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Abstract We consider the Newtonian Poiseuille flow
in a tube whose cross-section is an equilateral trian-
gle. It is assumed that boundary slip occurs only above
a critical value of the wall shear stress, namely the
slip yield stress. It turns out that there are three flow
regimes defined by two critical values of the pressure
gradient. Below the first critical value, the fluid sticks
everywhere and the classical no-slip solution is recov-
ered. In an intermediate regime the fluid slips only
around the middle of each boundary side and the flow
problem is not amenable to analytical solution. Above
the second critical pressure gradient non-uniform slip
occurs everywhere at the wall. An analytical solution
is derived for this case and the results are discussed.
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1 Introduction

Slip at the wall occurs in a variety of macroscopic
flows of industrial interest, such as in flows of poly-
mer melts and suspensions, leading to many interest-
ing phenomena and instabilities. For example, it is
well-established that slip combined with compressibil-
ity leads to the so-called stick-slip polymer extrusion
instability [1]. Slip effects are also very important in
microfluidic applications [2]. Two recent reviews on
wall slip are those of Neto et al. for Newtonian liquids
[3] and of Hatzikiriakos for molten polymers [4].

In his review paper on the subject, Denn [1] notes
that the experimental data show that the slip velocity is
in general a function of the wall shear stress, the wall
normal stress (which includes pressure), the temper-
ature, the molecular weight and its distribution, and
the fluid/wall interface, e.g. the interaction between
the fluid and the solid surface and surface roughness.
Navier [5] proposed a simple slip law relating the wall
shear stress, τw , to the slip velocity, uw , defined as the
velocity of the fluid relative to that of the wall:

τw = βuw (1)

where β is the slip coefficient, which varies in general
with temperature, normal stress and pressure, molecu-
lar parameters, and the characteristics of the fluid/wall
interface. The two limiting cases of no slip and per-
fect slip are obtained for β → ∞ and β = 0, respec-
tively. The slip coefficient is related to the extrapola-
tion length, b, which is defined as the characteristic
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length equal to the distance that the velocity profile at
the wall must be extrapolated to reach zero, by means
of

β ≡ η

b
(2)

where η is the viscosity.
Many different extensions of Navier’s law have

been proposed, the most important of which the gen-
eralizations to power-law and dynamic slip equations.
The reader is referred to the recent review of Hatzikiri-
akos [4] for more details. In the present work, we are
interested in models allowing slip only above a certain
critical value of wall shear stress, the slip yield stress,
τc, as suggested by experimental data on several fluid
systems (see [6, 7] and references therein). In his re-
view, Sochi [6] notes that the slip yield stress charac-
terizes the fluid-solid system and the existing physical
conditions. A simple extension of Navier’s law to in-
clude slip yield stress is the following

{
uw = 0, τw ≤ τc

τw = τc + βuw, τw > τc
(3)

The above slip model was first proposed for Newto-
nian fluid flow by Spikes and Granick [8] who tested
its applicability on experimental data and discussed its
possible physical mechanisms. The extension of the
above model with the introduction of a power-law ex-
ponent is very often used for (non-Newtonian) pastes
and colloidal suspensions [9, 10].

Ebert and Sparrow [11] derived analytical so-
lutions of steady-state Newtonian Poiseuille flows
with Navier slip in rectangular and annular ducts. It
was only recently that analytical solutions for time-
dependent and periodic flows with Navier slip have
been published, namely by Majdalani [12], Wu et al.
[13], and Wiwatanapataphee et al. [14] for the plane,
round, and annular flows, respectively. A brief review
of exact steady-state solutions for slip flow in ducts
and channels has been recently published by Wang
[15].

Wang [16] presented a rare close form solution for
the steady-state Newtonian Poiseuille flow in a tube,
whose cross-section is an equilateral triangle, assum-
ing that Navier slip occurs along the wall. He also
pointed out that exact solutions for other polygons do
not exist. The objective of the present work is to ex-
tend his solution and analysis to the case of slip with
non-zero slip yield stress. Such solutions for steady

Fig. 1 Cross-section of the duct and coordinate system

pressure-driven flows in other geometries, i.e. pla-
nar, axisymmetric, annular, and rectangular Poiseuille
flows have been recently presented in [17].

2 Governing equations

The pressure-driven flow of a Newtonian liquid in a
triangular duct, the cross-section of which is a equi-
lateral triangle is considered. Each side has a length
of 2

√
3L and the origin of the Cartesian coordinates

(x, y) is taken at the center of the triangle, as illustrated
in Fig. 1. The flow is assumed steady, creeping and in-
compressible and gravity is neglected. Under these as-
sumptions, the flow is unidirectional and the z-velocity
component, u, satisfies the Poisson equation

∂2u

∂x2
+ ∂2u

∂y2
= −1

η

(
−∂p

∂z

)
(4)

where (−∂p/∂z) is the pressure gradient.
As for the boundary condition at the duct walls, it

is assumed that slip occurs following the slip Eq. (3).
Along the wall x = L (Fig. 1) the wall shear stress is:

