion is not encountered when using the Barus equation (4) or
in flows where the pressure difference remains positive, e.g.,
in Poiseuille flows.12

The effect of pressure has also been studied in the case
of non-Newtonian materials. For example, Laun proposed the
following Barus-type equation for the consistency index of
LDPE (low-density polyethylene) melts:20

k∗(p∗, T ∗) = k∗0 exp
[
α∗(p∗ − p∗0) − γ∗(T ∗ − T ∗0 )

]
, (6)

where T ∗ is the temperature, T ∗0 is the reference tempera-
ture, and γ∗ is the temperature coefficient. Hermoso et al.21

presented experimental viscosity data for shear thinning (non-
viscoplastic) oil-based drilling fluids, which show that the
viscosity follows a Sisko-Barus (i.e., with an exponential
growth term) model in which the consistency and flow indices
also vary linearly with pressure. The rheological behavior of
drilling fluids is greatly affected by the temperature and pres-
sure conditions and plays an important role in the bottom-hole
pressure occurring in deep hot wells.22 Ibeh reported visco-
metric data on various drilling fluids suggesting linear and
exponential variations of the viscosity with pressure and tem-
perature, respectively.23 He also pointed out that the effects

of temperature on the viscosity prevail at higher pressures,
while pressure effects become more pronounced at lower
temperatures.

The pressure-dependence of the yield stress is well estab-
lished in the mechanics of solid and granular materials (see
Ref. 24 and the references therein). The pressure- as well as
the temperature-dependence of the rheological parameters has
also been the subject of various experimental studies on other
viscoplastic materials, especially in the oil and gas industry,
e.g., in transport operations design25 and in oil drilling, given
the high pressures and temperatures encountered in the wells.22

Politte proposed a seven-parameter empirical expression
for the plastic viscosity of certain drilling fluids as a function
of both temperature and pressure.26 He reported that the yield
stress is not a strong function of pressure and becomes even
weaker as temperature increases. Houwen and Geehan pro-
posed a simple four-parameter model to determine both the
yield stress and the high-shear-rate viscosity of invert muds
as a function of pressure and temperature.27 Hermoso et al.
investigated the combined effects of pressure and temper-
ature on the rheological behavior of two oil-based drilling
fluids and found that this is described fairly well with the
Bingham-plastic or the Herschel-Bulkley models.28 In the
range of their experimental conditions, the power-law expo-
nent was practically unaffected and the yield stress decreased
linearly with temperature and increased linearly with pressure.
A similar trend has also been observed in the experiments
of Ibeh23 on oil-based drilling fluids at ultra-high pressures
and temperatures. Hermoso et al. suggested that the increase
in yield stress with pressure is associated with the compres-
sion effect of different resulting organoclay microstructures.28

In order to model the isothermal yield stress behavior of
the two drilling fluids, they employed the following linear
equation:28

τ∗y (p∗) = τ∗0
[
1 + β∗(p∗ − p∗0)

]
, (7)

where τ∗0 denotes the yield stress at a reference pressure p∗0
and β∗ is the yield-stress growth coefficient. Hermoso et al.
reported values of the dimensionless piezo-yield coefficient,
β∗τ = τ∗0 β

∗, at different temperatures from 40 to 140 ◦C,
in the range 1-132 × 10�4 Pa/bars.28 For the variation of
the plastic viscosity, they employed a Barus-type (i.e., expo-
nential) equation. The linear law (7) corresponds to the so-
called Drucker-Prager plasticity (flow/no-flow) criterion in
solid mechanics, which can be viewed as a simplification
of the Mohr-Coulomb plasticity criterion, where τ∗0 is the
cohesion and τ∗0 β

∗ = tan(δs), δs being the internal frictional
angle.24

In the last few years, a number of studies concerned
numerical simulations of flows of viscoplastic materials with
pressure-dependent material parameters. Staron et al. inves-
tigated numerically the discharge of a granular silo, which,
for small and moderate outlets, is characterized by a constant
discharge rate in contrast with the clepsydra for which the
flow velocity depends on the height of the fluid left in the
container.29 Implementing plastic rheology [i.e., µ(I) rheol-
ogy], they were able to explain the so-called Beverloo scaling
only by means of the pressure dependence of the yield stress.
Ionescu et al.24 carried out finite-element simulations of the
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granular column collapse problem over inclined planes using
the Bingham-plastic constitutive equation and assuming that
the yield stress varies linearly with pressure. The plastic vis-
cosity was taken either constant or variable depending on both
the pressure and the rate of strain [µ(I) rheology]. Daviet and
Bertails-Descourbes proposed a non-smooth complex opti-
mization numerical framework for the simulation of dense
granular flows assuming that the material behaves as a Bing-
ham plastic whose yield stress varies linearly with pressure
while the plastic viscosity is constant.30 They pointed out that
this assumption implies that grain-grain interactions mostly
involve rigid-body contacts with Coulomb friction. Khouja
et al. analyzed a regularized Bingham model with pressure-
dependent yield stress in the framework of stationary flows
and investigated existence, uniqueness, and regularity.31 They
showed that the model can be solved and approximated as far
as the frictional parameter is small enough.

Recently, Fusi considered non-isothermal flows of a Bing-
ham plastic with the plastic viscosity and the yield stress
depending on both the temperature and pressure.32 More
specifically, he used a perturbation approach to derive the
Oberbeck-Boussinesq approximation for a Bingham fluid
under the assumption that the Reynolds number is of order one
and considered the cases where the Froude number is either
small or of order one. Fusi used an exponential expression
describing the dependence of the plastic viscosity on the pres-
sure and the temperature and a linear one for the yield stress
(such that both rheological parameters increase with pressure
and decrease with temperature).32

The present work is motivated by the recent work of Fusi
et al.33 who presented a novel technique for modeling the lubri-
cation flow of a Bingham plastic in a two-dimensional channel
of non-uniform thickness. Under the lubrication approxi-
mation, the yield surface and the two velocity components
are calculated from the pressure by means of closed form
expressions while the pressure satisfies an integro-differential
equation. This was solved by Fusi et al. with an iterative
procedure.33 Fusi et al. also considered briefly the case
of pressure-dependent plastic viscosity and provided some
approximations for the case of a slowly varying linear wall.33

The advantage of the method of Fusi et al.33 is that the
lubrication paradox is avoided and the correct shape of the
yield surface which is opposite to that of the wall is approxi-
mated at zero order. With other approaches, the correct shape
of the yield surface is obtained after calculating higher-order
solutions.34,35 In asymptotic analyses where the pressure gra-
dient is obtained from the constraint of a unit areal flux in the
x-direction at the leading order, the yield surface variation (at
zero order) is similar to that of the wall due to the scaling with
the mean velocity. The lubrication paradox arises from the fact
that the predicted plug is not a true unyielded region since the
leading order velocity varies in the x-direction. Thus, the posi-
tion of the yield surface needs to be corrected by calculating
higher-order solutions.34,35

Nevertheless, since the pressure is scaled with the pressure
difference between inlet and outlet planes of the channel and
the stress components with the pressure difference times the
(small) aspect ratio of the channel, a prerequisite of the model
of Fusi et al. is that the unyielded region (plug) extends from the

inlet to the outlet plane as well.33 Therefore, the model cannot
be applied when the plug is broken. Consequently, the results
of Ref. 33 in this latter case are not reliable. For example,
the calculated transverse velocity contours cross the symmetry
plane where this velocity component should vanish.

