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Abstract

We solve the time-dependent simple shear flow of a Johnson–Segalman fluid with added Newtonian viscosity. We
focus on the case where the steady-state shear stress/shear rate curve is not monotonic. We show that, in addition to
the standard smooth linear solution for the velocity, there exists, in a certain range of the velocity of the moving plate,
an uncountable infinity of steady-state solutions in which the velocity is piecewise linear, the shear stress is constant
and the other stress components are characterized by jump discontinuities. The stability of the steady-state solutions
is investigated numerically. In agreement with linear stability analysis, it is shown that steady-state solutions are
unstable only if the slope of a linear velocity segment is in the negative-slope regime of the shear stress/shear rate
curve. The time-dependent solutions are always bounded and converge to a stable steady state. The number of the
discontinuity points and the final value of the shear stress depend on the initial perturbation. No regimes of
self-sustained oscillations have been found. © 1998 Elsevier Science B.V.
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1. Introduction

Slip at the wall and constitutive instabilities are the main mechanisms proposed for explaining
the instabilities observed during the extrusion of polymeric fluids from a capillary or a slit die
[1–5]. The importance of slip is suggested by experiments carried out by various groups in the
past 10 years. The slip mechanism has been proposed for explaining not only the stick-slip (or
spurt or cyclic melt fracture) and gross melt fracture instabilities observed at high volumetric
flow rates, but also the sharkskin instability observed at lower volumetric flow rates [1,6–8].
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Based on the linear stability analysis of incompressible Newtonian Poiseuille flow with slip at
the wall, Pearson [9] pointed out that the combination of a non-monotonic slip equation with
melt compressibility can lead to self-sustained oscillations of the pressure drop and of the mass
flow rate, similar to those observed experimentally with the stick-slip instability. Slip equations
exhibiting non-monotonic behavior of the wall shear stress/velocity at the wall curve have been
proposed by El Kissi and Piau [10], Leonov [11] and Hatzikiriakos and Dealy [7]. The
non-monotone slip equation derived by Leonov [11], from a simple stochastic model of interface
molecular dynamics for cross-linked elastomers, has recently been modified for polymer melts by
Adewale and Leonov [5].

Georgiou and Crochet [12,13] verified the ideas of Pearson [9] by numerically solving the
time-dependent compressible Newtonian Poiseuille and extrudate-swell flows with slip along the
wall. Their calculations showed that steady-state solutions corresponding to the negative-slope
regime of the slip equation are unstable in agreement with the linear stability analysis of Pearson
and Petrie [14]. Compressibility acts as the storage of elastic energy that sustains the oscillations
of the pressure drop and the mass flow rate and generates waves on the extrudate surface, in the
case of the extrudate-swell problem.

The combination of compressibility and non-linear slip represents the underlying mechanism
in various one-dimensional phenomenological models describing the oscillations of the pressure
and the volumetric flow rate in the stick-slip instability regime (see [15] and references therein).
These models require the calculation of certain parameters from experimental data and are
based on the assumption that the time-dependent solution follows the hysteresis loop resulting
from the non-monotonic flow curve. Moreover, the reservoir region is included and the
compressibility of the fluid is taken into account.

The combination of non-linear slip and elasticity also leads to self-sustained oscillations, i.e.
elasticity might replace compressibility and provide the elastic energy that sustains the oscilla-
tions. Georgiou [16] carried out a simple linear stability analysis of the simple shear flow of an
Oldroyd-B fluid assuming that slip occurs along the fixed plate showing that steady-state
solutions corresponding to the negative-slope regime of the slip equation might be unstable. The
Oldroyd-B model was chosen because it exhibits a monotonic steady-shear response in the
absence of slip. Numerical calculations for the time-dependent flow showed the existence of
periodic solutions in the instability regime and that the amplitude and period of the oscillations
are increasing functions of the elasticity. Similar results have been obtained by Brasseur et al.
[17], who solved numerically the one- and two-dimensional Poiseuille flows of an Oldroyd-B
fluid with slip along the wall. The two-dimensional calculations revealed the existence of a
second mode of periodicity in space and that the amplitude and the period of the oscillations are
smaller than in the one-dimensional case.

