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Abstract The occurrence of slip complicates the

estimation of the viscosity in rheometric flows. Thus,

special analyses and experimental protocols are

needed in order to obtain reliable estimates of the

viscosity and other rheological parameters. In the

present work, the plane Couette flow of a Newtonian

fluid is considered allowing the possibility of dynamic

wall slip, i.e. slip with a slip-relaxation parameter,

along the fixed plate. For comparison purposes, the

analytical solution corresponding to static slip, i.e. to

the Navier slip condition, is derived first. Then, the

dynamic-slip solution is obtained using separation of

variables as well as the one-sided Fourier transform

method. Both methods give essentially the same

results. The effects of the slip and slip-relaxation

parameters on the solution are discussed. It is demon-

strated that flow dynamics becomes slower in the

presence of slip and decelerates further as the value of

the slip-relaxation parameter is increased.

Keywords Plane Couette flow � Start-up flow �
Newtonian fluid � Navier slip � Dynamic slip � Fourier
transform

1 Introduction

The role of wall slip in various processes of industrial

importance, e.g. in polymer processing and in

microfluidics, has been emphasized in recent reviews.

Hatzikiriakos [1, 2] and Malkin and Patlazhan [3]

reviewed wall slip of polymer melts and complex

fluids, while Neto et al. [4] reviewed experimental

studies of wall slip exhibited by Newtonian liquids.

The occurrence of slip has also been observed in

nanoscale experiments [5] and in molecular dynamic

simulations of Newtonian [6] and non-Newtonian

flows [7].

The most common slip equation is Navier’s slip law

[8], which relates the wall shear stress, r�w, to the slip

velocity, v�s , defined as the velocity of the fluid relative

to that of the wall:

v�s ¼
r�w
b�

ð1Þ

where b� is the slip coefficient, which is in general a

function of temperature, normal stress and pressure,

and the characteristics of the fluid/wall interface [9]. It

should be noted that throughout the paper dimensional

quantities and variables are denoted by stars. The no-

slip boundary condition is recovered from Eq. (1)

when b� ! 1. In many experimental studies on

various fluid systems, it has been observed that wall

slip occurs only above a certain critical value of the

wall shear stress, known as the slip yield stress ([10]
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and references therein). A number of nonlinear slip

laws have also been proposed, the most popular of

which is the power-law one:

v�s ¼
r�mw
b�

ð2Þ

where m is the exponent.

Equations (1) and (2) are static in the sense that the

slip velocity adjusts instantaneously to the wall shear

stress. Pearson and Petrie [11] were the first to propose

a generic slip equation with relaxation time (i.e.,

memory) in which the slip velocity also depends on the

past states of the wall shear stress:

v�s þ k�s
dv�s
dt�

� f ðr�wÞ ð3Þ

where k�s is the slip relaxation time. The simplest form

of the above equation is:

v�s þ k�s
dv�s
dt�

� r�w
b�

ð4Þ

For steady slip flow the second term of the LHS of

Eq. (4) is zero and Eq. (1) is recovered. Based on

experimental observations on the stick–slip instability

of polymer melts, in an attempt to describe the

transition from the slip to the stick condition which

exhibits characteristics of a relaxation process,

Hatzikiriakos and Dealy [12] extended Eq. (4) to

v�s þ k�s
dv�s
dt�

� r�mw
b�

; ð5Þ

studied the validity of the latter equation, and

estimated the value of k�s by observing slip in a

transient flow. The reader is referred to Ref. [13] for a

comprehensive review of early works where Eqs. (4)

and (5) have been used. Interestingly, the molecular

dynamics simulations carried out by Thalakkottor and

Mohseni [14] for gas and simple liquid flows near a

wall revealed that wall slip follows Eq. (4). Kaoullas

and Georgiou [13] derived analytical solutions of the

plane and axisymmetric Poiseuille flows and of the

plane circular Couette flows with dynamic slip at all

the walls following Eq. (4). More recently, Ebrahimi

et al. [15] carried out steady and dynamic shear

experiments on a polymer melt (HDPE) using a

rotational rheometer and employed an integral vis-

coelastic constitutive equation to predict the transient

shear response under no slip, static slip, and dynamic

slip following Eq. (5). They reported two values for

the stress relaxation time (for walls of different

properties), i.e. k�s ¼ 0:107 s and k�s ¼ 0:224 s.