The objectives of the present work are (a) the extension of
the method of Fusi et al.33 for solving the lubrication flow of
a Herschel-Bulkley fluid with pressure-dependent consistency
index and yield stress in a symmetric channel of non-constant
width; (b) the derivation of analytical solutions for certain lim-
iting cases, such as the flows in a channel of constant or linearly
varying width; and (c) the investigation of the advantages and
the limitations of the method.

Fusi et al. derived solutions of plane Poiseuille and Cou-
ette flows of a Bingham plastic and determined conditions for
existence or non-existence of a rigid plug under the assump-
tion that the velocity is one-dimensional while the pressure in
the yielded region is two-dimensional.36 They derived explicit
solutions for the case where the yield stress follows the linear
equation (7) and the plastic viscosity also varies linearly and
vanishes at zero relative pressure, i.e.,

µ∗(p∗) = α∗(p∗ − p∗0), (8)

where the constant ᾱ∗ has time units. With the latter assump-
tion, the derivation of an analytical solution becomes easier,
but the flows of a Bingham plastic with constant rheological
parameters or with constant plastic viscosity are not special
cases of the flow considered. This shortcoming was avoided
by Damianou and Georgiou37 who analyzed the same flow
using

µ∗(p∗) = µ∗0
[
1 + α∗(p∗ − p∗0)

]
(9)

instead. In the present work, with the use of the lubrication
method of Fusi et al.,33 the study of viscoplastic Poiseuille
flows with a general wall function and pressure-dependent
rheological parameters is possible.

In Sec. II, the lubrication equations are presented for the
general case of a Herschel-Bulkley fluid with the consistency
index and the yield stress being (general) functions of pres-
sure. The zero-order solution is derived semi-analytically, in
the sense that closed-form expressions are derived for the two
velocity components in terms of the pressure, which is found
by solving an integro-differential equation numerically. As
mentioned earlier, the solutions hold as long as the unyielded
core extends continuously from the inlet to the outlet plane.
Compared to Ref. 33, the presentation of the method is con-
siderably simpler despite considering a more general flow
problem. In Sec. III, we derive analytical solutions for the
case of a channel of constant width with special forms, i.e.,
linear and exponential, of the consistency-index and yield-
stress pressure-dependence functions. The yield-stress growth
parameter is allowed to be negative, and the applicability win-
dows of the method in terms of the various parameters are
determined. In Sec. IV, channels of linearly varying width
(converging and diverging channels) are considered and semi-
analytical solutions are derived for the case of a Bingham
plastic with both the yield stress and the plastic viscosity vary-
ing linearly with pressure. The applicability and the limitations
of the method are again discussed. In Sec. V, we present
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numerical results for more complex geometries. In contrast
to the work of Fusi et al.,33 the integro-differential equation
for the pressure is solved directly (not iteratively) by means
of a standard pseudo-spectral numerical method. Finally, in
Sec. VI, the conclusions are summarized and future research
plans are discussed.

II. DERIVATION OF THE MODEL

We consider a Herschel-Bulkley fluid, i.e., a fluid obeying
constitutive equation (3), where however the consistency index
k∗ and the yield stress τ∗y are pressure dependent. For the sake
of generality, we assume that

k∗(p∗) = k∗0 f (α∗(p∗ − p∗0)) (10)

and
τ∗y (p∗) = τ∗0 g(β∗(p∗ − p∗0)), (11)

where k∗0 is the consistency index at the reference pressure
(assumed to be the same for the two material parameters) and
f and g are appropriate increasing functions such that f (0)
= g(0) = 1. For example, in Eqs. (4) and (5), we have f (x) = ex

and f (x) = 1 + x, respectively, and in Eq. (7) g(x) = 1 + x.
Assume now the pressure-driven flow of an incompress-

ible Herschel-Bulkley fluid in a symmetric long channel of
length L∗ and variable width 2h∗(x∗), as illustrated in Fig. 1,
where only the upper part of the domain is shown due to sym-
metry. A pressure p∗in is applied at the inlet of the channel
(x∗ = 0) while the pressure at the exit (x∗ = L∗) is p∗out < p∗in,
i.e., the imposed pressure difference is ∆p∗ = p∗in − p∗out . The
main flow is in the x∗ direction, and the z∗-velocity com-
ponent is zero. Hence, the velocity vector is of the form
v∗ = v∗x (x∗, y∗)i+ v∗y (x∗, y∗)j. In the flow of interest (Fig. 1), the

FIG. 1. Geometry, some definitions, and boundary conditions for the dimen-
sional flow in a symmetric channel of length L∗ and variable width 2h∗(x∗)
with an unyielded core of width σ∗(x∗). Due to symmetry, only half of the
flow domain is shown.

yielded and the unyielded regions are separated by the inter-
face y∗ = σ∗(x∗) for 0 ≤ x∗ ≤ L∗, where 0 < σ∗(x∗) < h∗(x∗).
Hence, the unyielded region extends from the inlet to the outlet
plane, i.e., the plug is not broken. Moreover, if σ∗(x∗) = h∗(x∗)
at any point x∗, the unyielded region touches the wall, and due
to the no-slip boundary condition, there is no flow. Let also
σ∗in ≡ σ

∗(0) and σ∗out ≡ σ
∗(L∗).

In the yielded region, the continuity equation and the x-
and y-components of the momentum equation are simplified
as follows:

∂v∗x
∂x∗

+
∂v∗y
∂y∗
= 0, (12)

ρ∗
(
v∗x
∂v∗x
∂x∗

+ v∗y
∂v∗x
∂y∗

)
= −

∂p∗

∂x∗
+
∂τ∗xx

∂x∗
+
∂τ∗yx

∂y∗
, (13)

ρ∗
(
v∗x
∂v∗y
∂x∗

+ v∗y
∂v∗y
∂y∗

)
= −

∂p∗

∂y∗
+
∂τ∗xy

∂x∗
+
∂τ∗yy

∂y∗
, (14)

where ρ∗ is the density. The non-zero components of the stress
tensor in the yielded regime read

τ∗xx = 2

{
τ∗0 g(β∗(p∗ − p∗0))

γ̇∗
+ k∗0 f (a∗(p∗ − p∗0))γ̇∗n−1

}
∂v∗x
∂x∗

τ∗yx =

{
τ∗0 g(β∗(p∗ − p∗0))

γ̇∗
+ k∗0 f (a∗(p∗ − p∗0))γ̇∗n−1

} (
∂v∗x
∂y∗

+
∂v∗y
∂x∗

)
τ∗yy = 2

{
τ∗0 g(β∗(p∗ − p∗0))

γ̇∗
+ k∗0 f (a∗(p∗ − p∗0))γ̇∗n−1

}
∂v∗y
∂y∗




, σ∗(x∗) ≤ y∗ ≤ h∗(x∗), (15)

where

γ̇∗ =

√
4

(
∂v∗x
∂x∗

)2

+

(
∂v∗x
∂y∗

+
∂v∗y
∂x∗

)2

(16)

(note that the continuity equation has been used). Similarly,
the magnitude of the stress tensor is given by

τ∗ =

√
1
2

trτ∗2 =

√
1
2
τ∗2xx +

1
2
τ∗2yy + τ∗2yx . (17)

Without loss of generality, we assume here that the reference
pressure that appears in Eqs. (10) and (11) is p∗0 = p∗out .