τw = |τzx |x=L = −η
∂u

∂x

∣∣∣∣
x=L

(5)

and therefore in the case of slip (τw > τc) the boundary
condition (3) becomes

−η
∂u

∂x

∣∣∣∣
x=L

= τc + βu|x=L (6)
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3 The exact solution

Wang [16] noted that a threefold symmetrical solution
to Eq. (4) is given as

u = c1 − 1

4η

(
−∂p

∂z

)[
c2 cos(3θ)r3 + r2] (7)

where the cylindrical polar coordinates (r, θ ) are cen-
tered at the middle of the duct and c1 and c2 are posi-
tive constants determined by the boundary conditions.
In Cartesian coordinates (Fig. 1), this solution takes
the form

u = c1 + 1

4η

(
−∂p

∂z

)[
c2

(
3xy2 − x3) − x2 − y2] (8)

Following Wang [16] we demand that the constants
c1 and c2 are such that the slip condition is satisfied
along the side x = L. It is easy to see that both the slip
velocity and the wall shear stress are parabolas:

uw = c1 − 1

4η

(
−∂p

∂z

)[
(1 + c2L)L2 + (1 − 3c2L)y2]

(9)

and

τw = 1

4

(
−∂p

∂z

)[
(2 + 3c2L)L − 3c2y

2] (10)

The no-slip regime The well-known no-slip solu-
tion is considered here in order to derive the critical
pressure-gradient below which τw ≤ τc. By demand-
ing that the velocity vanishes everywhere at the wall,
one gets from Eq. (9):

c1 = 1

3η

(
−∂p

∂z

)
L2 and c2 = 1

3L

Therefore in the case of no-slip

u = 1

12η

(
−∂p

∂z

)
L2

[
4 + 1

L3

(
3xy2 − x3)

− 3
(
x2 + y2)] (11)

and

τw = 1

4

(
−∂p

∂z

)
L

(
3 − y2

L2

)
(12)

Fig. 2 Sketch showing the three different possibilities in the
case of non-zero slip yield stress

The wall shear stress attains its maximum at the mid-
dle of the side:

τw,max = 3

4

(
−∂p

∂z

)
L (13)

In the case of a slip equation with non-zero slip yield
stress, the critical pressure below which no slip occurs
corresponds to τw,max = τc, which gives

(
−∂p

∂z

)
1
= 4τc

3L
(14)

The solution in the case of slip Let us now consider
the case where slip occurs along the side x = L. From
Eq. (10) we note that the maximum and minimum wall
shear stresses are respectively at the middle of a side
and the vertices:

τw,max = 1

4

(
−∂p

∂z

)
L(2 + 3c2L) (15)

and

τw,min = 1

2

(
−∂p

∂z

)
L(1 − 3c2L) (16)

It is clear that if τw,min ≤ τc < τw,max , slip does occur
but only in the central part of a side. If τw,min > τc, slip
occurs everywhere along the side. The critical pressure
for this to happen is

(
−∂p

∂z

)
2
= 2τc

L(1 − 3c2L)
(17)

Therefore, we have three flow regimes, illustrated in
the sketch of Fig. 2:
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(i) For (−∂p/∂z) ≤ (−∂p/∂z)1, no slip occurs;
the velocity and wall shear stress are given by
Eqs. (10) and (11), respectively.

(ii) For (−∂p/∂z)1 < (−∂p/∂z) ≤ (−∂p/∂z)2, slip
does occur but only in the central part of a bound-
ary side.

(iii) For (−∂p/∂z) > (−∂p/∂z)2, slip occurs every-
where along the side.

It should be noted that no exact solution is possible
in case (ii) due to the non-linearity of the boundary
condition. The solution for flow regime (iii) is easily
derived as in Wang [16]. Substituting Eqs. (9) and (10)
into Eq. (3) and setting the coefficients of powers of y

to zero yields

c1 = 1

6η

(
−∂p

∂z

)
L2 (2 + 6B + 3B2)

(1 + B)
− τc

β
and

c2 = 1

3L(1 + B)

where

B ≡ η

βL
(18)

is the dimensionless slip number. Substituting c2 into
Eq. (17), one gets:

(
−∂p

∂z

)
2
= 2τc(1 + B)

LB
(19)

Hence, when (−∂p/∂z) > (−∂p/∂z)2 the velocity is
given by

u = 1

12η

(
−∂p

∂z

)
L2

1 + B

[
4 + 12B + 6B2

+ 1

L3

(
3xy2 − x3) − 3(1 + B)

L2

(
x2 + y2)]

− τc

β
(20)

The solution for case (i), i.e. when (−∂p/∂z) ≤
(−∂p/∂z)1, is recovered by setting B = 0 and τc = 0
(no slip), while the solution for τc = 0 (Navier slip) is:

u = 1

12η

(
−∂p

∂z

)
L2

1 + B

[
4 + 12B + 6B2

+ 1

L3

(
3xy2 − x3) − 3(1 + B)

L2

(
x2 + y2)] (21)

