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a b s t r a c t 

The lubrication flow of a Bingham plastic in long tubes is modeled using the approach proposed by Fusi and Farina 

(Appl. Math. Comp. 320, 1–15 (2018)). Both the plastic viscosity and the yield stress are assumed to vary linearly 

with the total pressure. The resulting nonlinear system of an ordinary differential equation and an algebraic 

one with unknowns the total pressure and the radius of the unyielded core are solved by using two different 

techniques. A pseudospectral numerical method utilizing Chebyshev orthogonal polynomials and an analytical 

perturbation method with the small parameter being the difference of the two dimensionless parameters which 

are introduced due to the pressure-dependence of the yield stress and the plastic viscosity of the material. The 

effects of the pressure-dependence of the material parameters on the critical pressure difference required for flow 

to occur and on the shape of the unyielded core are investigated and discussed. 

1

 

[  

w  

w  

𝜇  

c

⎧⎪⎨⎪⎩  

w  

d

𝜸  

I  

a  

E  

w  

i  

s  

s  

m

 

o  

p  

t  

r  

p  

p  

d  

m  

l  

a  

c  

m  

H

𝜏  

w  

y  

o

𝜇  

w  

i  

E

𝜇  

m  

h

R

A

0

. Introduction 

We consider the axisymmetric Poiseuille flow of a Bingham plastic

1] with pressure-dependent rheological parameters. More specifically,

e consider the flow in long horizontal tubes of yield-stress materials

ith pressure-dependent yield stress, 𝜏∗ 
𝑦 
= 𝜏∗ 

𝑦 
( 𝑝 ∗ ) , and plastic viscosity,

∗ = 𝜇∗ ( 𝑝 ∗ ) , where p ∗ is the pressure. Hence, the constitutive equation

an be written in tensorial form as follows: 

 

 

 

 

 

�̇�
∗ = 0 , 𝜏∗ ≤ 𝜏∗ 

𝑦 

(
𝑝 ∗ 
)

𝜏∗ = 

[ 
𝜏∗ 
𝑦 
( 𝑝 ∗ ) 
�̇�∗ 

+ 𝜇∗ (𝑝 ∗ )] �̇�∗ , 𝜏∗ > 𝜏∗ 
𝑦 

(
𝑝 ∗ 
) (1)

here 𝝉∗ is the viscous extra-stress tensor and �̇�∗ is the rate-of-

eformation tensor: 

̇ ∗ = ∇ 

∗ 𝐯 ∗ + 

(
∇ 

∗ 𝐯 ∗ 
)𝑇 

(2)

n Eqs. (1) and (2) , v ∗ is the velocity vector and �̇�∗ ≡√tr ( ̇𝜸∗ ⋅ �̇�∗ )∕2
nd 𝜏∗ ≡√t r ( 𝛕∗ ⋅ 𝛕∗ )∕2 are the magnitudes of �̇�∗ and 𝝉∗ , respectively.

q. (1) is a generalization of the classical Bingham-plastic equation,

hich is recovered when both 𝜏∗ 
𝑦 

and 𝜇∗ are constant (pressure-

ndependent). This reduces to the Newtonian constitutive equation by

etting 𝜏∗ 
𝑦 
= 0 , 𝜇∗ thereby being the familiar Newtonian viscosity. It

hould be noted that throughout this paper starred symbols denote di-

ensional quantities. 
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The axisymmetric Poiseuille flow of a material obeying Eq. (1) is

f interest in the transport of such materials in long tubes, where high

ressures are required to drive the flow, e.g. in oil-drilling. Experimen-

al data showed that oil-drilling fluids are indeed viscoplastic and their

heological parameters vary not only with temperature but also with

ressure [2] . Hermoso et al. [2] reported experimental data at different

ressures and temperatures for the rheological behavior of two oil-based

rilling fluids, obeying the Bingham-plastic and the Herschel-Bulkley

odels (the latter generalizes the former model introducing the power-

aw exponent as an additional parameter) [3] . This data showed that

t low temperatures the yield stress decreases with temperature and in-

reases with pressure and that both variations are linear. In order to

odel the isothermal yield stress behaviour of the two drilling fluids,

ermoso et al. [2] employed the following linear equation 

∗ 
𝑦 
( 𝑝 ∗ ) = 𝜏∗ 0 

[
1 + 𝛽∗ ( 𝑝 ∗ − 𝑝 ∗ 0 ) 