The unyielded core, defined byΩ∗ = {(x∗, y∗): x∗ ∈ [0, L∗],
y∗ ∈ [0, σ∗]}, moves in the x-direction as a solid, i.e., at

constant velocity v∗c. Thus,

v∗x = v∗c and v∗y = 0 for 0 ≤ y∗ ≤ σ∗(x∗). (18)

For a steady-state flow in the absence of body forces, the inte-
gral balance of linear momentum of the whole plug core yields
the following equation:33

∫ L∗

0

[
−σ∗x(−p∗ + τ∗xx) + τ∗yx

]
y∗=σ∗

dx∗ + p∗inσ
∗
in − p∗outσ

∗
out = 0,

(19)
where σ∗x ≡ dσ∗/dx∗. Equation (19) simply implies that τ∗yx
acts on dx∗ and −p∗ + τ∗xx acts on dy∗ = σ∗xdx∗, where dx∗ and
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dy∗ define an infinitesimal element of the longitudinal side of
the core.

A. Non-dimensional formulation

We assume that the length L∗ of the channel is
much greater than its greatest semi-width, i.e., L∗�H∗

≡ max
x∈[0,L∗]

h∗(x∗), and introduce the dimensionless parameter

ε ≡
H∗

L∗
� 1, (20)

which is used for applying the classical lubrication approxi-
mation or thin-film approach.34 The problem is dedimension-
alised by scaling x∗ by L∗, y∗, h∗, and σ∗ by H∗, (p∗ − p∗out) by
∆p∗, v∗x by H∗(ε∆p∗/k∗0)1/n, v∗y by εH∗(ε∆p∗/k∗0)1/n, and the
stress components by ε∆p∗. The dimensionless forms of the
continuity equation and the two components of the momentum

equation are as follows:

∂vx

∂x
+
∂vy

∂y
= 0, (21)

ε2/n−1Re

(
vx
∂vx

∂x
+ vy

∂vx

∂y

)
= −

∂p
∂x

+ ε
∂τxx

∂x
+
∂τyx

∂y
, (22)

ε2/n+1Re

(
vx
∂vy

∂x
+ vy

∂vy

∂y

)
= −

∂p
∂y

+ ε2 ∂τyx

∂x
+ ε

∂τyy

∂y
, (23)

where Re is the Reynolds number defined by

Re ≡
ρ∗H∗3∆p∗2/n−1

k∗2/n0 L∗
. (24)

Note that for n = 1, the equations for the Bingham case are
recovered, in agreement with the analysis of Fusi et al.33 For
the stress components, one gets

τxx = 2ε

[
Bn g(βp)

γ̇
+ f (αp)γ̇n−1

]
∂vx

∂x

τyx =

[
Bn g(βp)

γ̇
+ f (αp)γ̇n−1

] (
∂vx

∂y
+ ε2 ∂vy

∂x

)
τyy = 2ε

[
Bn g(βp)

γ̇
+ f (αp)γ̇n−1

]
∂vy

∂y




, σ(x) ≤ y ≤ h(x), (25)

where

γ̇ =

√
4ε2

(
∂vx

∂x

)2

+

(
∂vx

∂y
+ ε2

∂vy

∂x

)2

. (26)

In Eq. (25), there appear three dimensionless numbers, the
Bingham number Bn and the consistency-index and yield-
stress growth numbers a and β, which are defined by

Bn ≡
τ∗0

ε ∆p∗
, α ≡ a∗∆p∗, β ≡ β∗∆p∗. (27)

It is clear that when β ≥ 0 the dimensionless yield stress is
reduced from g(β)Bn at the inlet plane to Bn at the exit plane.
When β < 0, then the dimensionless yield stress increases
from g(β)Bn to Bn. We thus have the constraint g(β) > 0 so
that the unyielded core extends from the inlet to the outlet
plane (otherwise the present model is not valid).

Finally, the dimensionless form of Eq. (19) is∫ 1

0

[
−σx(−p + ετxx) + τyx

]
y=σ

dx + σin = 0, (28)

where the dimensionless pressure satisfies the following
boundary conditions:

p(0,σin) = 1, p(1,σout) = 0. (29)

B. The zero-order problem

Following Fusi et al.,33 we solve the zero-order prob-
lem. For the sake of simplicity, we will avoid introducing
new symbols for the zero-order variables; hence, hereafter all

variables are the zero-order ones. The continuity and momen-
tum equations at zero order read as follows:

∂vx

∂x
+
∂vy

∂y
= 0, (30)

−
∂p
∂x

+
∂τyx

∂y
= 0, (31)

−
∂p
∂y
= 0. (32)

From the last equation, it is deduced that p = p(x). At zero
order, τxx = τyy = 0 while

τyx =

[
Bn g(βp)

γ̇
+ f (αp)γ̇n−1

]
∂vx

∂y
, σ(x) ≤ y ≤ h(x).

(33)

Working in the upper part of the channel, we note that in the
yielded region γ̇ = |∂vx/∂y| = −∂vx/∂y and thus

τyx = −Bn g(βp) − f (αp)

(
−
∂vx

∂y

)n

, σ(x) ≤ y ≤ h(x).

(34)

Substituting the above expression into the x-momentum equa-
tion (31), integrating twice, and applying the boundary condi-
tions ∂vx/∂y(x, σ) = vx(x, h) = 0, the following expression is
obtained for vx:

vx(x, y) =

[
1 −

(y − σ)1+1/n

(h − σ)1+1/n

]
vc, σ(x) ≤ y ≤ h(x), (35)
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where

vc =
(−px)1/n(h − σ)1+1/n

(1 + 1/n) f 1/n(αp)
(36)

is the velocity of the unyielded core and px ≡ dp/dx. The
fact that the RHS of the above equation is constant will
be utilised below in order to derive the integro-differential
equation governing the pressure.

The transverse velocity component is found from the
continuity equation (30). Given that vy(x, h) = 0, we can write

vy =

∫ h

y

∂vx

∂x
dy. (37)

Substituting vx from Eq. (35) and carrying out the required
differentiation and integration, one gets

vy =
vc

2 + 1/n

[
σx + (1 + 1/n)hx − (2 + 1/n)

( y − σ
h − σ

)1+1/n
σx

− (1 + 1/n)(hx − σx)
( y − σ

h − σ

)2+1/n
]
, (38)

where hx ≡ dh/dx. The satisfaction of condition vy(x, σ) = 0
requires that

σx + (1 + 1/n)hx = 0. (39)

Equation (38) can then be simplified to

vy = (1 + 1/n)vc
(y − σ)1+1/n

(h − σ)2+1/n
(h − y) hx. (40)

From Eq. (39), it is deduced that the semi-width of the
unyielded core is given by

σ(x) = −(1 + 1/n)h(x) + C, (41)

where C is an unknown constant to be determined. The above
result generalizes the result of Fusi et al.33 for a Bingham plas-
tic (n = 1). Equation (41) implies that the width of the unyielded
core increases when the wall function h(x) is decreasing and
vice versa. The rate of change ofσ is (1 + 1/n) times the rate of

change of h and is independent of the other material and flow
parameters, which affect only the constant C. Hence, decreas-
ing the power-law exponent n in a converging channel causes
the plug to expand faster, which is expected, given that the
velocity profile becomes flatter as shear thinning is enhanced.
To determine the constant C, we return to the plug momentum
balance equation (28), which at zero order becomes∫ 1

0

[
σxp + τyx

]
y=σ

dx + σin = 0. (42)

Since at the rigid core surface (y =σ) the rate of strain vanishes,
∂vx/∂y = 0, Eq. (34) gives

τyx
���y=σ = −Bn g(βp). (43)

Therefore ∫ 1

0

[
σxp − Bn g(βp)

]
dx + σin = 0. (44)

Using integration by parts and Eq. (41), we find that

C = Bn
∫ 1

0
g(βp)dx − (1 + 1/n)

∫ 1

0
pxhdx

= Bn
∫ 1

0
g(βp)dx + (1 + 1/n)

[
hin +

∫ 1

0
phxdx

]
. (45)