The plane Couette flow, also known as simple shear

flow, is very important in rheology. The fluid sample is

placed between two parallel flat plates and flow is

generated by the rectilinear motion of one plate

relative to the other so that the plates remain parallel

and the distance between them is constant with time. A

number of rheometers are based on this flow, e.g. the

sliding plate rheometer [16], which is useful for

constructing material functions in both steady and

unsteady settings. The flow was used in the molecular

dynamics simulations of Thompson and Troian [6] for

a Newtonian fluid, which revealed the existence of a

general nonlinear slip law. It has also been a bench-

mark for hydrodynamic stability studies [17]. Pedros-

sian et al. [17] have recently reviewed works on the

stability of the flow at high Reynolds numbers.

The analysis of rheometric data becomes more

complicated in the presence of slip [2]. Roughened

walls are used in most cases in order to suppress slip.

Another option is to attach sand paper to the shearing

geometries. As pointed out by Coussot [18], the

selection of the correct roughness may not be

straightforward depending on the material under

study.

Georgiou [19] solved numerically and investigated

the stability of the time-dependent plane shear flow of

an Oldroyd-B fluid with nonlinear static slip along the

fixed wall. Ferrás et al. [20] also solved the steady-

state plane Couette flow for generalized Newtonian

fluids assuming that slip occurs only along the fixed

plate and using both linear (Navier) and nonlinear

static slip laws. Philippou et al. [21] solved analyti-

cally both the plane and circular Couette flows of a

Newtonian fluid, using a linear slip law with a non-

zero threshold slip stress and derived both the steady-

state and the cessation solutions.

The objective of the present work is to derive

analytical solutions of plane Couette flow with

dynamic wall slip. To simplify the analysis, we

consider here Eq. (4), which is linear. As in the

previous works of Georgiou [19] and by Ferrás et al.

[20], it is assumed that slip occurs only along the fixed

plate. Suppressing slip along one or both walls is

common practice in rheometry. For example, Piau and

Piau [22] investigated the plane Couette flow of
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viscoplastic materials, where one wall moves at

constant speed and the other one vibrates, assuming

that slip occurs only at the latter wall. Davies and

Stokes [23] used a rotational parallel plate rheometer

to study the rheology of Carbopol solutions using a

roughened plate to suppress slip effects. In their

circular-Couette rheological measurements, Ahuja

and Singh [24] first used serrated cup and rotor in

order to eliminate slip and then allowed slip along the

motor by means of a wax coating.

The governing equations are presented and de-

dimensionalised in Sect. 2, where the steady-state

solution is also provided. Two are the dimensionless

numbers describing the flow, the slip number and the

slip-relaxation number, which involve b� and k�s ,
respectively. In Sect. 3, the time-dependent solution is

derived using both the separation of variables and the

one-sided Fourier transform methods. The results for

the special case of Navier slip (zero slip-relaxation

number) are also provided and discussed in order to

facilitate the subsequent discussion, In Sect. 4, after

providing realistic ranges of the slip and slip-relax-

ation numbers. Deduced from the experiments of

Ebrahimi et al. [15], we discuss the effects of these two

parameters on the evolution of the solution. Finally,

some concluding remarks are provided in Sect. 5.

2 Governing equations and steady-state solution

We consider the flow of a Newtonian fluid contained

between infinite, horizontal parallel plates, placed at a

distanceH� apart. The fluid is assumed to be at rest and

suddenly the upper plate starts moving horizontally at

a speed V� while the lower one is kept fixed, as shown
in Fig. 1.

