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Abstract

We numerically solve the time-dependent planar Poiseuille flow of a Johnson±Segalman fluid with added Newtonian

viscosity. We consider the case where the shear stress/shear rate curve exhibits a maximum and a minimum at steady state.

Beyond a critical volumetric flow rate, there exist infinite piecewise smooth solutions, in addition to the standard smooth one

for the velocity. The corresponding stress components are characterized by jump discontinuities, the number of which may be

more than one. Beyond a second critical volumetric flow rate, no smooth solutions exist. In agreement with linear stability

analysis, the numerical calculations show that the steady-state solutions are unstable only if a part of the velocity profile

corresponds to the negative-slope regime of the standard steady-state shear stress/shear rate curve. The time-dependent

solutions are always bounded and converge to different stable steady states, depending on the initial perturbation. The

asymptotic steady-state velocity solution obtained in start-up flow is smooth for volumetric flow rates less than the second

critical value and piecewise smooth with only one kink otherwise. No selection mechanism was observed either for the final

shear stress at the wall or for the location of the kink. No periodic solutions have been found for values of the dimensionless

solvent viscosity as low as 0.01. # 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Several constitutive equations, such as the Doi±Edwards model with a Rouse relaxation mode [1,2],
the Johnson±Segalman model with an added Newtonian viscosity [3±6] and the Giesekus model [3,7±
9], predict a nonmonotonic shear stress/shear rate behaviour, in a certain range of their parameters.
Nonmonotonic constitutive equations admit multiple weak steady-state solutions in viscometric flows,
such as the simple shear and Poiseuille flows. These weak solutions are uncountably infinite and are
characterized by an arbitrary number of shear rate discontinuities. In Poiseuille flow, the discontinuities
are located near the wall; the fluid in the bulk is slightly sheared and the flow is almost plug, whereas
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the fluid is strongly sheared near the wall. The formation of the high shear rate layer near the wall can
be viewed as apparent slip. Linear stability analyses of the above flows predict that steady-state
solutions containing velocity segments corresponding to the negative-slope regime of the shear stress/
shear rate curve are unstable [1,3,7]. Various investigators considered this inherent constitutive
instability in order to explain the spurt effects observed during the capillary extrusion of certain
polymer melts. The constitutive instability mechanism, however, has been criticized by other
investigators who state that slip at the wall plays the most crucial role in the spurt instability. Interesting
discussions about the two mechanisms of instability can be found in [10,11].

Some recent experimental observations show that nonmonotonic constitutive equations are
appropriate for describing the flow behaviour of wormlike surfactant solutions [12,13]. The circular
Couette flow experiments Mair and Callaghan [13] and Decruppe et al. [14] show that above a critical
shear rate value the flow is subdivided into two or three layers corresponding to different shear rate
regimes. Mair and Gallaghan [13] also carried out NMR pipe flow experiments and found that at high
shear rates the flow is separated into two layers; near the wall, the shear rate is high, and the velocity
profile is pluglike. The appearance of zones of different shear rates, referred to as shear banding

[12,14], can be modeled easily with nonmonotonic constitutive equations. The points separating
the different zones are the discontinuity points of a stable weak (piecewise smooth) steady-state
solution.

Yuan et al. [15] solved the creeping two-dimensional plane Poiseuille flow of a Johnson±Segalman
fluid using a Lagrangian/Eulerian simulation technique. They used periodic boundary conditions at the
inlet and outlet planes of the flow domain and obtained results for a value of the solvent viscosity
corresponding to a nonmonotonic shear stress/shear rate behaviour. They showed results for the start-up
flow. Unfortunately, for their velocity profile plots, they used only a few points and therefore, it is not
clear whether their method is able to catch the expected shear rate discontinuities. They also noticed
that in some cases the solution shows oscillatory character but they did not mention whether
oscillations persist or decay. Numerical results showing persistent pressure drop oscillations at fixed
volumetric flow rate were also reported by Malkus et al. [6,8]. However, as they pointed out [8], the
oscillations might be an artifact of the numerical algorithm, i.e., a consequence of the system being
slightly damped. More recently, the existence of periodic solutions was reported by Arts and van de Ven
[16].