From Eq. (36), we observe that

d
dx

[
px

f (αp)
(h − σ)n+1

]
= 0, (46)

which gives

pxx −
αf ′(αp)p2

x

f (αp)
+

px

h − σ
(n + 1)(hx − σx) = 0. (47)

By means of Eqs. (39) and (45), we get the following integro-
differential equation for the pressure:

pxx +



(n + 1)(2 + 1/n)hx

(2 + 1/n)h − Bn
∫ 1

0
g(βp)dx + (1 + 1/n)

∫ 1

0
pxhdx

−
αf ′(αp)px

f (αp)



px = 0 (48)

subject to the boundary conditions p(0) = 1 and p(1) = 0. An alternative form of Eq. (48) is

pxx +



(n + 1)(2 + 1/n)hx

(2 + 1/n)h − (1 + 1/n)hin − Bn
∫ 1

0
g(βp)dx − (1 + 1/n)

∫ 1

0
phxdx

−
αf ′(αp)px

f (αp)



px = 0. (49)

Once the pressure p(x) is known, the yield surface, the
unyielded core velocity, and the two velocity components are
readily calculated by means of Eqs. (41), (36), (35), and (40),
respectively. For the volumetric flow rate (which is, of course,
constant along the channel), we have

Q = 2

(∫ σ

0
vcdy +

∫ h

σ

vxdy

)

=
2vc

2 + 1/n
[σ + (1 + 1/n)h] =

2vcC
2 + 1/n

. (50)
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Equation (49) can be solved numerically, using, for example,
finite element or pseudo-spectral methods. Analytical solu-
tions are possible only for channels of constant or linearly
varying width when functions f and g are of simple form. These
are presented and discussed in Secs. III and IV.

III. FLOW IN A CHANNEL OF CONSTANT WIDTH

In the case of a channel of constant width, h = 1 and hx = 0;
thus, Eq. (49) is simplified to

pxx −
αf ′(αp)
f (αp)

p2
x = 0, (51)

which implies that the pressure distribution is independent
of the yield-stress function and the power-law exponent.
The former affects only the location of the yield point,
which is constant along the channel since Eqs. (41) and (45)
give

FIG. 2. Flow regimes as the Bingham number is increased in the lubrication
flow of a viscoplastic fluid in a channel of constant width. When Bn < Bnc,
an unyielded region of constant height is predicted even when the yield stress
and the consistency index are pressure-dependent. Note that Bn≡ τ0

∗/(ε∆p∗).

σ = Bn
∫ 1

0
g(βp)dx. (52)

Moreover, the transverse velocity component vanishes, vy = 0,
while vx = vx(y).

It is clear that when σ = 1, there is no flow since the
unyielded core touches the wall at which no-slip applies. There
are thus two flow regimes depending on the value of the Bing-
ham number, as illustrated in Fig. 2. The critical Bingham
number at which there is no flow,

Bnc =
1∫ 1

0
g(βp)dx

(53)

is obviously inversely proportional to the lowest dimensional
pressure difference above which yielding occurs (∆p∗c =
τ∗0 /(εBnc)).

From Eq. (51), we observe that

px

f (αp)
= −K , (54)

where K is a constant that can be determined along with
the pressure p upon integration and application of the two
boundary conditions for p. It is easily found that

vc =
K1/n(1 − σ)1+1/n

(1 + 1/n)
(55)

and

vx(y) =

[
1 −

(y − σ)1+1/n

(1 − σ)1+1/n

]
vc, σ ≤ y ≤ 1. (56)

Table I tabulates expressions of K, p(x), and σ for the cases
where f and g are linear and/or exponential. Note that these
results are independent of the power-law exponent n, which
affects only the velocity profile (56).

TABLE I. Expressions for the constant K, the pressure p(x), and the yield pointσ for different functions describing
the pressure-dependence of the consistency index ( f (x)) and the yield stress (g(x)) in the case of a channel of
constant width. These are independent of the power-law exponent n.

f (x) K p(x) g(x) σ
Bn =

∫ 1

0
g(βp)dx

1 1

1 1 1 � x 1 + x 1 +
β

2

ex eβ − 1
β

1 1

1 + x
ln(1 + α)

α

1
α

[
(1 + α)1−x − 1

]
1 + x 1 +

[
1

ln(1 + α)
−

1
α

]
β

ex e−β/a
∫ 1

0
e
β
a (1+α)1−x

dx

1 1

ex 1 − e−α

α

1
α

ln
1

(1 − e−α) x + e−α
1 + x

β
[
1 − (1 + α)e−a]
α (1 − e−a)

ex

α

1 − e−a , β = α

α(1 − eβ−a)
(α − β)(1 − e−a)

, β , α
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FIG. 3. Flow regimes for the Herschel-Bulkley flow in the case of a lin-
early converging channel. The present lubrication analysis holds only in
regime (ii).

Below we discuss the case where both the consis-
tency index and the yield stress vary linearly with pres-
sure, i.e., f (x) = g(x) = 1 + x. From Table I, we see that
when α > 0

p(x) =
1
a

[
(1 + α)1−x − 1

]
(57)

and

σ =

{
1 +

[
1

ln(α + 1)
−

1
α

]
β

}
Bn. (58)

Flow occurs provided that the Bingham number is lower than
the critical value,

Bnc ≡
1

1 +

[
1

ln(α + 1)
−

1
α

]
β

. (59)

(Recall that the above number is inversely proportional to the
lowest dimensional pressure difference above which yielding
occurs.) Note that β may be negative in which case the yield
stress is increasing downstream and thus Bnc may be greater
than unity. If β = 0, then Bnc = 1 andσ = Bn, i.e.,σ is indepen-
dent of the consistency-index growth parameter α (this is due
to the fact that the pressure is scaled by the inlet pressure ∆p∗).
As discussed below, this is also the case when solving the stan-
dard Poiseuille flow problem without the lubrication approx-
imation. The present lubrication model is valid provided
that σ ≥ 0, i.e.,

β ≥
α ln(α + 1)

ln(α + 1) − α
(60)

so that the plug is not broken. As already mentioned, β may
be negative and, more specifically, β ≥ �1 (so that the yield
stress in the channel remains positive), which ensures that
condition (60) is satisfied (the left hand side is always less
than �2).

FIG. 4. Lower bounds of the yield-stress growth parameter for the flow of
a Herschel-Bulkley fluid with constant consistency index (α = 0) and yield
stress varying linearly with pressure in a converging channel with h(x) = 1 +
∆h x for various values of the power-law exponent. As (�∆h) is increased from
0 (flat channel) to the critical value of 1/(2 + 1/n) (corresponding to no flow
and indicated by the vertical line in each case), the lower admissible value of
β is initially �1 and then increases rapidly to 0.

For a Bingham plastic (n = 1), the velocity is given by

vx =




ln(α + 1)
2α (1 − y)(1 + y − 2σ), σ ≤ y ≤ 1

ln(α + 1)
2α (1 − σ)2, 0 ≤ y ≤ σ

, (61)

where the effects of Bn and β are accounted for via the yield
point σ.