Whereas the mechanism of slip-induced instability is based on the multi-validness of the slip
equation, constitutive instabilities are caused by the multi-valuedness of the constitutive equa-
tion. The non-monotonicity of the shear stress as a function of shear rate can physically be
thought of as a separation of flow into two dynamic regimes, one with a history of high
deformation rate (near the boundary) and one with a history of low deformation rate (away
from the boundary) [18]. This, in turn, implies that two characteristic times of the viscoelastic
fluid, a short and a long one, are relevant. The physical interpretation is that the Rouse
relaxation time controls chain conformation at short times or high rates (local rod motions),
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whereas reptation-like times control the motion of chains at larger scale [19]. Based on this
concept, the association of non-monotonic constitutive equations with two relaxation times to
the spurt effect observed in well-defined experiments has been recently established [19,20].

Multivalued constitutive equations seem to appropriate for wormlike surfactant semidilute
solutions, which exhibit a narrow spectrum of relaxation times [21]. The flow birefringence
experiments of Decruppe et al. with a CTAB solution in circular Couette flow showed that the
flow is divided into two layers when the apparent shear rate exceeds a critical value [22]. Mair
and Callaghan have also carried out Couette flow experiments with a different surfactant
solution and used nuclear magnetic resonance to image both velocity and diffusion [21]; they
observed apparent slip at the inner wall as well as a high shear rate band located away from the
wall in the body of the fluid, i.e. they discerned at least three bands.

It should be emphasized that the use of the constitutive instability mechanism for explaining
the spurt instability for polymer melts or solutions has been criticized by some investigators.
Adewale and Leonov have shown that the Johnson–Segalman model is unable to match
simultaneously the experimental data for narrow-distributed polyethylene in the critical regime
of shear flow leading to the spurt phenomenon and in the critical regime of elongational flow
[23] and underline the fact that non-monotone flow curves have been reported only for some
materials with yield stress and not for common polymer melts or elastomers [5]. They also point
out that the upper branch of the apparent flow curve is strongly dependent on the capillary
radius and it is doubtful whether this dependence can be explained without slip [5]. The
experimental results of Piau et al. [24] and Wang and Drda [4] support the interfacial nature of
the stick-slip transition which is found to depend on the surface roughness and the surface
energy of the capillary die. Larson also notes that, indeed, the main drawback of the constitutive
instability approach is that it cannot account for diameter effects [2]. On the other hand, Aarts
and van de Ven [25] note that the critical volumetric flow rate for the Johnson–Segalman fluid
does scale with the radius, and this is consistent with the experimental data of El Kissi and Piau
[26]. It is possible that both wall slip and constitutive instability are present, since there is
physical significance to both [2]. Interesting discussions about the two mechanisms of instability
can be found in [27,5]. Finally, in order to explain the whole range of extrusion instabilities,
additional important factors must be taken into account, such as viscous heating [28], fracture
of the melt in the die entry region and free energy for creating a new surface [5].

Linear stability and/or time-dependent numerical analyses of the shear and Poiseuille flows of
the three-constant Oldroyd model [29], the Doi–Edwards model with a Rouse relaxation mode
[18,30], the Johnson–Segalman model with an added Newtonian viscosity [31–35] and the
Giesekus model with the value of the anisotropy coefficient greater than 1/2 [31,36,37] show that
steady-state solutions in the negative-slope regime of the constitutive equation may be unstable
and that a flow curve hysteresis is obtained between the two positive-slope stable branches, in
pressure controlled loading and unloading experiments.

A consequence of the non-monotonicity of the constitutive models is that, in one-dimensional
flows, such as the simple shear and Poiseuille flows, they allow multiple steady-state solutions in
a certain range of the shear rate. In addition to the standard steady-state solution, there exist
uncountable infinite weak solutions which are characterized by an arbitrary number of shear
rate discontinuities. In Poiseuille flow, these discontinuities are located in the vicinity of the wall
where the shear rate can be high. The narrow high shear rate layer near the wall leads to an
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apparent slip, whereas the flow in the bulk might be almost plug. The appearance of zones of
different shear rates is also referred to as shear banding [21].

Kolkka et al. [31] considered the simple shear and plane Poiseuille flows of a Johnson–Segal-
man fluid with an added Newtonian viscosity and showed that piecewise smooth solutions with
local shear rate corresponding to the descending portion of the steady shear stress/shear rate
curve are linearly unstable. Their numerical calculations for pressure gradient-controlled
Poiseuille flow showed that the time-dependent solution jumps to one of the two stable
positive-slope branches of the steady shear stress/shear rate curve and thus the negative-slope
branch is unattainable. On the other hand, Malkus et al. [34] obtained numerical time-dependent
results for the startup of Poiseuille flow i.e. at fixed volumetric flow rate. For certain values of
the material parameters, the calculated pressure drop appeared to be oscillatory but, as the
authors pointed out, the existence of a true oscillatory regime was not certain due to the
difficulty in accurately distinguishing slightly damped systems in numerical calculations. Denn
remarked that the oscillations obtained by Malkus et al. [34] are not of the type of the slip
induced persistent oscillations between the two stable branches of the flow curve that are
observed experimentally with polydisperse LLDPE in the stick-slip instability regime [1]. The
existence of a ‘true’ oscillatory regime has been recently established for Poiseuille flows and has
been corroborated by Aarts and van de Ven [25] and Kolkka and Ma [38]; it has been
demonstrated that there is a Hopf bifurcation from an unstable steady-state [38].