]
(3)

here 𝜏∗ 0 denotes the yield stress at a reference pressure 𝑝 ∗ 0 and 𝛽∗ is the

ield-stress growth coefficient. As for the plastic viscosity (of the fluid

beying the Bingham plastic equation), they used the Barus equation 

∗ ( 𝑝 ∗ ) = 𝜇∗ 
0 e 

𝛼∗ ( 𝑝 ∗ − 𝑝 ∗ 0 ) (4)

here 𝜇∗ 
0 is the plastic viscosity at the reference pressure and a ∗ ≥ 0

s the plastic-viscosity growth coefficient [4] . The linearized version of

q. (4) , 

∗ ( 𝑝 ∗ ) = 𝜇∗ 
0 
[
1 + 𝑎 ∗ ( 𝑝 ∗ − 𝑝 ∗ 0 ) 

]
(5)

ay also been used if the pressure-dependence of 𝜇∗ is weak ( a ∗ < < 1),

he encountered pressures are not extremely high and remain always
18 
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Fig. 1. Schematic of the flow configuration and coordinate system. 
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bove the reference pressure [5] . It is clear that the latter limitation

lso holds for the linear expression (3) for the yield stress. 

Damianou and Georgiou [6] analyzed the plane Poiseuille flow of a

ingham plastic of material parameters obeying Eqs. (2) and (4) , such

hat 

 

 

 

 

 

�̇�
∗ = 𝟎 , 𝜏∗ ≤ 𝜏∗ 

𝑦 

(
𝑝 ∗ 
)

𝜏∗ = 2 

[ 
𝜏∗ 0 
[
1 + 𝛽∗ 

(
𝑝 ∗ − 𝑝 ∗ 0 

)]
�̇�∗ 

+ 𝜇∗ 
0 
[
1 + 𝛼∗ 

(
𝑝 ∗ − 𝑝 ∗ 0 

)]] 
�̇�
∗ , 𝜏∗ > 𝜏∗ 

𝑦 

(
𝑝 ∗ 
)
(6) 

nd reported explicit analytical solutions for the velocity, the pressure,

nd the width of the central unyielded region. It turns out that the latter

s constant despite the pressure-dependence of the material parameters.

n axisymmetric Poiseuille flow, however, the radius of the unyielded

ore is not constant in the general case. As pointed out in Ioannou and

eorgiou [7] , an analytical solution with a cylindrical unyielded region

an be derived only when the growth coefficients 𝛼∗ and 𝛽∗ are equal,

hich is indeed a reasonable assumption for certain oil-drilling fluids.

ecently, Fusi and Rosso [8] have obtained analytical solutions of the

xisymmetric flow of a Herschel-Bulkley fluid with different values of 𝛼∗ 

growth coefficient of the consistency index) and 𝛽∗ , under the assump-

ion that both 𝛼∗ ( 𝑝 ∗ − 𝑝 ∗ 0 ) and 𝛽∗ ( 𝑝 ∗ − 𝑝 ∗ 0 ) are much greater than unity.

hese solutions are not reduced to the classical constant-parameter so-

utions when 𝛼∗ and 𝛽∗ vanish. 

Panaseti et al. [5] extended the lubrication-approximation method of

usi et al. [9] to model the flow of a Herschel-Bulkley fluid in a symmet-

ic long channel of varying width, under the assumption that both the

onsistency index and the yield stress vary linearly with pressure. In this

ethod, the unyielded domain is modeled as an evolving non-material

olume and by means of an integral formulation for the balance of lin-

ar momentum a single integro-differential equation is derived for the

ressure. The yield surface and the two velocity components are then

alculated from the pressure by means of closed form expressions. The

ain advantages of the method of Fusi et al. [9] are: (a) the yield sur-

ace, i.e. the interface between yielded ( 𝜏∗ > 𝜏∗ 
𝑦 
) and unyielded ( 𝜏∗ ≤ 𝜏∗ 

𝑦 
)

arts of the flow domain, is calculated exactly; and (b) the so-called

ubrication-approximation paradox is avoided and the correct shape of

he yield surface, which is opposite to that of the wall, is approximated at

ero order, unlike other lubrication-approximation approaches in which

igher-order solutions are necessary [10] . A limitation of the method,

owever, is that it cannot be applied when the plug region is broken,

ince the plug is required to extend from the inlet to the outlet plane [9] .

anaseti et al. [5] reported that the shape of the yield surface in plane

oiseuille flow depends only on the shape of the wall and the power-

aw exponent, while its elevation depends on all parameters. Thus, the

idth of the unyielded core in a channel of constant width is also con-

tant, despite the pressure dependence of the yield stress, in agreement

ith the analytical solution. 