When the plastic viscosity is pressure-independent
(α = 0), we find the standard linear pressure distribution for
the Poiseuille flow

p(x) = 1 − x, (62)

where, however, the yield point depends on the yield-stress
growth number,

σ = (1 + β/2) Bn. (63)

For the velocity, we now have

vx =




1
2

(1 − y)(1 + y − 2σ), σ ≤ y ≤ 1

1
2

(1 − σ)2, 0 ≤ y ≤ σ
(64)

and the critical Bingham number above which there is no
flow is

Bnc ≡
1

1 + β/2
. (65)

(Recall that β ≥ �1.)
For the case of a Bingham plastic (n = 1) with linearly

varying yield stress and plastic viscosity (g(x) = f (x) = 1 + x),
the analytical Poiseuille flow solution can be obtained,37

p(x, y) =




1
α


(1 + α)1−x

cosh
[
ε ln(1 + α)(y − σ) + tanh−1(εBnβ)

]

cosh
[
tanh−1(εBnβ)

] − 1


, σ ≤ y ≤ 1

1
α

[
(1 + α)1−x − 1

]
, 0 ≤ y < σ

. (66)
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As for the velocity, one finds

vx(y) =




1

αε2 ln(1 + α)
ln

cosh
[
ε ln(1 + α)(1 − σ) + tanh−1(εBnβ)

]

cosh
[
ε ln(1 + α)(y − σ) + tanh−1(εBnβ)

] − Bnβ
α

(1 − y), σ ≤ y ≤ 1

1

αε2 ln(1 + α)
ln

cosh
[
ε ln(1 + α)(1 − σ) + tanh−1(εBnβ)

]

cosh
[
tanh−1(εBnβ)

] −
Bnβ
α

(1 − σ), 0 ≤ y < σ

, (67)

FIG. 5. Critical Bingham numbers in the case of Herschel-Bulkley flow with n = 0.5 in a linearly converging channel (hin = 1) with constant consistency index
(α = 0) and linearly varying yield stress: (a) ∆h = �0.01; (b) ∆h = �0.05; (c) ∆h = �0.1; (d) ∆h = �0.2; (e) ∆h = �0.24; (f) ∆h = �0.249. The shaded region is
the applicability domain of the present method. As (�∆h) is increased from 0 (flat channel) to the critical value of 0.25 (no flow), the lower admissible value of
β increases from �1 to 0.
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where σ is given by Eq. (58), i.e., it is the same as that pre-
dicted by the lubrication approximation. The main difference
between the above analytical solutions from the lubrication
one is that the pressure in the yielded domain is two dimen-
sional. The pressure in the unyielded core is identical to the
pressure predicted by the lubrication approximation for both
yielded and unyielded regions. Setting σ = Bn = 0 yields
the solution of a Newtonian fluid with a pressure-dependent

viscosity,12 and taking only the first term of the Taylor expan-
sion of Eq. (67) in terms of ε yields the lubrication solution
(61). The effects of the various parameters on the yield point
σ, as discussed in Ref. 37, apply here (see also a recent solu-
tion of the axisymmetric flow in Ref. 38). With the lubrication
assumption, the velocity profile is slightly overestimated and
the relative differences are enhanced as α assumes rather high
values.37

FIG. 6. Critical Bingham numbers in the case of Bingham-plastic flow (n = 1) in a linearly converging channel (hin = 1) with constant plastic viscosity (α = 0)
and linearly varying yield stress: (a) ∆h = �0.01; (b) ∆h = �0.1; (c) ∆h = �0.2; (d) ∆h = �0.3; (e) ∆h = �0.33; (f) ∆h = �0.332. The shaded region is the
applicability domain of the present method. As (�∆h) is increased from 0 (flat channel) to the critical value of 1/3 (no flow), the lower admissible value of β
increases from �1 to 0.
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IV. FLOW IN A CHANNEL OF LINEARLY
VARYING WIDTH

In this section, we consider a channel of linearly varying
width such that

h(x) = hin + (hout − hin)x = hin +∆hx and hx(x) = ∆h.
(68)

From Eq. (41), we know that the yield surface also varies
linearly,

σ(x) = −(1 + 1/n)∆hx − (1 + 1/n)hin + C, (69)

where by means of Eq. (45), the constant C is given by

C = Bn
∫ 1

0
g(βp)dx + (1 + 1/n)hin + (1 + 1/n)∆h

∫ 1

0
pdx.

(70)
In this case, Eq. (49) can be written as follows:

pxx +

[
n + 1
x + A

−
αf ′(αp)px

f (αp)

]
px = 0, (71)

FIG. 7. Critical Bingham numbers in the case of the Herschel-Bulkley flow with n = 1.5 in a linearly converging channel (hin = 1) with constant consistency
index (α = 0) and linearly varying yield stress: (a) ∆h = �0.01; (b) ∆h = �0.1; (c) ∆h = �0.2; (d) ∆h = �0.3; (e) ∆h = �0.37; (f) ∆h = �0.374. The shaded region
is the applicability domain of the present method. As (�∆h) is increased from 0 (flat channel) to the critical value of 3/8 (no flow), the lower admissible value of
β increases from �1 to 0.
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FIG. 8. Pressure distributions in the case of the flow of a Bingham plastic
(n = 1) with constant rheological parameters (α = β = 0) in a linearly converg-
ing channel with h(x) = 1 � 0.2x for various values of the Bingham number
ranging from Bnc1 = 0.2594 to Bnc2 = 0.8.

where

A =
hin − Bn

∫ 1

0
g(βp)dx − (1 + 1/n)∆h

∫ 1

0
pdx

(2 + 1/n)∆h
. (72)

Once A is calculated, the constant C is readily found by means
of

C = (2 + 1/n)(hin − ∆hA). (73)

Combining Eqs. (69) and (73), one gets

σ(x) = −(1 + 1/n)∆h x + hin − (2 + 1/n)∆hA. (74)

In the general case, Eq. (71) is not amenable to analytical
solution. We thus consider here the case of constant (pressure-
independent) consistency index. Assuming that α = 0, Eq. (71)
becomes

pxx +
n + 1
x + A

px = 0. (75)

The solution of the above equation with p(0) = 1 and p(1) = 0
is

p(x) =

(
A + 1
A + x

)n

− 1

(1 + 1/A)n − 1
. (76)

Substituting the pressure into Eq. (72) results in a non-linear
algebraic equation which is solved in order to determine the
unknown constant A.

For the sake of simplicity, we consider here the case where
g(x) = 1 + x (the yield stress varies linearly with the pressure).
It is easily shown that Eq. (72) takes the form[

βBn + (1 + 1/n)∆h
]
I + (2 + 1/n)∆hA = hin − Bn, (77)

where

I ≡
∫ 1

0
pdx =




A [(A + 1) ln(1 + 1/A) − 1] , n = 1

(A + 1)(1 + 1/A)n−1 − A − n
(n − 1)

[
(1 + 1/A)n − 1

] , n , 1
.

(78)

In a linearly converging channel with a slope ∆h < 0, the core
thickness increases with a slope equal to (1 + 1/n)(�∆h). The
value of A can be found analytically only in the two extreme
cases between which the lubrication model applies: (a) at the
lowest value of Bn, Bnc1, at which the unyielded domain

FIG. 9. Velocity contours in the case
of the flow of a Bingham plastic
(n = 1) with constant rheological param-
eters (α = β = 0) in a linearly converg-
ing channel with h(x) = 1 � 0.2x for
Bn = Bnc1 = 0.2594: (a) vx and (b) vy.
The unyielded core is shaded, and the
contour values are equally spaced.

FIG. 10. Velocity contours in the case
of the flow of a Bingham plastic (n = 1)
with constant rheological parameters
(α = β = 0) in a linearly converging
channel with h(x) = 1 � 0.2x for Bnc1
< Bn = 0.5 < Bnc2: (a) vx and (b) vy.
The unyielded core is shaded, and the
contour values are equally spaced.
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FIG. 11. Effect of the yield-stress growth parameter on the pressure dis-
tribution in the case of the flow of a Bingham plastic (n = 1) with con-
stant plastic viscosity (α = 0) in a linearly converging channel with h(x)
= 1 � 0.2x for Bn = 0.5; the yield stress is assumed to vary linearly with
pressure.

varies from 0 to 1 (it is not broken); (b) at the lowest value
of Bn, Bnc2, at which the flow comes to a stop. As illustrated
in Fig. 3, for Bn ≥ Bnc2, there is no flow anyway, while for
Bn < Bnc1, the plug is broken and the unyielded region is
restricted only near the channel exit; the fluid near the inlet is
fully yielded and thus the present lubrication model does not
apply.