More recently, Español et al. solved the two-dimensional plane shear flow of a Johnson–
Segalman fluid with added Newtonian viscosity using a Lagrangian Eulerian method and taking
the Reynolds number to be zero [35]. They also presented analytical and one-dimensional
calculations for the zero Reynolds number case. Their shear flow inception results strongly
suggest that, when the nominal shear rate is in the negative slope region of the constitutive
equation, there is only one discontinuity point in the final steady state and that there exists a
selection mechanism for the position of the discontinuity. In other words, they found that the
flow is separated into two layers with the lower shear rate one being adjacent to the fixed wall.
However, their numerical method is unable to capture the shear rate discontinuity. They use
averagings in both space and time and their interface is not sharp, extending over eight of the
50 layers into which their domain is decomposed. Español et al. also found that there is a
selection mechanism of the steady total shear stress, the value of which is roughly constant for
all nominal shear rates in the negative slope region of the constitutive equation [35]. Greco and
Ball solved numerically the circular Couette flow of a Johnson–Segalman fluid at zero Reynolds
number and reported a similar selection mechanism for the final shear stress at the interfaces of
the bands into which the flow is separated [39]. They obtained results with two and three bands
at low and high velocities of the rotating cylinder, respectively. The appearance of three bands
seems to agree with available experimental data [21].

In this paper, we consider the simple shear flow of a Johnson–Segalman fluid with added
Newtonian viscosity. Our objective is to study numerically the stability of the piecewise linear
steady-state solutions and investigate the dynamics of the flow for different initial conditions.
The governing equations and the boundary conditions for the time-dependent flow problem are
presented in Section 2. The steady-state solutions are given in Section 3. It is shown that, in
addition to the standard linear solution for the velocity, there exists an uncountable infinity of
piecewise linear steady-state solutions, in a certain range of the velocity of the moving plate.
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Analytical time-dependent solutions for the limiting case of inertialess flow are also derived. In
Section 4, the time-dependent flow is numerically solved and the stability of the steady-state
solutions is investigated. For the viscoelastic part of the stress tensor, we use discontinuous finite
element approximations, in order to avoid the appearance of Gibbs-type oscillations in the
numerical solution. For the time integration, we employ the standard fully-implicit scheme. In
accordance with the linear stability findings of Kolkka et al. [31], steady-state solutions are
unstable only if the slope of a linear velocity segment is in the negative-slope regime of the shear
stress/shear rate curve. However, the number of the stable steady-state solutions is infinite. The
time-dependent solutions are always bounded and converge to a stable steady-state solution as
time goes to infinity. The size of the perturbation, determines which steady-state solution will be
attained. Oscillatory time-dependent solutions are observed in certain cases but the oscillations
always decay with time, in contrast to the numerical results of Malkus et al. [34] for plane
Poiseuille flow. Our numerical results for the inception of simple shear flow at zero Reynolds
number disagree with those reported by Español et al. [35]. No selection mechanisms have been
observed for the position of the discontinuity point and the final value of the total shear stress;
in fact, our calculations show that the number of discontinuities can be more than one. Our
conclusions are summarized in Section 5.

2. Governing equations

We consider the time-dependent simple shear (Couette) flow of a Johnson–Segalman fluid
with added Newtonian viscosity. It is convenient to decompose the extra stress tensor T into a
purely viscoelastic component T1 and a purely viscous component T2 (see, for example, [40]):

T=T1+T2, (1)

T1+lT1


=2h1d, (2)

T2=2h2 d, (3)

where d is the rate-of-deformation tensor defined by

d=
1
2
[(9 7)+ (9 7)T], (4)

7 is the velocity vector, 9 7 is the velocity gradient tensor, l is the relaxation time, and h1 and
h2 have dimensions of viscosity. The sum h1+h2 is the zero shear viscosity and the ratio
h2/(h1+h2) represents the ratio of the retardation time to the relaxation time. The derivative T1



is a linear combination of the upper- and lower-convected derivatives of T1, T1
�

and T1
�

,
respectively:

