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Synopsis 

We solve the time-dependent compressible Newtonian extrudate-swell problem with slip at the wall, 
in an attempt to simulate the stick-slip extrusion instability. An arbitrary nonlinear slip model 
relating the shear stress to the velocity at the wall is employed, such that the flow curve consists of 
two stable branches separated by an unstable negative-slope branch. Finite elements are used for the 
space discretization and a standard fully implicit scheme for the time discretization. When the 
volumetric flow rate at the inlet is in the unstable regime and compressibility is taken into account, 
self-sustained periodic oscillations of the pressure drop and of the mass flow rate at the exit are 
observed and the extrudate surface becomes wavy, as is the case in stick-slip instability. Results are 
presented for different values of the compressibility number. As compressibility is reduced. the 
frequency of the oscillations becomes higher, the amplitude of the pressure drop oscillations 
decreases, and the amplitude of the mass flow-rate oscillations decreases, whereas the amplitude 
and the wavelength of the free-surface waves decrease. 

I. INTRODUCTION 

The role of slip at the wall in extrusion instabilities has been recently demonstrated by 
a number of experiments [Hill et al. (1990); Piau et al. (1990); Piau and El Kissi (1992); 
Hatzikiriakos and Dealy (1992a)]. Various slip equations based on experimental data 
have been proposed in the literature [Denn (1992); Hatzikiriakos and Dealy (1992b)]. 
These equations express the slip velocity as a function of the wall shear stress. At 
constant temperature, most of the proposed equations predict a power-law relation be- 
tween the wall shear stress and the slip velocity. However, of interest to this work are slip 
equations that exhibit a maximum and then a minimum for the wall shear stress (as a 
function of the slip velocity). Such empirical models have been proposed by El Kissi and 
Piau (1989) and Leonov (1990). 

These slip models are of great importance because they provide a mechanism for the 
stick-slip instability. The resulting flow curves (wall shear stress versus apparent wall 
shear rate or pressure drop versus volumetric flow rate) consist of two stable branches 
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and an intermediate unstable negative-slope branch, as Pearson and Petrie (1965) showed 
for the Newtonian case by means of a linear stability analysis. 

In a previous paper [Georgiou and Crochet (1994)], we modeled the time-dependent 
compressible Newtonian flow in slits using an arbitrary slip equation relating the shear 
stress to the slip velocity and exhibiting a maximum and a minimum. Our numerical 
results show the importance of compressibility: it does not considerably affect the steady- 
state solutions but it changes dramatically the flow dynamics. When the volumetric flow 
rate at the inlet is in the unstable regime, we obtain self-sustained periodic oscillations of 
the pressure drop and of the mass flow rate at the exit, similar to those observed with the 
stick-slip instability. Plotting the pressure drop versus the mass flow rate at the outlet 
reveals the existence of a limit cycle on the flow-curve plane. We have obtained similar 
results for time-dependent Newtonian flow in a tube. 

In our previous paper, we have limited our study to the flow dynamics within the tube 
(or the slit); the boundary condition at the outlet was a standard outflow condition, 
without consideration of the downstream flow. In the present paper, we wish to examine 
the consequences of the stick-slip instability on the shape of the jet in the extrudate-swell 
problem. More precisely, we wish to investigate how sustained pressure and mass Bow- 
rate oscillations in the tube affect the development of the free surface and whether the 
expected waviness near the lips is convected downstream. For that purpose, we need to 
supplement our earlier algorithm with a time-dependent free-surface calculation. 

The governing equations and the boundary conditions for the time-dependent 
extrudate-swell problem are presented in Sec. II. In all the time-dependent runs the 
volumetric flow rate at the inlet is kept constant; this is equivalent to a piston-driven flow. 
A brief description of the finite element formulation is also given in Sec. II. We use finite 
elements for the space discretization and a fully implicit scheme for the time discretiza- 
tion. The unknown position of the free surface is computed within the implicit scheme. In 
Sec. III, we study an initial-value problem where the flow moves from the steady-state 
stick-slip solution to that of the extrudate-swell problem. Even in the unstable regime, 
compressibility, acting as the storage of elastic energy, is required for generating an 
oscillatory flow in the tube. The oscillations of the mass flow rate in the tube then result 
in the waviness of the free surface. In Sec. IV, we study the effect of compressibility on 
the amplitude and the wavelength of the free surface. As the compressibility is decreased, 
the amplitude and the wavelength of the free-surface waves decrease. The conclusions are 
summarized in Sec. V. 