The first critical value Bnc1 below which the plug is broken
corresponds to σ(0) = 0. Hence, Eq. (74) yields

A = −
hin

(2 + 1/n)(−∆h)
,

and from Eq. (77), we find that

Bnc1 =
(1 + 1/n)(−∆h)I

1 + βI
. (79)

The pressure is given by Eq. (76) and

σ(x) = −(1 + 1/n)(−∆h)x. (80)

FIG. 12. Effect of the yield-stress
growth parameter on the contours of vx
(left) and vy (right) in the case of the
flow of a Bingham plastic (n = 1) with
constant plastic viscosity (α = 0) in a
converging channel with h(x) = 1 � 0.2x
for Bn = 0.5: (a) β = �0.5; (b) β = 0;
(c) β = 0.5; the unyielded core is shaded,
and the contour values are equally
spaced. The yield stress is assumed to
vary linearly with pressure.
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FIG. 13. Effect of the power-law exponent on the pressure distribution in
the case of the flow of a Herschel-Bulkley fluid with constant rheologi-
cal parameters (α = β = 0) in a converging channel with h(x) = 1 � 0.2x
for Bn = 0.5.

In general, the second critical value Bnc2 is simply that pre-
dicted by Eq. (65) for a flat channel of height equal to the
minimum value of h(x),

Bnc2 =
hmin

1 + β/2
, (81)

where hmin is the minimum channel height. Hence, for a
converging channel,

Bnc2 =
hout

1 + β/2
=

hin + ∆h
1 + β/2

. (82)

At the critical value Bnc2, the flow stops since σ(1) = hin + ∆h
= hout . In this case, Eq. (74) gives A = �1 and the yield surface
is given by

σ(x) = hout − (1 + 1/n)(−∆h)(1 − x). (83)

In summary, the method is applicable only when Bnc1 ≤ Bn
≤ Bnc2. When Bnc1 < Bn < Bnc2, the constant A can be found

FIG. 14. Effect of the power-law expo-
nent on the contours of vx (left) and
vy (right) in the case of the flow of
a Herschel-Bulkley fluid with constant
rheological parameters (α = β = 0) in a
converging channel with h(x) = 1 � 0.2x
for Bn = 0.5: (a) n = 0.5; (b) n = 1;
(c) n = 1.5; the unyielded core is shaded,
and the contour values are equally
spaced.
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FIG. 15. Effect of the plastic-viscosity growth parameter on the pressure
distribution in the case of the flow of a Bingham plastic (n = 1) with con-
stant yield stress (β = 0) in a linearly converging channel with h(x) =
1 � 0.2x for Bn = 0.5; the plastic viscosity is assumed to vary linearly with
pressure.

numerically as the root of Eq. (77) satisfying

−
hin

(2 + 1/n)(−∆h)
< A < −1. (84)

It is obvious that for a given power-law exponent n, Bnc2 can
be defined only when σ(0) = (2 + 1/n)hout � (1 + 1/n)hin > 0
or

hout >
(1 + 1/n)
(2 + 1/n)

hin. (85)

Otherwise, the solution is actually in regime (i); thus, regime
(ii) is not observed and the present analysis is not relevant. In
other words, the three regimes of Fig. 3 are observed provided
that condition (85) is satisfied. Likewise, for a given linearly
converging channel, there is a critical value nc of the power-law
exponent below which regime (ii) is not observed,

nc =
(−∆h)

hout + ∆h
. (86)

In the case of a flat channel (∆h = 0), Bnc1 is zero, Bnc2

coincides with Bnc, given by Eq. (65), and the admissible

FIG. 16. Effect of the plastic-viscosity
growth parameter on the contours of vx
(left) and vy (right) in the case of the
flow of a Bingham plastic (n = 1) with
constant yield stress (β = 0) in a con-
verging channel with h(x) = 1 � 0.2x
for Bn = 0.5: (a) α = 0; (b) α = 1;
(c) α = 2; the unyielded core is shaded,
and the contour values are equally
spaced. The plastic viscosity is assumed
to vary linearly with pressure.
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FIG. 17. Velocity contours in the case
of the flow of a Bingham plastic (n = 1)
with constant rheological parameters
(α = β = 0) in a wavy channel described
by Eq. (91) for Bn = 0.4762, δ = 0.1 and
θ = 0.2: (a) vx and (b) vy. The unyielded
core is shaded, and the contour values
are equally spaced.

values of β are in [�1, ∞). In the case of a linearly varying
channel (∆h , 0), the lower bound of β, denoted by βc, may
increase and the applicability of the method is further reduced.
This critical value is the maximum of �1 and the value of β at
which Bnc1 = Bnc2. From Eqs. (82) and (79), we then find that

βc = max

{
−1, 2

[hin/(−∆h) − 1]/I − 1 − 1/n
3 + 1/n − 2hin/(−∆h)

}
. (87)

Figure 4 shows the variation of βc with (�∆h) for n = 0.5, 1,
and 1.5; βc is initially �1 and then at a critical value of (�∆h)
starts increasing to become zero at the maximum admissible
value of (�∆h), which is determined from Eq. (85),

(−∆h)
hin

�����max
=

1
2 + 1/n

(88)

(1/4, 1/3, and 3/8 for n = 0.5, 1, and 1.5, respectively).
Figures 5–7 illustrate the effect of the yield-stress-growth

parameter β on the two critical Bingham numbers for differ-
ent values of ∆h with hin = 1 and n = 0.5 (shear-thinning), 1
(Bingham plastic), and 1.5 (shear-thickening). The applicabil-
ity domain of the method corresponds to the shaded regions
between the curves of Bnc1 and Bnc2 (recall that below Bnc1

the plug is broken and above Bnc2 there is no flow). As (�∆h)
is increased, this regime is squeezed, with βc eventually mov-
ing to the right; Bnc1 increases rapidly, and Bnc2 is reduced

slightly both tending asymptotically to the curve

Bnc =
1 + 1/n

(2 + 1/n)(1 + β/2)
(89)

reached when (�∆h) = 1/(2 + 1/n), in which case there is no
flow. Comparing Figs. 5–7, we observe that the applicability
of the method is increased with n.

The analysis for a linearly diverging channel (∆h > 0)
is analogous. The unyielded core now contracts linearly fol-
lowing Eq. (74). Below a critical Bingham number Bnc1, the
unyielded core does not reach the exit plane, and above a sec-
ond critical number Bnc2, the unyielded core touches the wall
at the inlet plane and thus there is no flow. The analysis for the
diverging channel holds provided that

hout <
2 + 1/n
1 + 1/n

hin. (90)

Let us now consider the flow of a Bingham plastic (n = 1)
with constant plastic viscosity (α = 0) and constant yield stress
(β = 0) in a converging channel with h(x) = 1� 0.2x(∆h =�0.2),
in which case Bnc2 = hout = 0.8. From Eq. (79), we get Bnc1

' 0.2594. Figure 8 shows the pressure distributions for differ-
ent values of the Bingham number in the range from Bnc1 to
Bnc2. Note that when Bn = Bnc2 the pressure is equal to unity
for 0 ≤ x < 1. The velocity contours for Bn = Bnc1 = 0.2594
and Bn = 0.5 are shown in Figs. 9 and 10, respectively.