T1


=
�

1−
j

2
�

T1
�

+
j

2
T1
�

, (5)

where
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T1
�

=
(T1

(t
− (9 7)T · T1−T1 · 9 7, (6)

T1
�

=
(T1

(t
+9 7 · T1+T1 · (9 7)T, (7)

where (T1/(t is the substantial time derivative of T1, the superscript T denotes the transpose of
a tensor and j is a dimensionless material (slip) parameter varying from 0 to 2. The physical
meaning of j, as suggested by Gordon and Schowalter [41], is that the corresponding stress and
deformation convected derivatives relate to a non-affine motion, which actually characterizes the
motion of a polymer strand end-to-end vector with respect to the macroscopic motion of the
continuum; in such a case, the strand can slip by transmitting only a fraction of its stress to the
continuum. Hence, j can be viewed as a measure of the contribution of non-affine motion to the
shear tensor. For j=0, the motion is affine and the model is reduced to the Oldroyd-B model.
For j=2, the motion is completely non-affine and the Oldroyd–Jaumann model is recovered.
The upper-convected Maxwell model is recovered for j=0 and h2=0.

We would like at this point to proceed using dimensionless equations. We scale the length by
the distance between the two plates H, the velocity by a characteristic velocity V*, the stress
components by (h1+h2)V*/H, and the time by H/V*. This scaling leads to two dimensionless
numbers, the Reynolds number, Re, and the Weissenberg number, We:

Re
rV*H
h1+h2

, (8)

We
lV*
H

, (9)

where r is the constant density.
The geometry and the boundary conditions of the plane shear flow are shown in Fig. 1. The

fluid is placed between two parallel infinite plates located at y=0 and 1. The lower plate moves
with constant imposed velocity V, whereas the upper plate is fixed. The problem is one-dimen-
sional [( · /(x=0, 6x=6x(y, t), 6y=0 and T1=T1(y, t)] and the continuity equation is automat-
ically satisfied. The x-momentum equation is reduced to:

Re
(6x
(t

=
(T1

xy

(y
+
(Txy

2

(y
=
(T1

xy

(y
+h2

(26x
(y2 . (10)

Fig. 1. Boundary conditions for the time-dependent simple shear flow.
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For the components of T1, one gets:

Txx
1 +We

(Txx
1

(t
=2We

�
1−

j

2
� (6x
(y

Txy
1 ; (11)

Txy
1 +We

(Txy
1

(t
=h1

(6x
(y

+We
(6x
(y

��
1−

j

2
�

Tyy
1 −

j

2
Txx

1
n

; (12)

Tyy
1 +We

(Tyy
1

(t
= −Wej

(6x
(y

Txy
1 . (13)

All the variables in the above two equations are dimensionless, including h1 and h2 which are
scaled by the zero shear viscosity; the dimensionless zero shear viscosity, h1+h2, is thus equal
to unity.

3. Analytical solutions

In this section, we provide the steady-state solutions of the system of Eqs. (10)–(13) and
obtain analytical time-dependent solutions for the limiting case of zero Re.

3.1. Steady-state solutions

In steady state, Eq. (10) gives

Txy=Txy
1 +h2

(6x
(y

=Txy
1 −h2 g; =const., (14)

where g; = −(6x/(y is the shear rate. From Eqs. (11)–(14), one then gets

Txy
1 = −

h1g;

1+2j
�

1−
j

2
�

(Weg; )2

(15)

and

Txy= −
<

h2+
h1

1+2j
�

1−
j

2
�

(Weg; )2

=
g; =const. (16)

Txx=Txx
1 =

2
�

1−
j

2
�

h1Weg; 2

1+2j
�

1−
j

2
�

(Weg; )2

(17)

Tyy=Tyy
1 = −

jh1Weg; 2

1+2j
�

1−
j

2
�

(Weg; )2

. (18)
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Fig. 2. Steady-state shear stress/shear rate curves for We=1, j=0.2 and different values of h2. The curves for
h2=0.05 and 0 are calculated assuming that 6x is linear.

Fig. 3. Steady-state shear stress/shear rate curve for h2=0.05, We=1 and j=0.2; definition of various symbols.