EspanÄol et al. [17] solved the creeping one- and two-dimensional plane shear flows of a Johnson±
Segalman fluid with added Newtonian viscosity using a Lagrangian/Eulerian method. Their results for
the inception of shear flow suggest that, when the nominal shear rate is in the negative slope region of
the constitutive equation, there is only one discontinuity point in the final steady state. This point
separates the flow into two layers, of which the one adjacent to the fixed wall is characterized by high
shear rates. Their results also show that there exists a selection mechanism for the position of the
discontinuity and for the steady-total shear stress; the value of the latter is roughly constant for all
nominal shear rates in the negative slope region of the constitutive equation [17]. Greco and Ball [18],
based on a variational principle, reported similar results for the creeping circular Couette flow of a
Johnson±Segalman fluid. They obtained numerical results with two and three bands at low and high
velocities of the rotating cylinder, respectively, and observed a selection mechanism for the final shear
stress at the interfaces of the bands into which the flow is separated [18].

Georgiou and Vlassopoulos [19] solved the time-dependent plane shear flow of a Johnson±Segalman
fluid using mixed finite elements in space and a fully-implicit scheme in time. Their numerical results
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agree with the linear stability findings of Kolkka et al. [3] and show that the stable steady-state solution
reached in each case and the number of the discontinuity points depend strongly on the initial
perturbation. Spenley et al. [12] reached the same conclusion after solving the shear flow of a fluid
obeying the `toy equation' which is nonmonotonic as well. The calculations of Georgiou and
Vlassopoulos [19] for the inception of simple shear flow at zero Reynolds number have not revealed
the existence of any selection mechanisms, neither for the position of the discontinuity point nor for the final
value of the total shear stress; they are, thus, in disagreement with the results of EspanÄol et al. [17].

In this paper, we extend the work of Georgiou and Vlassopoulos [19] to the one-dimensional plane
Poiseuille flow of a Johnson±Segalman fluid with added Newtonian viscosity. Our objective is to study
the dynamics of the flow and investigate whether there exist selection mechanisms for the position of
the discontinuity points (kinks) and for the pressure gradient (i.e., the shear stress at the wall), when the
volumetric flow rate is in the regime of multiple steady-state solutions. The governing equations and
the boundary conditions of the flow are presented in Section 2. In Section 3, we obtain the steady-state
solutions. The constitutive equation is nonmonotonic for values of the dimensionless solvent viscosity
less than 1/9. In such a case, beyond a critical volumetric flow rate, there exist infinite piecewise
smooth solutions, in addition to the standard smooth one. Beyond a second critical volumetric flow rate,
no smooth solutions exist. The numerical results are presented in Section 4. The stability of the steady-
state solutions to small perturbations is investigated. Our numerical calculations agree with the linear
stability predictions of Kolkka and co-workers [3,7] ± a steady-state solution is unstable if it contains a
segment corresponding to the negative slope regime of the shear stress/shear rate curve. The numerical
results for the start up of Poiseuille flow at zero Reynolds number do not show the existence of any
selection mechanism for the shear stress at the wall (in the unstable regime). The final velocity solution
is smooth for volumetric flow rates less than the second critical value and piecewise smooth with only
one kink otherwise. As with the simple shear flow [19], no periodic solutions have been found for values of
the dimensionless solvent viscosity as low as 0.01. Our conclusions are summarized in Section 5.