FIG. 18. Zoomed images of the yielded region in the case of the flow of a Bingham plastic (n = 1) with constant rheological parameters (α = β = 0) in a wavy
channel described by Eq. (91) for Bn = 0.4762, δ = 0.1 and θ = 0.2 corresponding to Figs. 3 and 4 in Ref. 33: (a) vx and (b) vy. The unyielded core is shaded,
and the contour values are equally spaced.
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FIG. 19. Effect of the plastic-viscosity growth coefficient on the pressure
distribution in the case of the flow of a Bingham plastic (n = 1) with con-
stant yield stress (β = 0) in a wavy channel described by Eq. (91) with
Bn = 0.5, δ = 0.1, and θ = 0.2. The plastic viscosity varies linearly with
pressure.

The effect of the yield-stress-growth coefficient β on the
pressure distribution and the velocity contours is illustrated in
Figs. 11 and 12, respectively, which show results for Bn = 0.5
and β = �0.5, 0, and 0.5. The value of the Bingham number
was chosen to lie between Bnc1 and Bnc2 for all the selected
values of β (Fig. 11). As β is increased, the dimensionless
pressure increases while the pressure gradient becomes lower
upstream and higher downstream. As shown in Fig. 12, the
slope of the unyielded region remains the same, but this grows
bigger as β is increased, reaching the wall at the exit plane
when β = βc (no flow).

The effect of the power-law exponent in the same geome-
try (h(x) = 1 � 0.2x) can be seen in Figs. 13 and 14, where we
show results for n = 1, 0.5, and 1.5 and constant rheological
parameters (α = β = 0). The pressure distribution may be only
slightly affected, but the slope of the unyielded region increases
as n is reduced. At the critical value nc = 1/3 [Eq. (86)],σ(0) = 0
and σ(1) = hout (thus, the second flow regime where the plug
is unbroken is not observed). The material is so shear thinning
that the plug hits the wall and no flow occurs.

FIG. 20. Effect of the plastic-viscosity
growth coefficient on the contours of
vx (left) and vy (right) in the case of
the flow of a Bingham plastic (n = 1)
with constant yield stress (β = 0) in a
wavy channel described by Eq. (91) with
Bn = 0.5, δ = 0.1, and θ = 0.2: (a) α = 0;
(b) α = 1; (c) α = 2; the unyielded
core is shaded, and the contour values
are equally spaced. The plastic viscosity
varies linearly with pressure.
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FIG. 21. Effect of the yield-stress growth coefficient on the pressure dis-
tribution in the case of the flow of a Bingham plastic (n = 1) with con-
stant plastic viscosity (α = 0) in a wavy channel described by Eq. (91)
with Bn = 0.5, δ = 0.1, θ = 0.2, and β = �0.2, 0 and 2 (the
three curves essentially coincide). The yield stress varies linearly with
pressure.

We close this section with results for a Bingham plastic
(n = 1) with constant yield stress (β = 0) and with plastic vis-
cosity varying linearly with pressure. Since it is not amenable
to the analytical solution, this flow is solved numerically using
the method briefly described in Sec. V. Figures 15 and 16 show
results obtained again in a channel with h(x) = 1 � 0.2x for
Bn = 0.5 and α = 0, 1, and 2. As α is increased, the dimension-
less pressure decreases (see Fig. 15), but it should be kept in
mind that the applied dimensional pressure driving the flow is
increased. The velocity contours for the three values of α are
given in Fig. 16. Note that the width of the unyielded region
increases with α.

V. FLOW IN A CHANNEL WITH A NONLINEAR
WALL FUNCTION

As already mentioned, the integrodifferential equa-
tion (49) for the pressure distribution has been solved using
a standard pseudo-spectral numerical method.39 Chebyshev
orthogonal polynomials are used to represent the unknown
pressure. For each parameter set, the number of spectral

FIG. 22. Effect of the yield-stress
growth coefficient on the contours of vx
(left) and vy (right) in the case of the
flow of a Bingham plastic (n = 1) with
constant plastic viscosity (α = 0) in a
wavy channel described by Eq. (91) with
Bn = 0.5, δ = 0.1, and θ = 0.2:
(a) β = �0.2; (b) β = 0; (c) β = 0.2; the
unyielded core is shaded, and the con-
tour values are equally spaced. The yield
stress varies linearly with pressure.
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coefficients is adjusted so that a fully resolved pressure field is
calculated; 12-18 spectral coefficients are usually required to
achieve a decrease in the magnitude of the coefficients about
seven to eight orders. To achieve maximum accuracy, all other
quantities of interest are also calculated spectrally. Then, the
yield surface, unyielded core velocity, and then two veloc-
ity components are calculated using the analytical expressions
derived in Sec. II.

We considered the wavy channel used by Fusi et al.33 and
Frigaard and Ryan,34

h(x) = 1 − θ cos

[
2πδ

(
x −

1
2

)]
, (91)

where δ > 0 and θ � 1. Figure 17 shows the velocity contours
for a Bingham plastic (n = 1) with constant rheological param-
eters (α = β = 0) obtained with the values chosen in Ref. 33:
Bn = 0.4762, δ = 0.1, and θ = 0.2. In Fig. 18, we zoom in order
to compare with the results of Fusi et al.33 Excellent agree-
ment is observed regarding the shape of the plug region. In all
our tests, the contours of vx were similar to those reported by
Fusi et al.33 This was not the case, however, with the vy con-
tours. Since they intersect the yield surface, the vy contours of
Ref. 33 are in error.

Figures 19 and 20 show respectively the pressure distri-
butions and the velocity contours for the flows of a Bingham
plastic (n = 1) with constant yield stress (β = 0) and plastic
viscosity varying linearly with pressure when Bn = 0.5 and
α = 0 (constant plastic viscosity), 1, and 2. As before, the
dimensionless pressure decreases with α and the pressure gra-
dient increases in magnitude near the inlet and decreases near
the exit (Fig. 19). However, as shown in Fig. 20, the eleva-
tion of the yield surface is essentially the same (in reality, this
increases slightly) and so are the velocity contours.

The results when the yield stress varies linearly with pres-
sure and the plastic viscosity is constant (α = 0) seem to follow
an opposite trend. Figure 21 shows that the dimensionless
pressure distribution is insensitive to β while the width of
the unyielded region increases and the velocity contours in
Fig. 22 are re-adjusted accordingly. A more careful look on
the magnitude of the pressure gradient reveals that this is actu-
ally reduced near both the inlet and exit and increases in the
middle of the channel as β is increased.

VI. CONCLUSIONS

The flow of a Herschel-Bulkley fluid with pressure-
dependent rheological parameters in a channel of varying
width has been analyzed extending the lubrication approxi-
mation model of Fusi et al.33 for a Bingham plastic (n = 1).
The zero-order problem in terms of the channel aspect ratio
leads to a simple ordinary integro-differential equation for the
pressure p(x), which is solved using standard numerical meth-
ods (pseudo-spectral method in the present work). Once the
pressure is obtained the yield surface and the two velocity
components are easily calculated by means of closed-form
expressions. Analytical solutions for the special cases of chan-
nels of constant and linearly varying regimes have also been
obtained.