In Fig. 2, the shear stress Txy is plotted as a function of the shear rate g; for different values
of h2, ranging from 0 up to 1. For h2\1/9, Txy is an increasing function of the shear rate. In
such a case, to a given value of Txy there exists only one value of g; or, equivalently, only one
value of the velocity V of the lower plate, and the velocity 6x is linear:

6x= (y−1)g; = (1−y)V. (19)

If, however, h2B1/9, Eq. (16) exhibits a local maximum which is followed by a minimum,
except if h2=0 (Fig. 2). In such a case, there is a range of the shear stress Txy in which three
values of g; (or V) are possible. Of course, one solution for 6x is the smooth one given by Eq.
(19) which is unstable according to the linear stability analysis of Kolkka et al. [31]. What is
most interesting, however, is the existence of an uncountable infinity of solutions not following
Eq. (19). Due to the multivaluedness of the constitutive equation, the velocity 6x can be
piecewise linear with an arbitrary number of shear rate discontinuities; for a given value of the
velocity V of the lower plate, there exist solutions at different values of the shear stress. Some
of these solutions will be constructed below for We=1, h2=0.05 and j=0.2. As easily seen
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from Eqs. (17) and (18), for the latter value of j the ratio of the second to the first normal stress
difference is 0.1.

Let (Vc1, Txy
c1) and (Vc2, Txy

c2) be the maximum and minimum points of Eq. (16), Vc0BVc1 be
the value of V at which Txy(Vc0)=Txy(Vc2)=Txy

c2 and Vc3\Vc2 be the value of V at which
Txy(Vc3)=Txy(Vc1)=Txy

c1. The steady-state solution is not unique when the velocity of the
moving plate V� (Vc0, Vc3). We will first construct solutions consisting of two linear segments,
choosing any value Txy

0 of the shear stress in the interval (Txy
c2, Txy

c1) (the case Txy
0 =Txy(V) is not

excluded). To the chosen value Txy
0 there correspond three velocities VI, VII and VIII with

VIBVIIBVIII, as shown in Fig. 3. Let us assume that the slopes of the two linear segments of
6x are −VI and −VIII:

6x=
!V−V Iy,

V+ (y*−y)V III−y*VI,
if 05y5y*,
if y*5y51,

(20)

where y*� (0, 1). The value of y* is determined by demanding that 6x be zero at y=1:

y*=
VIII−V
VIII−VI

. (21)

It is obvious that Eq. (16) is satisfied, since

Txy(VI)=Txy(VIII)=Txy
0 . (22)

Fig. 4. (a) Steady-state solutions for 6x with one discontinuity point and corresponding to the same value of the shear
stress. Solutions with a segment of slope VII are unstable. (b) The component Txy

1 corresponding to profile A of Fig.
4a. The broken lines show the standard smooth solution. We=1, h2=0.05, j=0.2 and V=3.
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Fig. 5. (a) Two of the infinite stable steady-state solutions for 6x consisting of three linear segments of slope VI and
VII and corresponding to the same value of the shear stress. (b) Two of the infinite unstable steady-state solutions for
6x consisting of three linear segments of slope VI, VII and VIII. The broken lines show the standard smooth solution.
We=1, h2=0.05, j=0.2 and V=3.

It is also easy to see that another solution corresponding to V and Txy
0 and consisting of two

linear segments is the following:

6x=
!V−V IIIy,

V+ (y*−y)V I−y*VIII,
if 05y5y*,
if y*5y51,

(23)

where now

y*=
V−VI

VIII−VI
. (24)

The two velocity profiles given by Eqs. (20) and (23) are not the only two-segment solutions
corresponding to the shear stress Txy

0 . There are another two solutions with segments of slope
−VI and −VII if V� (VI, VII) or of slope −VII and −VIII if V� (VII, VIII). In Fig. 4a, we show
all four two-segment solutions for 6x corresponding to the same shear stress value Txy

0 .
As predicted by the linear stability analysis of Kolkka et al. [31] and observed in the

numerical calculations of the present work, steady-state solutions with a segment of slope −VII

(corresponding to the negative-slope regime of Eq. (16)) are unstable. Therefore, two steady-
state solutions of Fig. 4a are unstable. Other solutions consisting of two linear segments can be
constructed for any other value of Txy in the interval (Txy

c2, Txy
c1). It should be noted that the

shear rate and the components of T1 are discontinuous at the points where the slope of 6x
changes. In Fig. 4b, we plot the component Txy

1 corresponding to one of the velocities of Fig.
4a. The behavior of Txx

1 and Tyy
1 is similar.
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Solutions consisting of three or more segments can also be constructed. Even in the rather
simple case in which we have three linear segments of slope −VI, −VIII and −VI, there is an
infinite number of solutions for a given value of Txy

0 . One can actually choose the position of
one of the two discontinuity points. Two such solutions are plotted in Fig. 5a. Finally, in Fig.
5b, we show solutions with three segments of different slope (−VI, −VII and −VIII). As
already mentioned, these solutions are unstable to small perturbations, since they contain a
segment of slope −VII.