2. Governing equations

We consider the time-dependent planar incompressible Poiseuille flow of a Johnson±Segalman fluid
with added Newtonian viscosity. The geometry and the boundary conditions of the flow are shown in
Fig. 1. The stress tensor T is decomposed into a purely viscoelastic part T1 and a purely viscous part
T2�2�2d, where �2 is the viscosity of the solvent and d is the rate of deformation tensor. The governing
equations are nondimensionalized by scaling the length by the half-width H of the channel (Fig. 1), the
velocity by the average velocity V in the slit, the time by H/V and the stress components and the
pressure by ��1 � �2�V=H, where �1 is the viscosity of the polymer. The x-momentum equation thus
becomes

Re
@vx

@t
� @p

@x
� @p

@x
� @T

xy
1

@y
� �2

@2vx

@y2
; (1)

where Re is the Reynolds number:

Re � �VH

�1 � �2

(2)
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and � is the density. For the components of T1, in this one-dimensional flow, one gets
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where We is the Weissenberg number:

We � �V

H
; (6)

� is the relaxation time of the polymer, and � is a dimensionless material parameter the values of which
vary from 0 to 2.

3. Steady-state solutions

In steady state, we get from Eq. (1):

Txy � T
xy
1 � �2

@vx

@y
� T

xy
1 ÿ �2 _ � ÿrP y; (7)

where _ � ÿ@vx=@y is the shear rate and the constant, rP � ÿ@p=@x is the pressure gradient. (In view
of the symmetry boundary condition at y�0, the constant of integration is equal to zero and the shear
rate is an odd function of y.) From Eqs. (3)±(7), we get

T
xy
1 � ÿ

�1 _

1� 2� 1ÿ �=2� � We _� �2
" #

and

Txy � ÿ �2 � �1

1� 2� 1ÿ �=2� � We _� �2
" #

_ � ÿrP y: (8)

Fig. 1. Geometry and boundary conditions of the planar Poiseuille flow.
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For the other two stress components, we obtain

Txx � Txx
1 �

2 1ÿ �=2� ��1We _2

1� 2� 1ÿ �=2� ��We _�2 (9)

Tyy � T
yy
1 � ÿ

��1We _2

1� 2��1ÿ �=2��We _�2 ; (10)

Eq. (8) can be transformed into a cubic equation for _:

_3 ÿrP y

�2

_2 � 1

��2

_ ÿ y
rP y

��2

� 0; (11)

where

� � 2��1ÿ �
2
�We2 (12)

From the theory of cubic equations, Eq. (11) has three real roots if �2 <1/9. This is the well-known
necessary condition for having a shear stress/shear rate curve with a maximum followed by a minimum,
as shown in Fig. 2. The three real roots appear only in a certain region of the domain, i.e., when

yc1 � 1

rP

������
C1

�

r
� y � 1

rP

������
C2

�

r
� yc2; (13)

Fig. 2. The value of the ratio y � ÿTxy=rP as a function of the shear rate _; h2�0.05, rP�0.8, ��0.36.
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where

C1;2 �
1� 18�2 ÿ 27�2

2 �
�������������������������������������
��2 ÿ 1��9�2 ÿ 1�3

q
8

: (14)

For values of y outside the interval �yc1; yc2�, there exists only one real root of Eq. (11). In Figs. 3(a) and
(b), we show how the y-range of discontinuous shear rates depends on rP and �2, respectively. The

Fig. 3. The range of y values as a function of (a) the pressure gradient rP for �2�0.05 and (b) the parameter �2 for rP�0.9,

within which the shear rate is multivalued. We�1, ��0.36.
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critical values, rPc1 and rPc2 separate the three regions of different behaviour: in �0;rPc1� the
velocity profile is smooth and unique; in �rPc1;rPc2� in addition to the smooth solution, there exist an
infinity of piecewise smooth solutions; in �rPc2;1� no smooth solution exists. Given that the velocity
vx is obtained by integrating the shear rate _ from y�1 down to y�0, we have three distinct cases:

1. If yc1 � 1, there is only one real solution for _. To obtain vx, one integrates from y�1 to y�0 along
the left positive-slope branch of the shear stress/shear rate curve. The velocity profile is smooth.