Assuming that the flow is unidirectional and that

gravity is negligible, the x-component of the momen-

tum equation is reduced to

ov�

ot�
¼ m�

o2v�

oy�2
ð6Þ

where v� ¼ v�ðy�; t�Þ is the velocity in the x-direction

and m� is the kinematic viscosity. The latter is defined

by m� � g�=q�, where g� is the viscosity and q� is the
density of the fluid. It is assumed that no-slip occurs at

the upper plate, while at the lower plate dynamic slip

occurs following Eq. (4). Given that

r�w ¼ g�
ov�ð0; t�Þ

oy�
ð7Þ

the boundary conditions for this initial boundary value

problem read:

v�ð0; t�Þ þ k�s
ov�ð0; t�Þ

ot�
¼ g�

b�
ov�ð0; t�Þ

oy�
; t� � 0

ð8Þ

and

v�ðH�; t�Þ ¼ V�; t� [ 0 ð9Þ

The initial condition is given by

v�ðy�; 0Þ ¼ 0; 0� y� �H� ð10Þ

It is more convenient to dedimensionalize the

problem of Eqs. (6)–(10). To this end we scale the

velocity by V�, lengths by H�, and time by

H�2=ðm�V�Þ:

v � v�

V� ; y � y�

H� ; t � t�

H�2=ðm�V�Þ ð11Þ

With the above scalings, the problem is dedime-

nionalized as follows:

ov

ot
¼ o2v

oy2
ð12Þ

vð0; tÞ þ Ks

ovð0; tÞ
ot

¼ 1

B

ovð0; tÞ
oy

; t� 0 ð13Þ

vð1; tÞ ¼ 1; t[ 0 ð14Þ

vðy; 0Þ ¼ 0; 0� y� 1 ð15Þ

where

*V
*H

*x

*y

Slip

No Slip

Fig. 1 Geometry of simple shear flow
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Ks �
k�s V

�

H� ð16Þ

and

B � b�H�

g�
ð17Þ

are the dimensionless slip-relaxation and slip num-

bers, respectively.

The steady-state solution �v ¼ �vðyÞ is easily

obtained by solving the problem:

d2�v

dy2
¼ 0; �vð0Þ ¼ 1

B

d�vð0Þ
oy

; �vð1Þ ¼ 1 ð18Þ

It should be noted that in steady-state the dynamic

slip term in the boundary condition vanishes, and the

steady-state solution is the same as that corresponding

to Navier slip. Solving the problem (18) yields:

�vðyÞ ¼ Byþ 1

Bþ 1
ð19Þ

The no-slip solution �vðyÞ ¼ y is recovered when

B ! 1. As for the steady-state slip velocity, this is

given by

�vs ¼ �vð0Þ ¼ 1

Bþ 1
ð20Þ

and, thus, it vanishes when B ! 1.

3 Time-dependent solutions

Two methods of solution have been used in order to

derive the solution of problem (12)–(15), the standard

separation of variables (Fourier) method and the one-

sided Fourier method. As discussed below, the two

solutions are equivalent despite their different forms.

3.1 Solution by separation of variables

When dynamic wall slip is considered, the solution of

Eq. (12) subject to (13)–(15) may be easily obtained

by separation of variables in the form:

vðy; tÞ ¼ Byþ 1

Bþ 1

� 2
X1

k¼1

sin akð1� yÞ½ �

ak 1þ cos2 ak
B 1�Ksa2kð Þ þ 2BKs sin

2 ak

� � e�a2
k
t ð21Þ

where the eigenvalues ak are the roots of

tan ak þ
ak

B 1� Ksa2k
� � ¼ 0; k ¼ 1; 2; . . . ð22Þ

Since the eigenvalues ak appear in the boundary

condition (13) special care must be taken when

considering the (non-standard) orthogonality relation

of the resulting Sturm–Liouville problem. The inter-

ested reader is referred to Ref. [13] for details. For the

sake of calculation of the eigenvalues ak, one verifies

the following:

(1) If 0\K�1=2 � p
2

then kp\ak\ k þ 1
2

� �
p;

k ¼ 1; 2; . . ..