Fig. 6. Growth of Txy during the inception of simple shear flow for zero Re, We=1 and various values of V. It is
assumed that a linear velocity profile is instantaneously attained. h2=0.05 and j=0.2.

Fig. 7. Growth of Txy during the inception of simple shear flow for zero Re, V=10.2 and various values of We. It
is assumed that a linear velocity profile is instantaneously attained. h2=0.05 and j=0.2.
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3.2. Time-dependent results for Re=0

By introducing the first normal stress difference

N1=Txx
1 −Tyy

1 , (25)

and the new stress variable

Z=
j

2
Txx

1 +
�

1−
j

2
�

Tyy
1 ,

Eqs. (11)–(13) can be written as follows:

N1+We
(N1

(t
=2We

(6x
(y

Txy
1 ; (27)

Txy
1 +We

(Txy
1

(t
=h1

(6x
(y

+We
(6x
(y

�
−j

�
1−

j

2
�

N1+ (1−j)Z
n

; (28)

Z+We
(Z
(t

=0. (29)

From Eq. (29), one observes that Z exhibits a trivial exponential decay; it will always be zero,
provided that it is zero at t=0. Under this assumption, the number of unknown fields is reduced
by one. In the limiting case of inertialess flow (Re=0), the x-momentum equation gives

Txy
1 +h2

(6x
(y

=Txy(t),

i.e. the shear stress Txy is independent of the spatial coordinate y. We now assume that 6x attains
one of the steady-state solutions at t=0 (this is obvious if the fluid is Newtonian). In such a
case, for a given linear segment of 6x of slope g; Ni, the corresponding viscoelastic shear stress Txy

1i

is independent of the spatial coordinate y. Combining Eqs. (27) and (28) leads to the following
ODE:

(We)2 d2Txy
1i

dt2 +2We
dTxy

1i

dt
+
�

1+2j
�

1−
j

2
�

(Weg; Ni)2nTxy
1i =h1g; Ni. (31)

The solution of Eq. (31) is

Txy
1i =Txy

1Ni+ (Txy
10 −Txy

1Ni)e
−

t
We (cos vt−We sv sin vt), (32)

where

v=
'

2j
�

1−
j

2
�

g; Ni (33)

Txy
10 is the viscoelastic shear stress at t=0 and Txy

1Ni is the steady-state value of Txy
1 corresponding

to the shear rate g; Ni. Obviously, the shear stress is damped oscillatorily towards a steady-state
solution with a frequency given by Eq. (33).
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Fig. 8. Transition from an unstable smooth steady state to a stable discontinuous one. Inception of simple shear flow
for zero Re, V=4, We=1, h2=0.05 and j=0.2: (a) velocity; (b) shear stress at the upper plate. The dashed line is
a prediction of Eq. (32).

Let us consider the inception of simple shear flow. The fluid is initially at rest and all the stress
components are zero at t=0. We assume that the lower plate moves with a constant velocity V
at all times after t=0 and that 6x instantaneously becomes linear. The shear stress growth
predicted by Eq. (32) for We=1 and various values of V is shown in Fig. 6. For small shear
rates i.e. for small values of V, the shear stress approaches the steady-state value monotonically.
Decaying oscillations appear at higher shear rates, in agreement with experimental observations
[42]. Note that the standard (linear) steady-state solution for V=4 is linearly unstable, since it
corresponds to the negative slope regime of the shear stress/shear rate curve and practically it
cannot be reached. The numerical simulations in Section 4 show that any perturbation,
independently of its size, will lead to one of the infinite stable solutions with discontinuous shear
stress and piecewise linear velocity. In Fig. 7, the shear stress growth for V=10.2 and various
values of We is shown. The decay of the oscillations becomes slower and their wavelength
decreases with elasticity.