Fig. 4. Three possible ways of integrating the shear rate to obtain the velocity profile for the case yc1 < 1 � yc2; rP�0.8,

�2�0.05, ��0.36.
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2. If yc1 < 1 � yc2, the situation becomes more complicated. The integration in the interval �0; yc1� is
carried out along the left positive slope branch of the shear stress/shear rate curve. More possibilities
exist, however, for the integration in the interval �yc1; 1� in which there correspond three real roots of
_. A smooth velocity profile is obtained only if one integrates along the left positive-slope branch
(Fig. 4(a)). In all other cases, i.e., if one integrates along the negative-slope branch (Fig. 4(b)) or
along the right positive-slope branch (Fig. 4(c)), a jump in _ will appear at y � yc1 and the velocity
profile will not be differentiable. The three velocity profiles that correspond to the paths of Fig. 4 are
shown in Fig. 5. Note that more jumps from one branch to another are also admissible in the interval
�yc1; 1� and thus, the number of the weak steady-state solutions is infinite.

3. If yc1 < yc2 < 1, the integrations from 1 to yc1 and from yc1 to 0 are carried out along the right and
left positive-slope branches of the shear stress/shear rate curve, respectively. As in case (ii), different
choices exist for the integration from yc2 to yc1. Four of them are illustrated in Fig. 6. In the first
three, there is only one jump in _ and the negative-slope branch of the shear stress/shear rate curve is
not used. Using the terminology of Malkus et al. [8], the solutions in Fig. 6(a) and (b) correspond to
the top- and the bottom-jumping, respectively. In Fig. 6(d), there are two jumps in _ and, in some
range of y, the integration is carried out along the negative slope branch of the shear stress/shear rate
curve. The corresponding velocity profiles are shown in Fig. 7.

As mentioned above, when rP exceeds the critical value rPc1 there exist infinite, piecewise smooth
steady-state solutions. The maximum and minimum volumetric flow rates that can be attained
correspond to the bottom jumping (Fig. 6(b)) and the top jumping (Fig. 6(a)) scenarios, respectively.
The values ofrPc1 andrPc2 can be obtained by setting yc1 and yc2 equal to unity in Eq. (13). In Fig. 8,
we plot the pressure gradient vs. the volumetric flow rate for the cases of top- and bottom-jumping. For
a given value of the volumetric flow rate, the steady-state pressure gradient can be anywhere between
the two curves.

Fig. 5. The velocity profiles obtained by integration of the shear rate along the three paths shown in Fig. 4.
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The upper-convected Maxwell fluid (�2�0) is a degenerate case and requires better examination.
Approximate expressions can be found for the critical pressure gradients by expanding C1,2 (Eq. (14))
for small �2 and substituting in Eq. (13):

rPc1 � 2

�����
�2

�

r
; rPc2 � 1

2
����
�
p

The results suggest that the branch corresponding to the maximum flow rate shifts to lower pressure
gradients. Note that when �2�0, there is no branch corresponding to the maximum flow rate (Fig. 8),
while the minimum flow rate branch terminates at the critical value rP � 1=�2H��. Beyond this
critical value, no steady-state solution exists.

Fig. 6. Four possible ways of integrating the shear rate to obtain the velocity profile for the case yc1 < yc2 < 1; rP�1.0,

�2�0.05, ��0.36.

M.M. Fyrillas et al. / J. Non-Newtonian Fluid Mech. 82 (1999) 105±123 113



It should be pointed out that the width of the high shear rate layer near the wall gets thinner as the
value of �2 decreases. This is illustrated in Fig. 9, where we show the steady-state velocity
profiles corresponding to the top- and the bottom-jumping scenarios for a fixed value of the volumetric
flow rate (Q�0.428) and various values of �2. For small values of �2, the velocity profile might
become pluglike. Obviously, numerical simulations for small values of �2 would require highly
refined meshes in order to capture the kink in the velocity profile and attain an acceptable degree of
accuracy.