The present results generalize those of Fusi et al.33

for a Bingham plastic with constant rheological parameters.
The lubrication paradox is avoided, and the correct shape of
the yield surface is approximated satisfactorily at zero order.
The model predicts that at zero order the yield surface variation
is opposite to that of the wall multiplied by a factor depend-
ing only on the power-law exponent. The pressure dependence
of the consistency index and the yield stress affects only the
elevation and not the shape of the yield surface. With previ-
ous approaches, such a result is obtained only if higher-order
solutions are calculated.34

A limitation of the method is that it is valid, provided that
the unyielded region extends continuously from the inlet to the
outlet plane of the channel, i.e., when the plug is not broken.
For example, Balmforth and Craster40 studied the broken-plug
regime for the thin-film flow down an inclined plane by means
of a consistent thin-layer theory for Bingham plastics. Frigaard
and Ryan34 completed their analysis of viscoplastic flow in a
channel of slowly varying width by considering the structure
of the flow after the plug was broken. Currently, we investigate
the extension of the method to the axisymmetric flow, which
is more important in applications.
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17J. Málek and K. R. Rajagopal, “Mathematical properties of the solutions to
the equations governing the flow of fluids with pressure and shear rate depen-
dent viscosities,” in Handbook of Mathematical Fluid Dynamics (Elsevier,
2007).

18M. Renardy, “Parallel shear flows of fluids with a pressure-dependent
viscosity,” J. Non-Newtonian Fluid Mech. 114, 229–236 (2003).

19S. A. Suslov and T. D. Tran, “Revisiting plane Couette-Poiseuille flows of
piezo-viscous fluid,” J. Non-Newtonian Fluid Mech. 154, 170–178 (2008).

https://doi.org/10.1016/s0377-0257(98)00094-9
https://doi.org/10.1146/annurev-fluid-010313-141424
https://doi.org/10.1007/s00397-016-0963-2
https://doi.org/10.1007/s00397-017-0998-z
https://doi.org/10.1007/s00397-017-1003-6
https://doi.org/10.1007/s00397-016-0981-0
https://doi.org/10.2475/ajs.s3-45.266.87
https://doi.org/10.1017/s0022112005008025
https://doi.org/10.1016/j.jnnfm.2011.01.006
https://doi.org/10.1016/j.fuel.2006.05.006
https://doi.org/10.1016/s0377-0257(03)00154-x
https://doi.org/10.1016/j.jnnfm.2008.04.010


030701-20 Panaseti et al. Phys. Fluids 30, 030701 (2018)

20H. M. Laun, “Pressure dependent viscosity and dissipative heating in
capillary rheometry of polymer melts,” Rheol. Acta 42, 295–308 (2003).

21J. Hermoso, F. Martinez-Boza, and C. Gallegos, “Influence of viscosity
modifier nature and concentration on the viscous behaviour of oil-based
drilling fluids at high pressure,” Appl. Clay Sci. 87, 14–21 (2014).

22S. O. Osisanya and O. O. Harris, “Evaluation of equivalent circulating den-
sity of drilling fluids under high pressure/high temperature conditions,” in
SPE 97018, SPE Annual Technical Conference and Exhibition (Society of
Petroleum Engineers, 2005).

23C. S. Ibeh, “Investigation on the effects of ultra-high pressure and tempera-
ture on the rheological properties of oil-based drilling fluids,” M.Sc. thesis,
Texas A&M University, 2007.

24I. R. Ionescu, A. Mangeney, F. Bouchut, and O. Roche, “Viscoplastic
modeling of granular column collapse with pressure-dependent rheology,”
J. Non-Newtonian Fluid Mech. 219, 1–18 (2015).

25H. C. H. Darley and G. R. Gray, Composition and Properties of Drilling
and Completion Fluids (Gulf Professional Publishing, Houston, TX, 1988).

26M. D. Politte, “Invert oil mud rheology as a function of temperature and
pressure,” presented at the SPE/IADC Drilling Conference, New Orleans,
LA, USA, 6–8 March 1985, SPE Paper No. 13458.

27O. H. Houwen and T. Geehan, “Rheology of oil-base muds,” in SPE 15416,
SPE Annual Technical Conference and Exhibition (Society of Petroleum
Engineers, New Orleans, 1986).

28J. Hermoso, F. Martinez-Boza, and C. Gallegos, “Combined effect of pres-
sure and temperature on the viscous behaviour of all-oil drilling fluids,”
Oil Gas Sci. Technol.–Rev. IFP Energ. Nouv. 69, 1283–1296 (2014).

29L. Staron, P.-Y. Lagrée, and S. Popinet, “The granular silo as a continuum
plastic flows: The hour-glass vs the clepsydra,” Phys. Fluids 24, 103301
(2012).

30G. Daviet and F. Bertails-Descourbes, “Nonsmooth simulation of dense
granular flows with pressure-dependent yield stress,” J. Non-Newtonian
Fluid Mech. 234, 15–35 (2016).

31N. L. Khouja, N. Roquet, and B. Cazacliu, “Analysis of a regularized Bing-
ham model with pressure-dependent yield stress,” J. Math. Fluid Mech. 17,
723–739 (2015).

32L. Fusi, “Non-isothermal flow of a Bingham fluid with pressure and
temperature dependent viscosity,” Meccanica 52, 3577–3592 (2017).

33L. Fusi, A. Farina, F. Ross, and S. Roscani, “Pressure-driven lubrication flow
of a Bingham fluid in a channel: A novel approach,” J. Non-Newtonian Fluid
Mech. 221, 66–75 (2015).

34I. A. Frigaard and D. P. Ryan, “Flow of a visco-plastic fluid in a chan-
nel of slowly varying width,” J. Non-Newtonian Fluid Mech. 123, 67–83
(2004).

35A. Putz, I. A. Frigaard, and D. M. Martinez, “On the lubrication paradox and
the use of regularization methods for lubrication flows,” J. Non-Newtonian
Fluid Mech. 163, 62–77 (2009).

36L. Fusi, A. Farina, and F. Rosso, “Bingham flows with pressure-dependent
rheological parameters,” Int. J. Non-Linear Mech. 64, 33–38 (2014).

37Y. Damianou and G. C. Georgiou, “On Poiseuille flows of a Bingham plastic
with pressure-dependent rheological parameters,” J. Non-Newtonian Fluid
Mech. 250, 1–7 (2017).

38L. Fusi and F. Rosso, “Creeping flow of a Herschel-Bulkley fluid with
pressure-dependent material moduli,” Eur. J. Appl. Math. (in press).

39J. S. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral Methods for
Time-Dependent Problems (Cambridge University Press, Cambridge,
2007).

40N. J. Balmforth and R. V. Craster, “A consistent thin-layer theory for
Bingham plastics,” J. Non-Newtonian Fluid Mech. 84, 65–81 (1999).

https://doi.org/10.1007/s00397-002-0291-6
https://doi.org/10.1016/j.clay.2013.10.011
https://doi.org/10.1016/j.jnnfm.2015.02.006
https://doi.org/10.2516/ogst/2014003
https://doi.org/10.1063/1.4757390
https://doi.org/10.1016/j.jnnfm.2016.04.006
https://doi.org/10.1016/j.jnnfm.2016.04.006
https://doi.org/10.1007/s00021-015-0230-9
https://doi.org/10.1007/s11012-017-0655-8
https://doi.org/10.1016/j.jnnfm.2015.04.005
https://doi.org/10.1016/j.jnnfm.2015.04.005
https://doi.org/10.1016/j.jnnfm.2004.06.011
https://doi.org/10.1016/j.jnnfm.2009.06.006
https://doi.org/10.1016/j.jnnfm.2009.06.006
https://doi.org/10.1016/j.ijnonlinmec.2014.03.016
https://doi.org/10.1016/j.jnnfm.2017.10.002
https://doi.org/10.1016/j.jnnfm.2017.10.002
https://doi.org/10.1017/S0956792517000183
https://doi.org/10.1016/s0377-0257(98)00133-5