4. Numerical results

To discretize Eqs. (10)–(13) in space, we use mixed finite elements and the Galerkin method.
An important issue is the compatibility of the approximations used for the two unknown fields,
6x and T1. Another complication, however, arises from the fact that the unknown components
of T1 are discontinuous (except when 6x is linear). Using continuous approximations (i.e. linear
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or biquadratic) for these unknowns leads to Gibbs-type oscillations of the numerical solution.
Therefore, we have used zeroth-order approximations for T1 (i.e. its components are taken
constant over each element). For the velocity 6x we have used a biquadratic (P2-C0) approxima-
tion. Most of the results presented here have been obtained with 100 elements. The convergence
of the solution has been checked, however, using 200 and 500 elements. For the integration in
time, we use the standard fully-implicit (Euler backward difference) scheme. As for the initial
condition, we start from a steady-state solution obtained for a given velocity V0 of the lower
plate and at time t=0 we set its velocity equal to the desired value V. In all the subsequent
results, the time step Dt is taken equal to 0.001, We=1, h2=0.05 and j=0.2.

In order to test the numerical code, we first studied the limiting case of zero Reynolds number
and made comparisons with the analytical time-dependent solutions of Section 3.2. We
calculated the inception of simple shear flow for various values of V. In general, the numerical
results agree with the analytical solution: the velocity 6x becomes linear at the first time step and
the shear stress Txy is independent of y and follows Eq. (32). If the linear solution is unstable,
however, i.e. if Vc1BVBVc2, even a small rounding error suffices for the destabilization of the
solution initiating the transition to a stable discontinuous solution. This is illustrated in Fig. 8,
where we show results for V=4, obtained using 100 elements. In Fig. 8a, we plot velocity
profiles calculated at different times and in Fig. 8b, we plot the calculated value of the shear
stress at the lower plate as a function of time. Up to t=26, the velocity is linear and the shear
stress is independent of y, in agreement with the predictions of Eq. (32). The solution then starts
evolving to a stable steady-state solution with two discontinuity points at a higher shear stress.
Reducing the mesh size or decreasing the time step leads to other stable steady-state solutions

Fig. 9. Evolution of 6x during the inception of simple shear flow for V=1.037, Re=1, We=1, h2=0.05 and j=0.2:
(a) times up to 1.05; (b) times from 1.05 to 2.05. The dashed line is the final steady-state.
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Fig. 10. Evolution of Txy during the inception of simple shear flow for V=1.037, Re=1, We=1, h2=0.05 and
j=0.2: (a) times up to 1.45; (b) times from 1.45 to 2.25. The dashed line is the final steady-state.

Fig. 11. Evolution of 6x during the inception of simple shear flow for V=4, Re=1, We=1, h2=0.05 and j=0.2:
(a) times up to 1.05; (b) times from 1.05 to 2.25. The dashed line is the final steady-state.
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with more discontinuity points at different shear stress values, since the numerical perturbation
is different. Therefore, the initial perturbation determines which stable steady state will be
attained. Our results thus disagree with those of Español et al. [35] who found that there is only
one discontinuity point in the final steady-state solution and that there exists a selection
mechanism for the value of the final total shear stress. For a given nominal shear rate, one can
actually choose the value of the final shear stress and the number of discontinuity points and
construct a stable velocity profile at t=0. The components of T1 in each layer will then follow
the analytical solution Eq. (31). As a final remark, the numerical results for zero Reynolds
number exhibit the latency phenomenon which is observed in pressure gradient controlled
Poiseuille flows for non-monotonic constitutive equations. Similar results were obtained by
Ganpule [43].

We now move to the non-zero Reynolds number case and set Re=1. We calculated the
inception of simple shear flow for various values of V in all different regimes of the standard
shear stress/shear rate curve: (a) V=1.037� (Vc0, Vc1), the evolutions of 6x and Txy are shown in
Figs. 9 and 10, respectively; (b) V=4� (Vc1, Vc2), the evolution of 6x is shown in Fig. 11; (c)
V=10.2� (Vc2, Vc3), the evolution of 6x is illustrated in Fig. 12a. The shear stress at the upper
plate is plotted in Fig. 12b as a function of time; (d) V=20� (Vc3,�), the evolution of 6x is
shown in Fig. 13a and the shear stress at the upper plate is plotted in Fig. 13b. Note that the
first three velocities are in the interval (Vc0, Vc3) in which there exist multiple steady-state
solutions. The same results have been obtained using a more refined mesh and a smaller time
step. The results can be summarized as follows: (i) if V� (Vc0, Vc1)@ (Vc2, Vc3), 6x evolves to one
stable steady-state which might be either smooth (e.g. V=1.037 in Fig. 9) or discontinuous (e.g.