4. Numerical results

In this section, we study the stability of the steady-state solutions presented in the previous section,
by solving numerically the time-dependent Eqs. (1)±(5). We use finite elements in space and employ
the standard fully-implicit scheme for the time integration. For the viscoelastic part of the stress tensor
T1, we use a zeroth-order approximation in order to avoid the appearance of Gibbs-type oscillations in
the numerical solution. For the velocity vx, we use a biquadratic approximation. All the results
presented below have been obtained with a graded mesh of 200 elements; the element size was
decreasing geometrically from the centerline to the wall. The size of the element adjacent to the wall
was slightly less than 10ÿ3. As for the initial condition, we start form a steady-state solution obtained
for a given volumetric flow rate Q0 and at time t � �t � 0:0001 we set the volumetric flow rate equal to
a new value Q. The results obtained with the above mesh and �t�0.0001 were essentially the same as
those obtained with a more refined graded mesh consisting of 400 elements and �t�0.00001. The
assumption of the volumetric flow rate being constant corresponds to piston-driven incompressible
flow. The piston is assumed to be far upstream the domain of interest, and, hence the flow can

Fig. 7. The velocity profiles obtained by integration of the shear rate along the four paths shown in Fig. 5.
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be considered fully-developed, i.e., unidirectional. In start-up Poiseuille flow, Q0�0, i.e., the fluid is
initially at rest. In all calculations, we have taken We�1, �2�0.05, and ��0.2 unless otherwise
stated.

Our time-dependent calculations agree with the linear stability results of Nohel et al. [20] and Kolkka
et al. [3]; a steady-state solution is stable to small perturbations if the velocity profile does not contain a
convex segment, i.e., a segment corresponding to the negative-slope branch of the shear stress/shear

Fig. 8. Top and bottom jumping flow curves. In the region within the two curves there exists an infinity of steady-state

velocity profiles with kinks. Figure (b) is a magnification of figure (a) near the origin. The critical pressure gradients

rPc1�0.71 and rPc2 �0.88 are calculated with ��0.36 and �2�0.05. The corresponding critical volume flow rates are

Qc1�0.269 and Qc2�0.39.
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rate curve (Fig. 2). Hence, from all the steady-state velocity profiles shown in Figs. 5 and 7, only the
profiles B of Fig. 5 and D of Fig. 7 are unstable. In Figs. 10 and 11, we show the time-dependent
solutions obtained after slightly perturbing the steady-state solutions corresponding to profiles B and C
of Fig. 5, respectively (The volumetric flow rate was perturbed at time t��t by a small amount of the
order of 0.1%.). In the first case, the steady-state solution is unstable. In Fig. 10(a), we show the
evolution of the pressure gradient which settles at a higher value than the initial one. In Fig. 10(b), the
evolution of the velocity profile is illustrated. A new stable steady-state is reached and the velocity
profile has one kink and two concave segments. Note that the new stable steady-state solution is neither
top nor bottom jumping. In the second case of profile C, the steady-state solution is stable. As
illustrated in Fig. 11, after some oscillations the solution returns to its original form. We also performed
numerical calculations starting at different initial conditions, in order to check the effect of the initial

Fig. 9. Steady-state velocity profiles corresponding to (a) bottom jumping and (b) top jumping for various values of �2. All the

profiles correspond to the same volumetric flow rate Q�0.428 and ��0.36.
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perturbation on the final steady state. As in the simple shear flow [19], the initial perturbation
determines which of the infinite, stable steady-state solutions will be reached (when the volumetric
flow rate is greater than Qc1.

The next step in our calculations was to investigate whether there exists a selection mechanism for
the final pressure gradient (or the shear stress at the wall) in start-up flow. We have thus obtained results
for different values of the volumetric flow rate in the three regimes depicted in Fig. 8(b). For values of
Q less than Qc1, the unique smooth solution is reached. For values of Q in the interval (Qc1,Qc2), the
stable smooth velocity solution is again reached, in spite of the fact that an infinity of stable piecewise
smooth steady-state solutions exist in that interval. Obviously, the smooth steady-state solution
corresponds to the maximum possible pressure gradient. In Fig. 12, we show the evolution of the

Fig. 10. (a) Evolution of the pressure gradient when the unstable velocity profile B of Fig. 5 is slightly perturbed; (b)

Evolution of the velocity profile. The dashed curve is the perturbed steady-state. The model parameters are �2�0.05, ��0.36,

Re�1 and Q�0.6869.
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velocity profile to the new stable steady-state solution for Q�0.32162 (Qc1, Qc2) and Re�1. The same
calculation was repeated with a smaller Reynolds number, Re�0.01. The same steady-state solution
was attained almost immediately; for zero Reynolds number, the stable smooth velocity profile is
attained instantaneously when Q is less than Qc2.