II. GOVERNING EQUATIONS AND NUMERICAL METHOD 

The geometry of the round extrudate-swell problem is shown in Fig. 1. If p, p, v, and 
n are the density, the pressure, the velocity vector, and the stress tensor, respectively, the 
continuity and the momentum equations for time-dependent compressible viscous flow in 
the absence of body forces are as follows: 

8P 
;+v.pv = 0, 

dv 
p--$+pv.vv-vi7 = 0. 

If the bulk viscosity is neglected, the stress tensor for compressible Newtonian flow is 
given by 
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FIG. 1. Boundary conditions for the time-dependent compressible extmdate-swell problem with slip at the 
Wall. 

u = -p(p)I+7j[(vv)+(vv)T]- $gIV.v, 

where I is the unit tensor, 77 the viscosity, and the superscript T denotes the transpose. 
The viscosity is assumed to be independent of the pressure. 

The above equations are completed by an equation of state relating the pressure to the 
density. We use the first-order expansion: 

P = POD +P(P-Po)l? (4) 

where p = -(l/Vo) (~?Vldp)~~,r is the isothermal compressibility, po and VO the den- 
sity and the specific volume at the reference pressure po, and T the temperature. 

As in Georgiou and Crochet (1994), we assume that slip occurs along the wall accord- 
ing to an arbitrary slip law which relates the shear stress on the wall to the relative 
velocity of the fluid with respect to the wall: 

where (T,+, is the shear stress exerted by the fluid on the wall, u, the relative velocity of 
the fluid with respect to the wall, and cul , CYZ, ‘~3 material parameters. Equation (5) 
exhibits a maximum of gw provided that the dimensionless parameter 3 is larger than 8. 

It is convenient to work with dimensionless equations. To nondimensionalize the 
governing equations, we scale the lengths by the radius of the tube R, the velocity by a 
characteristic velocity V, the pressure (p--pg) and the stress components by r,+‘/R, the 
density by po, and the time by R/V. We obtain five dimensionless numbers, the Reynolds 
number Re, a compressibility number B, and three numbers associated with the material 
parameters of the slip equation: 

Re = 
POVR PrlV -, Br- , (6) 

7 R ’ 
A, = a2, A, = 03V2. 

77 

The dimensionless forms of the equations are used hereafter. 
The boundary conditions are shown in Fig. 1. Along the axis of symmetry we have the 

usual symmetry conditions. Along the wall, the radial velocity vanishes whereas the axial 
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FIG. 2. Pressure drop as a function of the mass flow rate for compressible flow with slip at the wall; the 
nondimensional parameters are: B = 0.01, Re = 1, and AL = 5. The closed curve shows a limit cycle. 

velocity satisfies Eq. (5). The end of the jet is stress-free. In the absence of surface 
tension, we impose vanishing normal and tangential stresses on the surface of the jet. 
Additionally, the unknown position h(z,t) of the free surface satisfies the kinematic 
condition: 

(7) 

Finally, at the inlet plane we assume that the density is uniform (and unknown) and that 
the axial velocity is parabolic. The above assumptions are consistent with the analytical 
solution for compressible Poiseuille flow [see Georgiou and Crochet (1994) where the 
relevant equations are given]. 

We use the finite element formulation for solving the time-dependent free-surface 
problem. The unknown position of the free surface is calculated together with the veloc- 
ity and pressure fields. Furthermore, the density is eliminated by means of the equation of 
state (4). We use the standard biquadratic-velocity (P2- Co) and bilinear-pressure 
(P’ - Co) elements with a quadratic representation for the position h of the free surface. 
For the spatial discretization of the problem, we use the Gale&in forms of the continuity, 
momentum, and kinematic equations. For the time discretization, we use the standard 
fully implicit (Euler backward-difference) scheme. Special care is needed for calculating 
the time derivatives of v and p. since the finite element mesh deforms with the motion of 
the free surface [see, e.g., Lynch and Gray (1980)]. 

Ill. COMPRESSIBLE AND INCOMPRESSIBLE FLOW 

In order to demonstrate the consequences of compressibility on the (time-dependent) 
free-surface problem, let us first study the evolution of the flow with a particular type of 
initial conditions. We start from the classical fully developed stick-slip problem: The 
boundary conditions are the same as those of Fig. 1, except that the kinematic condition 
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FIG. 3. Evolution of the free surface from the stick-slip to the extrudate-swell solution when the imposed 
volumetric flow rate falls into the unstable regime; (a) incompressible flow: the free surface does not exhibit an 
oscillatory behavior; (b) compressible flow (E = 0.01): waves propagate from the lip onwards; slip at the wall, 
Re = 1, AL = 5. and At = 0.05. 

does not apply since there is no free surface. At time t = 0, we activate the kinematic 
condition and let the free surface move to the extrudate-swell configuration while the 
volumetric flow rate at the inlet is kept constant. 