The wall shear stress is independent of the slip yield
stress:

τw = 1

4

(
−∂p

∂z

)
L

1 + B

(
3 + 2B − y2

L2

)
(22)

The volumetric flow rate is given by

Q = 3
√

3

20η

(
−∂p

∂z

)
L4

1 + B

(
3 + 15B + 10B2)

− 3
√

3L2τc

β
(23)

4 Discussion

To facilitate our discussion we dedimensionalize the
above solution scaling lengths by L, the pressure by
τc, and the velocity by τcL/η, and using stars to de-
note the dimensionless variables. It turns out that the
dimensionless critical pressure gradients are:

(
−∂p

∂z

)∗

1
= 4

3
(24)

and
(

−∂p

∂z

)∗

2
= 2 + 2

B
(25)

For the dimensionless velocity and the volumetric flow
rate per area unit we have

u∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
12

(− ∂p
∂z

)∗[4 + 3x∗y∗2 − x∗3

− 3(x∗2 + y∗2)], (− ∂p
∂z

)∗
< 4

3
1
12

(− ∂p
∂z

)∗ 1
1+B

[4 + 12B + 6B2

+ 3x∗y∗2 − x∗3

− 3(1 + B)(x∗2 + y∗2)] − B,(− ∂p
∂z

)∗ ≥ 2 + 2
B

(26)

and

Q∗ =

⎧⎪⎪⎨
⎪⎪⎩

3
20

(− ∂p
∂z

)∗
,

(− ∂p
∂z

)∗
< 4

3
1
20

(− ∂p
∂z

)∗ (3+15B+10B2)
1+B

− B,(− ∂p
∂z

)∗ ≥ 2 + 2
B

(27)

In Fig. 3, we plotted the dimensionless volumetric flow
rate for different values of the slip number. The lower
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Fig. 3 Volumetric flow rate for different slip numbers (non-zero
slip yield stress)

branch corresponds to the no-slip regime, which is in-
dependent of the slip number. The upper branch of the
solution changes with the slip number; it is shifted to
the left with an increasing slope as B increases. The
intermediate dashed lines correspond to the case (ii)
for which there is no analytical solution. These have
been calculated numerically, i.e. using standard finite
elements with a regularized version of the slip equa-
tion. Figure 4 shows the development of the slip ve-
locity along x∗ = 1 as the dimensionless pressure gra-
dient is increased for the two slip numbers considered
in Fig. 3, i.e. B = 1 and 2, for which (−∂p/∂z)∗2 = 4
and 3, respectively. One observes that the slip velocity
at (−∂p/∂z)∗2 is independent of B . It is easily verified
from Eqs. (25) and (26) that uw(y∗) = (3 − y∗2)/2.

In Figs. 5 and 6, we plotted the analytical veloc-
ity contours at different values of the dimensionless
pressure gradient for B = 1 and 10, respectively. The
first two plots in each case correspond to the two criti-
cal pressure gradients. (Note that the magnitude of the
velocity increases with the pressure gradient.) We ob-
serve that as the slip number increases the contours
tend to become circular. This is also shown in Fig. 7,
where we plotted the velocity contours for different
values of B at the second critical pressure.

5 Conclusions

We have considered the Newtonian Poiseuille flow in
a triangular duct assuming that slip occurs along the

Fig. 4 The slip velocity along x∗ = 1 for different val-
ues of the dimensionless pressure gradient: (a) B = 1 with
(−∂p/∂z)∗2 = 4; (b) B = 2 with (−∂p/∂z)∗2 = 3

wall following a Navier-type slip law with a non-zero
slip yield stress. It has been shown that there are three
distinct flow regimes defined by two critical values of
the imposed pressure-gradient. The first critical value
depends solely on the slip yield stress, while the sec-
ond one depends also on the slip coefficient. Below
the first critical value, the fluid sticks everywhere at the
duct walls and the well known no-slip solution applies.
For pressure gradients greater than the second critical
value, non-uniform slip occurs everywhere along the
walls, which allows the derivation of an analytical so-
lution, extending the solution of Wang [16] for Navier
slip (zero slip yield stress). In the intermediate regime,
there is no analytical solution. Solving numerically the
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Fig. 5 Velocity contours for B = 1 and different values of the dimensionless pressure gradient

Fig. 6 Velocity contours for B = 10 and different values of the dimensionless pressure gradient

flow in this regime not only for triangular ducts but

also other geometries is the focus of our current inves-

tigations.

Recently, Kalimeris and Fokas [18] presented the

solution of several boundary value problems in the

interior of an equilateral triangle, including the heat

equation with Dirichlet boundary conditions, which

is obviously equivalent to solving the time-dependent

Poiseuille flow in a triangular duct. An interesting ex-

tension of this work may be the solution of start-up
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Fig. 7 Velocity contours for different values of B at the second critical pressure gradient (−∂p/∂z)∗2. The top-left graph (B = 0)
corresponds to the no-slip case

and cessation of Newtonian Poiseuille flow with slip
at the wall.
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