Fig. 12. Inception of simple shear flow for V=10.2, Re=1, We=1, h2=0.05 and j=0.2: (a) evolution of 6x ; the
dashed line is the final steady-state; (b) evolution of the shear stress at the upper plate.
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Fig. 13. Inception of simple shear flow for V=20, Re=1, We=1, h2=0.05 and j=0.2: (a) evolution of 6x ; the
dashed line is the final steady-state; (b) evolution of the shear stress at the upper plate.

Fig. 14. One of the stable discontinuous steady-state solutions obtained for V=4, Re=1, We=1, h2=0.05, j=0.2
and V0=3.9: (a) velocity 6x ; the dashed line is the unstable smooth steady state; (b) shear stress Txy

i ; the dashed line
is Txy

1 .
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Fig. 15. Another stable discontinuous steady-state solution obtained for V=4, Re=1, We=1, h2=0.05, j=0.2 and
V0=4.000001: (a) velocity 6x ; the dashed line is the unstable smooth steady state; (b) shear stress Txy

i ; the dashed line
is Txy

1 .

Fig. 16. Evolution of 6x for V=10.2 starting from the linear solution for V0=9 (dashed line); Re=1, We=1,
h2=0.05 and j=0.2.

V=10.2 in Fig. 12); (ii) if V� (Vc1, Vc2), the linear steady-state solution is unstable and thus only
discontinuous solutions can be attained (e.g. V=4 in Fig. 11); (iii) if V� (0, Vc0)@ (Vc3,�), the
unique stable linear solution is reached (e.g. V=20 in Fig. 13).

As already mentioned, the initial perturbation determines which one of the infinite stable
steady states will be reached in the case V� (Vc0, Vc3). In Figs. 14 and 15a, we show two of the
final velocity profiles obtained for V=4 starting from V0=3.9 and 4.000001, respectively. In
Fig. 14b and 15b, the corresponding final profiles of Txy and Txy

1 are depicted. Solutions with
more discontinuity points can more easily be obtained by slightly perturbing an unstable
discontinuous steady-state or even by sufficiently perturbing a stable discontinuous steady state.
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Fig. 17. Evolution of 6x after slightly perturbing the two unstable steady-state solutions of Fig. 4a (V=3). Dashed
lines show the unstable solution. Re=1, We=1, h2=0.05 and j=0.2.

In Fig. 16, we show the evolution of 6x for V=10.2 calculated for V0=9. The perturbation
is small compared to that of the start up flow (V0=0, Fig. 12) and the stable linear solution is
obtained in this case. Finally, in Fig. 17, we show two examples of transition from an unstable
discontinuous solution to a stable one. The two unstable two-segment solutions of Fig. 4a for
V0=3 have been perturbed by setting V=3.01. The final steady states contain two discontinuity
points in both cases.

Numerical calculations have also been carried out for other values of the material parameters.
In all cases, the time dependent solutions are bounded and converge to a stable steady state as
t��. At high shear rates some oscillations are observed initially but they decay with time (Fig.
12b and 13b). No regimes of periodic solutions, similar to those reported by Malkus et al. [34]
for plane Poiseuille flow, have been detected. It should be pointed out that oscillations observed
in the special case of h2=0 or for small values of h2 are not real. The system of Eqs. (13)–(19)
is ill-posed in such a case, since the second-order derivative term of Eq. (10) vanishes and yet
two boundary conditions for 6x need to be satisfied.

5. Conclusions

The stability of the discontinuous steady-state solutions of the simple shear flow of a
Johnson–Segalman fluid with an added Newtonian viscosity has been investigated by means of
finite element calculations. The numerical results show that piecewise smooth solutions are
unstable if they contain segments in which the local shear rate corresponds to the negative-slope
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branch of the steady shear stress/shear rate curve, in agreement with the linear stability results
of Kolkka et al. [31]. The time-dependent solutions are bounded and converge to different stable
steady-state solutions, depending on the initial perturbation. Our results for the inception of
simple shear flow at zero Reynolds number seem to be in disagreement with those of Español
et al. [35] and Greco and Ball [39]. The number of discontinuity points in the final steady-state
solution can be more than one and the final value of total shear stress is not the same for all
nominal shear rates in the unstable regime of the constitutive equation. In contrast to the
numerical results of Malkus et al. [34] for plane Poiseuille flow, time periodic solutions are not
obtained in any range of the material parameters. Thus, the fact that non-monotonic constitu-
tive equations allow the existence of unstable steady states in some range of the shear rate
cannot alone be used for explaining the stick-slip instability.
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