In the present calculations, the inflow plane is taken at 5 radii upstream the exit. The 
length of the jet is also 5 radii. The mesh consists of 72X 10 elements. The pressure drop 
AP is the value of the pressure at the intersection of the inflow plane and the wall. The 
dimensionless slip numbers are the same as those used in Georgiou and Crochet (1994): 
Al = 1, A2 = 20, and A3 = 100. The flow curve for Re = 1 and B = 0.01 is shown 
in Fig. 2. Note that in all the results of this paper, the mass Row rates are divided by n. 
Due to the particular choice of A2 the flow curve exhibits a maximum and a minimum. 

We first study the evolution of the solution when we start from the steady inconzpress- 
ible stick-slip problem with nonlinear slip at the wall. The mass flow rate at t = 0 is in 
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FIG. 4. Evolution of the mass flow rates at inlet (UJ and outlet (&f,) from the stick-slip to the extrudate-swell 
solution when the imposed volumetric flow rate falls into the unstable regime: (a) incompressible flow: once the 
free surface reaches its steady-state configuration, h, = h, ; (b) compressible flow (B = 0.01): h, and h,, are 
eventually periodic with the same mean value; slip at the wall, Re = 1, AL = 5, and Ar = 0.05. 

the negative-slope regime: A?, = 0.45. In Fig. 3(a), we show the evolution of the free sur- 
face from its initial configuration to the extrudate-swell solution. No oscillations are 
observed: we note that the eventual swelling is reduced as a consequence of slip; we 
recall that for a Newtonian incompressible fluid without slip at the wall, the swelling ratio 
is approximately 1.13. In Fig. 4(a), we show the evolution of the mass flow rates at the 
inflow (hi) and at the outflow (A?,) planes. A?, is always below k, because the fluid 
accumulates in the domain as the free surface moves to the steady extrudate-swell solu- 
tion. Quite clearly, in the absence of elastic energy storage, such as that occurring with 
compressibility, the nonlinear character of the slip law does not lead to a periodic flow in 
the tube. and thus no free-surface oscillations are observed. 
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FIG. 5. Evolution of the solution when an unstable steady-state solution of the compressible extrudate-swell 
problem (B = 0.01) is slightly perturbed: (a) The mass flow rates at inlet (hi) and outlet &I,) become periodic 
with the same mean value, after a transient period: (b) The pressure drop shows the same pericdicity; slip at the 
wall, Re = 1, AL = 5, and At = 0.01. 

We now proceed to compressible flow with slip at the wall; we select the same 
nondimensional parameters as in the previous flow except that, this time, B = 0.01. We 
know that typical values of the compressibility number in practical extrusion applications 
are much lower (i.e., of the order of B = 0.0003). The reason why we select a value of 
0.01 in the present flow will be discussed in Sec. IV. When compressibility is taken into 
account, oscillatory flows are obtained when the mass flow rate falls into the unstable 
regime. Figure 3(b) shows that, instead of moving towards the (unstable) steady-state 
solution, the free surface becomes wavy. Simultaneously, we observe in Fig. 4(b) that hi 
and kf,, become periodic after a few oscillations. More time is required for &fo to reach 
a periodic behavior; during the transient regime, the average uo is below nii because the 
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fluid accumulates in the extrudate region. The periodic regime is established once the 
waves that start at the exit of the tube reach the outflow plane of the computational 
domain. If we now plot in Fig. 2 the pressure drop AP vs Mu after the periodic solution 
is established, we obtain a limit cycle similar to those obtained for Poiseuille flow in our 
earlier paper. 

We conclude that a nonlinear slip law and inertia are not sufficient for generating a 
periodic flow in the tube and thus an oscillatory free surface in the extrudate-swell 
problem. Figures 2 and 4 show that a slight compressibility of the fluid triggers dramatic 
changes of behavior. 

IV. THE EFFECT OF COMPRESSIBILITY 

In order to examine the effect of the magnitude of the compressibility number B and 
to study in more detail the periodic behavior of the flow, we start from a different initial 
condition. As in our previous paper, we consider the steady extrudate-swell solution in 
the unstable regime and we slightly perturb the volumetric flow rate; the perturbation AQ 
equals 0.0001 Q. 