For volumetric flow rates above Qc2, no smooth steady-state solutions exist and thus the final steady
states reached are piecewise smooth. In all cases examined, the final velocity profile has one kink. In
Fig. 13, we plot the evolutions of the pressure gradient and the velocity for a value of Q greater than
Qc2 and Re�1. In Fig. 14, we plot the final pressure gradient and the final location of the kink versus
the imposed value of Q, calculated for the case of creeping flow (Re�0). The final steady state is
neither top nor bottom jumping (the asymptotic solution coincides with neither the maximum nor the

Fig. 11. Evolution of the velocity after a slight perturbation of the velocity profile C of Fig. 5: (a) times from 0 to 0.6; (b)

times from 0.8 to 1.4. The final steady-state coincides with the initial velocity and is shown a dashed curve; �2�0.05, ��0.36,

Re�1 and Q�1.2874.
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minimum flow rate curves). Furthermore, the results do not suggest the existence of a selection
mechanism for the position of the kink nor for the shear stress. In Fig. 13(b), we observe that the time-
dependent velocity profile attains a minimum in the centerline for a period of time, a result reminiscent
of flows with pulsating pressure gradients [21].

The oscillations of the pressure gradient become larger as the value of �2 decreases but they are still
decaying. Results have been obtained for values of We as high as 5 and values of �2 as low as 0.01
(Fig. 15). In Fig. 15(b), we plot the velocity profiles corresponding to a minimum and a maximum of
the pressure drop. In the latter case, the velocity profile is convex except near the wall, in agreement
with the results of Malkus [6]. Unlike his results for �2�0.007, however, the pressure drop oscillations
are not persistent (Fig. 15(a)). For such small values of �2, the high shear rate layer near the wall

Fig. 12. Transient results for volumetric flow rate Q�0.3216 2 (Qc1, Qc2) starting from rest: (a) times from 0 to 0.9; (b) times

from 0.9 to 1.4. The dashed curve shows the asymptotic velocity profile which is the corresponding smooth steady-state

solution (Fig. 4(a)). The model constants are �2�0.05, ��0.2 and Re�1.
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becomes extremely thin and the flow there cannot be resolved with standard numerical methods and
meshes. Let us also note that, for small values of �2, the negative slope regime of the constitutive
equation is large and extends to very high shear rates. This extreme behaviour is not expected
physically, since short-relaxation time processes become important causing the stress to increase [12].

5. Conclusions

The stability of the one-dimensional plane Poiseuille flow of a Johnson±Segalman fluid with added
Newtonian viscosity has been investigated by means of numerical calculations. When the
dimensionless solvent viscosity is less than 1/9, the constitutive equation is nonmonotonic and

Fig. 13. Transient results for volumetric flow rate Q � 1:2874 > Qc2. The model constants are �2�0.05, ��0.36, and Re�1.

The velocity profiles are for times from 0.8 to 1.5. The dashed line is the final steady state.
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uncountably infinite piecewise smooth steady-state solutions are admitted beyond a critical volumetric
flow rate. Steady-state solutions corresponding to velocity profiles with convex segments are unstable,
in agreement with linear stability analysis. The time-dependent solutions for start-up Poiseuille flow
converge to a smooth velocity profile in case such a solution exists; else, a piecewise-smooth velocity
profile with one discontinuity point near the wall is reached. Our numerical calculations have not
revealed any selection mechanisms either for the final value of the pressure gradient or for the location
of the discontinuity point. Oscillations of the pressure drop were observed in many occasions, but they
were always decaying. Thus, the nonmonotonicity of the constitutive equation alone cannot explain the
extrusion instabilities observed experimentally.

Fig. 14. The final pressure gradient and the final location of the kink attained in constant volumetric flow rate experiments

starting up from rest. The model constants are �2�0.05, ��0.36, and Re�0.
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