(2) If n� 1
2

� �
p\K�1=2 � nþ 1

2

� �
p; n ¼ 1; 2; . . .,

then

ðk � 1=2Þp\ak\kp; k ¼ 1; 2; . . .; n
kp\ak\ðk þ 1=2Þp; k ¼ nþ 1; nþ 2; . . .

�

The slip velocity is given by

vsðtÞ ¼ vð0; tÞ

¼ 1

Bþ 1
� 2

X1

k¼1

sin ak

ak 1þ cos2 ak
B 1�Ksa2kð Þ þ 2BKs sin

2 ak

� � e�a2
k
t

ð23Þ

In the case of static (Navier) slip, i.e. when Ks ¼ 0,

the velocity is given by

vðy; tÞ ¼ Byþ 1

Bþ 1
� 2

X1

k¼1

sin akð1� yÞ½ �
ak 1þ cos2 ak

B

� � e�a2
k
t ð24Þ

where the eigenvalues ak are the roots of

tan ak þ
ak
B

¼ 0; k ¼ 1; 2; . . . ð25Þ

The slip velocity is simplified as follows:

vsðtÞ ¼ vð0; tÞ ¼ 1

Bþ 1
� 2

X1

k¼1

sin ak

ak 1þ cos2 ak
B

� � e�a2
k
t

ð26Þ

The classical no-slip solution [25] is recovered as

the limiting case when B ! 1:

vðy; tÞ ¼ y� 2
X1

k¼1

1

ak
sin akð1� yÞ½ �e�a2

k
t ð27Þ
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where now ak ¼ kp; k ¼ 1; 2; . . ..
Figure 2 illustrates the evolution of the velocity to

the corresponding steady-state solution for three slip

numbers, i.e. for B ¼ 1 (no slip), 10 (moderate slip)

and 1 (strong slip). It can be observed that the

differences are more pronounced close to the lower

wall where slip occurs. Moreover, we note that slip

decelerates the convergence of the time-dependent

solution to the steady-state, an effect that has also been

observed in other theoretical [13] and experimental

[26] works. This is also illustrated in Fig. 3, where the

evolution of the slip velocity is plotted for different

values of the slip numbers; as slip is enhanced, i.e. as B

is reduced, the convergence to the steady-state value

becomes slower.

3.2 Solution by one-sided Fourier transform

We present here an alternative method of solution,

based on the one-sided Fourier transform. This tech-

nique is convenient to deal withmore general boundary

conditions on the slip boundary, in cases for which the

separation of variables may not be adequate.

In what concerns infinite integrals which we intend

to use in the sequel, it is known that absolute

convergence of the integrand yields convergence of

the infinite integral [27]. If the function is bounded

and, moreover, tends to zero fast enough, then

convergence of the infinite integral is guaranteed.

This condition is not satisfied in the problem under

consideration, in view of the boundary condition at the

upper plate. To remedy this situation, and anticipating

its boundedness, the dependent variable is transformed

as follows:

vðy; tÞ ¼ wðy; tÞ eAt; ð28Þ

where A is a positive parameter. The choice of an

exponential damping factor is convenient for numer-

ical considerations. At the end of the solution process,

this parameter will be taken arbitrarily small and

wðy; tÞ will converge to the solution vðy; tÞ. Function
wðy; tÞ decays exponentially and the existence of the

infinite integral of this function may now be easily

verified:

Z 1

0

wðy; tÞeintdt
				

				 ¼
Z 1

0

vðy; tÞe�Ateintdt

				

				

�M

Z 1

0

e�Atdt ¼M

A

ð29Þ

where M is the upper bound of vðy; tÞj j.
The transformed problem in terms of the new

dependent variable wðy; tÞ reads:

Fig. 2 Evolution of the velocity in the case of Navier slip (Ks ¼ 0) for different slip numbers: a B ¼ 1 (no slip); b B ¼ 10 (moderate

slip); c B ¼ 1 (strong slip). The straight line is the asymptotic steady-state solution