Let us once more consider the case B = 0.01; the other parameters are the same as in 
Sec. III. In Fig. 5, we plot ki, h,, and AP as functions of time. The slight perturbation 
occurs at time t = 0. It takes about five nondimensional time units before the flow starts 
deviating from the steady-state (unstable) solution. As we might expect, n;li and AP 
become periodic much earlier than M,. The periodic behavior of !k’, is only attained 
once the waviness of the free surface has reached the outflow section. The flow finally 
becomes periodic with the limit cycle shown in Fig. 2. 

In Fig. 6, we show the motion of the free surface during one cycle, after the estab- 
lishment of the periodic flow. The cycle of Fig. 6 starts at a pressure-drop minimum. It is 
interesting to observe that the velocity of the surface waves can be calculated through the 
motion of the crest point A of Fig. 6, since the deformed jet moves as a rigid body 
beyond a distance of about 3 radii from the lip of the die. During a period T, it can be 
verified that the axial displacement of A is given by T k 0, max/rs with the understanding 
that the density p takes the unit value in the jet. We have verified that our predictions 
remain unchanged when the length of the jet is 10 radii instead of 5. 

We have calculated the same flow with a higher (B = 0.02) and a lower (B = 0.005) 
compressibility, while the other parameters remain the same. In Fig. 7, we compare the 
established periodic free-surface profiles observed at the time when the pressure drop is 
a minimum. The values of the period T of the pressure drop oscillations and of the 
wavelength A of the free surface are listed in Table I. As in Georgiou and Crochet (1994), 
we observe that as compressibility decreases, the frequency of the oscillations becomes 
higher, the amplitude of the pressure-drop oscillations decreases, and the amplitude of the 
mass flow-rate oscillations decreases. As expected, the amplitude and the wavelength of 
the free-surface waves decrease as B decreases. 

These observations constitute the reason why, in our present developments, we limit 
our calculations to values of B not lower than 0.005. On one hand, lower values of B 
would require much finer finite element meshes for simulating the generation of small 
wavelengths in the free surface; on the other hand, the presence of viscoelasticity would 
enhance the amplitude of the surface waves. 

V. CONCLUSIONS 

We have solved the time-dependent compressible Newtonian extrudate-swell problem 
with slip at the wall, using finite elements in space and a fully implicit scheme for the 
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FIG. 6. Successive configurations of the free surface throughout a cycle of the established periodic solution of 
Fig. 5; the dotted line shows the (unstable) steady-state configuration. 

time discretization. The synergy of nonlinear slip and compressibility results in the gen- 
eration of self-sustained periodic oscillations of the pressure drop and of the mass flow 
rate in the die, in an intermediate range of volumetric flow rates. The oscillatory flow in 
the die causes the oscillations of the free surface to become wavy, as is the case in the 
stick-slip instability. The amplitude and the wavelength of the free-surface waves de- 
crease as compressibility is reduced. 

One may wonder whether compressibility is a necessary condition for the waviness of 
the free surface. Such waviness requires an oscillatory volumetric flow rate in the exit 
section of the die. We have shown that such an oscillation may be the result of the 
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FIG. 7. Free-surface profiles obtained for three different values of the compressibility coefficient B; the 
amplitude and the wavelength of the oscillations decrease as B decreases. The dotted lines show the (unstable) 
steady-state configurations; slip at the wall, Re = 1 and hL. = 5. 

combination of nonlinear slip and compressibility. However, other mechanisms may as 
well lead to the same effect, even for an incompressible fluid. In the case of an incom- 
pressible viscoelastic fluid, the combination of elasticity and of nonlinear slip may very 
well lead to oscillatory flow rate and consequently to a wavy free surface. 

Further progress requires the use of more realistic constitutive equations for the fluid 
and for the nonlinear slip model. 

ACKNOWLEDGMENTS 

This paper presents research results of the Belgian Programme on Interuniversity 
Poles of Attraction, initiated by the Belgian State, Prime Minister’s Office for Science, 
Technology and Culture. The scientific responsibility rests with its authors. 

TABLE I. Approximate values of the period of the pressure-drop oscilla- 
tions (T) and of the wavelength (X) of the free-surface waves 

B T h 

0.02 3.63 1.5 
0.01 2.44 1.0 
0.005 1.67 0.7 
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