Fusi and Farina [11] extended their method in Ref. [9] to time-

ependent axisymmetric flows. In this geometry, the zero-order approxi-

ation leads to a system formed by an integral equation and an algebraic

quation for the yield surface and for the plug velocity, respectively. Fusi

nd Farina [11] focused on the effects of oscillating walls on the flow.

he objective of the present work is to study the steady-state axisym-

etric Poiseuille flow of a Bingham plastic with pressure-dependent rhe-

logical parameters using the method of Fusi and Farina [11] . We are

nterested in particular in the general case where the growth coefficients
∗ and 𝛽∗ are not equal and thus the unyielded core may be expanding

r contracting depending on the relative values of these two parameters.

In Section 2 , the various steps of the lubrication method are dis-

ussed. These include the non-dimensionalization of the governing

quations and the derivation of the zero-order perturbation equations.

he advantage of the method is that it leads to closed form solutions for

he two velocity components in terms of the pressure distribution and

he radius of the central unyielded core, which are functions of the ax-
77 
al distance only. These two functions satisfy a system of a first-order

DE and an algebraic equation. The methods of solving this system

re presented in Section 3 . These include a numerical pseudospectral

ethod and also a simple perturbation method in terms of the (dimen-

ionless) difference of the two growth coefficients. An analytical solution

s also derived for the special case where these coefficients are equal. In

ection 4 , the results are presented and discussed. Emphasis is given

n the effects the dimensionless growth coefficients have on the criti-

al pressure difference required to drive the flow and on the shape of

he unyielded core. It is shown, in particular, that the latter expands

hen 𝛽∗ > a ∗ , contracts when 𝛽∗ < a ∗ , and is cylindrical when 𝛽∗ = 𝛼∗ ,

n agreement with the aforementioned analytical solution of Ioannou

nd Georgiou [7] . Finally, the conclusions of this work are summarized

n Section 5 . 

. Lubrication approximation 

We consider the steady-state, pressure-driven flow of an incompress-

ble Bingham plastic obeying constitutive Eq. (6) in a long tube of length

 

∗ and constant radius R 

∗ , as illustrated in Fig. 1 . A uniform pressure

 

∗ 
𝑖𝑛 

is applied at the inlet of the tube ( 𝑧 ∗ = 0 ) while the pressure at the

xit plane ( 𝑧 ∗ = 𝐿 

∗ ) is 𝑝 ∗ 
𝑜𝑢𝑡 

< 𝑝 ∗ 
𝑖𝑛 

, i.e. the imposed pressure difference is

𝑃 ∗ = 𝑝 ∗ 
𝑖𝑛 
− 𝑝 ∗ 

𝑜𝑢𝑡 
. Without loss of generality, 𝑝 ∗ 

𝑜𝑢𝑡 
is taken equal to the

eference pressure 𝑝 ∗ 0 that appears in Eq. (6) , 𝑝 ∗ 0 = 𝑝 ∗ 
𝑜𝑢𝑡 

. Assuming that

he azimuthal velocity component is zero ( 𝑣 ∗ 
𝜃
= 0 ) and the flow is ax-

symmetric (derivatives with respect to 𝜃∗ are zero), the velocity vector

n cylindrical coordinates is of the form 𝐯 ∗ = 𝑣 ∗ 
𝑟 
( 𝑟 ∗ , 𝑧 ∗ ) 𝒆 𝒓 + 𝑣 ∗ 

𝑧 
( 𝑟 ∗ , 𝑧 ∗ ) 𝒆 𝒛 .

n the flow of interest (see Fig. 1 ), the yielded and the unyielded re-

ions are separated by the yield surface 𝑟 ∗ = 𝜎∗ ( 𝑧 ∗ ) for 0 ≤ z ∗ ≤ L ∗ where

 < 𝜎∗ ( z ∗ ) < R 

∗ . Hence, the unyielded region extends from the inlet to

he outlet, i.e. the plug is not broken. Note that if 𝜎∗ ( 𝑧 ∗ 
𝑐 
) = 𝑅 

∗ at a point

 

∗ 
𝑐 
, there is no flow since the unyielded region touches the wall and thus

he velocity of the unyielded core is zero due to the no-slip boundary

ondition. For brevity, the symbols 𝜎∗ 
𝑖𝑛 
≡ 𝜎∗ (0) and 𝜎∗ 

𝑜𝑢𝑡 
≡ 𝜎∗ ( 𝐿 

∗ ) will be

sed hereafter. 