Fig. 3 Evolution of the slip velocity in the case of Navier slip

(Ks ¼ 0) for different slip numbers
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ow

ot
þ Aw ¼ o2w

oy2
ð30Þ

wð0; tÞ þ Ks Awð0; tÞ þ owð0; tÞ
ot

� �
¼ 1

B

owð0; tÞ
oy

;

t� 0

ð31Þ

wð1; tÞ ¼ e�At; t[ 0 ð32Þ

wðy; 0Þ ¼ 0; 0� y� 1 ð33Þ

Now define the one-sided Fourier transform of

wðy; tÞ by means of:

~wðy; nÞ ¼
Z 1

0

wðy; tÞ eintdt ð34Þ

This formula readily shows that the complex

conjugate of the function ~wðy; tÞ is simply obtained

by changing the sign of the variable n inside the

integral. To the authors’ knowledge, such a transform

was seldom considered in the available literature,

although it is quite useful in tackling certain initial-

boundary-value problems. Taking the initial condition

into account, it is straightforward to show that the

transform ~wðy; tÞ satisfies the second-order differential
equation

o2 ~wðy; nÞ
oy2

� ðA� inÞ ~wðy; nÞ ¼ 0 ð35Þ

with boundary conditions

1þ KsðA� inÞ½ � ~wð0; nÞ ¼ 1

B

o ~wð0; nÞ
oy

; ð36Þ

~wð1; nÞ ¼ 1

A� in
: ð37Þ

The solution of Eq. (35) satisfying boundary con-

ditions (36) and (37) is easily seen to be:

~wðy; nÞ ¼ C1ðnÞeaðnÞy þ C2ðnÞe�aðnÞy ð38Þ

where

aðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A� in

p
ð39Þ

The coefficients C1 and C2 are determined by

solving the following linear system:

1þ Ks A� inð Þ � aðnÞ
B

� �
C1 þ 1þ Ks A� inð Þ þ aðnÞ

B

� �
C2 ¼ 0

eaðnÞC1 þ e�aðnÞC2 ¼
1

A� in

9
>>=

>>;

ð40Þ

Having determined the Fourier transform ~w, we
may confine ourselves to its real part only, then

perform the inverse Fourier cosine transform to obtain

the function wðy; tÞ from the rule:

wðy; tÞ ¼ 2

p

Z 1

0

Re ~wðy; nÞ½ � cosðntÞdn: ð41Þ

Hence, the required solution to the initial problem

is:

vðy; tÞ ¼ wðy; tÞeAt: ð42Þ

where the calculated solutions have to be improved by

repeating the calculation for smaller values of A until

convergence is achieved.

Comparisons of the two solutions derived here have

shown that these are equivalent and indistinguishable.

The results presented hereafter have all been obtained

with separation of variables.

4 Results

Before showing representative results, it is important to

know the order of the two dimensionless parameters in

real experiments. For this purpose, we use values

reported recently by Ebrahimi et al. [15] who carried

out experiments with polydisperse linear polymers

using partitioned plate and reported measurements of
Fig. 4 Solution vðy; tÞ for Ks ¼ 1 and B ¼ 1 (strong slip)
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dynamic slip obeying slip Eq. (4). These authors

experimented with three gaps, i.e.

H� ¼ 0:5; 0:75; 1mm, and reported two values for

the slip relaxation time, i.e. k�s ¼ 0:107; 0:224 s. A

representative estimate of the (steady-state) slip coef-

ficient b� was deduced from Fig. 7 of their paper

observing that r�w ¼ 0:1MPa when vs ¼ 2mm/s:

b� ¼ r�w=v
�
s ¼ 5 � 107 Kg=m2=s. For the speed of the

upper plate, we assume that this ranges from

V� ¼ 2mm/s, i.e. the slip velocity used above to

calculate the slip coefficient, up to 20 mm/s. Since

Ebrahimi et al. [15] studied viscoelastic fluids, a

representative viscosity should be considered. At a

stress of 0.1 MPa, the viscosity value can be

g� ¼ 104 Pa s. More specifically, the stress of

0.1 MPa corresponds to a frequency of about 10/s,

Fig. 5 Slip velocity vð0; tÞ for various values of the slip-relaxation number Ks: a B ¼ 1 (strong slip); b B ¼ 10 (moderate slip). The

solid lines correspond to Navier slip (Ks ¼ 0)