In the yielded region, D 

∗ ≡ {( z ∗ , r ∗ , 𝜃): z ∗ ∈ [0, L ∗ ], r ∗ ∈ [ 𝜎∗ , R 

∗ ],

∈ [0, 2 𝜋]}, the continuity equation and the z- and r-components of the

omentum equation in the absence of external forces, are simplified as

ollows: 

1 
𝑟 ∗ 

𝜕( 𝑟 ∗ 𝑣 ∗ 
𝑟 
) 

𝜕 𝑟 ∗ 
+ 

𝜕( 𝑣 ∗ 
𝑧 
) 

𝜕 𝑧 ∗ 
= 0 (7)

∗ 
( 
𝑣 ∗ 
𝑟 

𝜕𝑣 ∗ 
𝑧 

𝜕 𝑟 ∗ 
+ 𝑣 ∗ 

𝑧 

𝜕𝑣 ∗ 
𝑧 

𝜕 𝑧 ∗ 

) 
= − 

𝜕 𝑝 ∗ 

𝜕 𝑧 ∗ 
+ 

1 
𝑟 ∗ 

𝜕( 𝑟 ∗ 𝜏∗ 
𝑟𝑧 
) 

𝜕 𝑟 ∗ 
+ 

𝜕𝜏∗ 
𝑧𝑧 

𝜕 𝑧 ∗ 
(8)

∗ 
( 
𝑣 ∗ 
𝑟 

𝜕𝑣 ∗ 
𝑟 

𝜕 𝑟 ∗ 
+ 𝑣 ∗ 

𝑧 

𝜕𝑣 ∗ 
𝑟 

𝜕 𝑧 ∗ 

) 
= − 

𝜕 𝑝 ∗ 

𝜕 𝑟 ∗ 
+ 

1 
𝑟 ∗ 

𝜕𝜏∗ 
𝑟𝑟 

𝜕 𝑟 ∗ 
+ 

𝜕𝜏∗ 
𝑟𝑧 

𝜕 𝑧 ∗ 
+ 

𝜏∗ 
𝑟𝑟 
− 𝜏∗ 

𝜃𝜃

𝑟 ∗ 
(9)

here 𝜌∗ is the constant mass density. The non-zero components of the

ate-of-deformation tensor in the yielded regime are the following: 

̇ ∗ 
𝑟𝑟 
= 2 

𝜕𝑣 ∗ 
𝑟 

∗ , �̇�∗ 
𝑟𝑧 

= 

𝜕𝑣 ∗ 
𝑧 

∗ + 

𝜕𝑣 ∗ 
𝑟 

∗ , �̇�∗ 
𝑧𝑧 

= 2 
𝜕𝑣 ∗ 

𝑧 

∗ , �̇�∗ 
𝜃𝜃

= 2 
𝑣 ∗ 
𝑟 

∗ (10)
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−  
he non-trivial extra-stress components are given by: 

 

 

 

 

 

�̇�∗ 
𝑖𝑗 
= 0 , 𝜏∗ ≤ 𝜏∗ 

𝑦 
( 𝑝 ∗ ) 

𝜏∗ 
𝑖𝑗 
= 

{ 

𝜏∗ 0 

[
1+ 𝛽∗ ( 𝑝 ∗ − 𝑝 ∗ 0 ) 

]
�̇�∗ + 𝜇∗ 

0 
[
1 + 𝛼∗ ( 𝑝 ∗ − 𝑝 ∗ 0 ) 

]} 

�̇�∗ 
𝑖𝑗 
, 𝜏∗ > 𝜏∗ 

𝑦 
( 𝑝 ∗ ) 

, 𝑖𝑗 =𝑟𝑟, 𝑟𝑧, 𝑧𝑧, 𝜃𝜃

(11)

here 

̇ ∗ = 

√ √ √ √ 2 

( ( 
𝜕𝑣 ∗ 

𝑟 

𝜕 𝑟 ∗ 

) 2 
+ 

( 
𝜕𝑣 ∗ 

𝑧 

𝜕 𝑧 ∗ 

) 2 
+ 

( 
𝑣 ∗ 
𝑟 

𝑟 ∗ 

) 2 ) 