Fig. 6 Evolution of the velocity profile for B ¼ 1 (strong slip) and various values of the slip-relaxation number: aKs ¼ 0; bKs ¼ 0:01;
c Ks ¼ 0:1; d Ks ¼ 1. The profiles at t ¼ 0:001, 0.01, 0.2, 0.5 and 100 (practically the steady-state solution) are shown
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as it is easily deduced from Fig. 1 of Ebrahimi et al.

[15] (the stress is equal to the frequency times the

viscosity). Taking all the above into account, it turns

out that B is in the range 2.5–5 and Ks in the range

0.214–8.96.

The solution vðy; tÞ is illustrated in Fig. 4 for

Ks ¼ 1, B ¼ 1 and times in the range 0–6. This is

bounded, has a nearly constant slope and tends to a

non-zero steady-state as time grows to infinity.

Figure 5 shows the slip velocity as function of time

for B ¼ 1 (strong slip) and B ¼ 10 (moderate slip),

respectively, and three values of the slip-relaxation

number. An expected saturation behavior is noticed as

time grows larger, with saturation level independent of

parameter Ks, but strongly dependent on B. The

damping effect of these two parameters is obvious. An

increase of Ks retards reaching the steady-state.

Figures 6 and 7 illustrate the evolution with time of

the velocity profile for B ¼ 1 (strong slip) B ¼ 10

(moderate slip), respectively, and four values of the

slip-relaxation number Ks (including Ks ¼ 0, which

corresponds to Navier slip). It is clear that for a given

value of B, the steady-solution, which is independent

of the slip-relaxation parameter, is reached. As

expected, both parameters decelerate the evolution

of the solution to this state.

As stated above, the results obtained by the one-sided

Fourier transform were essentially the same as those of

the separation-of-variables method. The integration

over the infinite interval was approximated by an

integration over the interval 0; 20½ �. As to the artificial

parameter A, it was allowed to run over values in the

interval 0:0001; 0:01½ �, the corresponding solutions

were all identical as expected. For higher values of this

parameter, however, oscillations of the solutions on

Fig. 5 started to be noticed for large time values. These

oscillations grew larger as A was augmented. It is our

belief that these oscillations are due to the arising

rounding errors, which at the end are amplified by the

exponential factor in the R.H.S. of Eq. (28).

5 Conclusions

The start-up Newtonian Couette flow with dynamic

slip along the fixed wall has been solved analytically

Fig. 7 Evolution of the velocity profile for B ¼ 10 (moderate slip) and various values of the slip-relaxation number: a Ks ¼ 0; b
Ks ¼ 0:01; c Ks ¼ 0:1; d Ks ¼ 1. The profiles at t ¼ 0:001, 0.01, 0.2, 0.5 and 100 (practically the steady-state solution) are shown
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using the separation of variables and the one-sided

Fourier transform methods. The two methods yield

equivalent results. The effects of the slip and slip-

relaxation parameters have been discussed and repre-

sentative ranges of the two parameters corresponding

to certain experiments were deduced. It is demon-

strated that both parameters have a damping effect on

the evolution of the time-dependent solution.

The fact that reaching a steady state in the presence

of dynamic wall slip may take very long times is of

importance in rheometry. The analytical solution

presented here may be useful in calculating the slip

relaxation coefficients from transient experiments on

both Newtonian and generalized-Newtonian (e.g.

power-law) fluids. More systematic experimental data

on both Newtonian and non-Newtonian fluids will be

most useful in understanding better the implications of

dynamic slip in practice.
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