+ 

( 
𝜕𝑣 ∗ 

𝑧 

𝜕 𝑟 ∗ 
+ 

𝜕𝑣 ∗ 
𝑟 

𝜕 𝑧 ∗ 

) 2 
(12)

nd 

∗ = 

√ 

1 
2 
(
𝜏∗2 
𝑟𝑟 

+ 𝜏∗2 
𝑧𝑧 

+ 𝜏∗2 
𝜃𝜃

)
+ 𝜏∗2 

𝑟𝑧 
(13)

he unyielded region Ω∗ ≡ {( z ∗ , r ∗ , 𝜃): z ∗ ∈ [0, L ∗ ], r ∗ ∈ [0, 𝜎∗ ], 𝜃 ∈ [0,

 𝜋]} moves in the z-direction as a solid, i.e. at a constant axial velocity

 

∗ 
𝑐 
. Therefore, in Ω∗ : 

 

∗ 
𝑧 
= 𝑣 ∗ 

𝑐 
and 𝑣 ∗ 

𝑟 
= 𝑣 ∗ 

𝜃
= 0 for 0 ≤ 𝑟 ∗ ≤ 𝜎∗ ( 𝑧 ∗ ) (14)

n the absence of body forces, the integral balance of linear momentum

n Ω∗ yields the following equation [11] : 

𝜕 Ω∗ 
𝜌∗ ( 𝐯 ∗ ⋅ ∇) 𝐯 ∗ 𝑑 𝑆 

∗ = ∫𝜕 Ω∗ 
(− 𝑝 ∗ 𝐈 + 𝛕∗ ) ⋅ 𝐧 𝑑 𝑆 

∗ (15)

here n is the outward unit normal vector to the boundary 𝜕Ω∗ of Ω∗ .

ince the core is moving as a solid, the flux of linear momentum through

Ω∗ is zero and thus one gets: 

𝜕 Ω∗ 
(− 𝑝 ∗ 𝐈 + 𝛕∗ ) ⋅ 𝐧 𝑑 𝑆 

∗ = 𝟎 (16)

s shown in Fig. 1 , the boundary 𝜕Ω∗ consists of three parts, 𝜕 Ω∗ = 𝜕Ω∗ 
1 ∪

 Ω∗ 
2 ∪ 𝜕 Ω∗ 

3 , with the corresponding unit normal vectors given by 

 1 = 

𝐞 𝐫 − 𝜎∗ 
𝑧 
𝐞 𝐳 √ 

1 + 𝜎∗ 
𝑧 
2 
, 𝐧 2 = 𝐞 𝐳 , 𝐧 3 = − 𝐞 𝐳 (17)

here 𝜎∗ 
𝑧 
≡ 𝑑 𝜎∗ ∕ 𝑑 𝑧 ∗ . Substituting into Eq. (16) and simplifying one gets

he following integral equation: 

 ∫
𝐿 ∗ 

0 
𝜎∗ 
[{
− 𝜎∗ 

𝑧 
(− 𝑝 ∗ + 𝜏∗ 

𝑧𝑧 
) + 𝜏∗ 

𝑟𝑧 

}]
𝑟 ∗ = 𝜎∗ ( 𝑧 ∗ ) 𝑑𝑧 + 𝜎∗2 

𝑖𝑛 
𝑝 ∗ 
𝑖𝑛 
− 𝜎∗2 

𝑜𝑢𝑡 
𝑝 ∗ 
𝑜𝑢𝑡 

= 0 (18)

.1. Non-dimensional formulation 

The governing equations are rendered dimensionless by scaling z ∗ 

y L ∗ , r ∗ and 𝜎∗ by R 

∗ , ( 𝑝 ∗ − 𝑝 ∗ 
𝑜 
) by 𝜏∗ 0 𝐿 

∗ ∕ 𝑅 

∗ , 𝑣 ∗ 
𝑧 

by 𝜏∗ 0 𝑅 

∗ ∕ 𝜇∗ 
0 , 𝑣 

∗ 
𝑟 

by
∗ 
0 𝑅 

∗2 ∕( 𝐿 

∗ 𝜇∗ 
0 ) , and the extra-stress components by 𝜏∗ 

𝑜 
. With these scales,

he continuity equation and the two components of the momentum

quation become: 

1 
𝑟 

𝜕( 𝑟 𝑣 𝑟 ) 
𝜕𝑟 

+ 

𝜕 𝑣 𝑧 

𝜕𝑧 
= 0 (19)

𝑅𝑒 

( 
𝑣 𝑟 

𝜕 𝑣 𝑧 

𝜕𝑟 
+ 𝑣 𝑧 

𝜕 𝑣 𝑧 

𝜕𝑧 

) 
= − 

𝜕𝑝 

𝜕𝑧 
+ 

1 
𝑟 

𝜕( 𝑟 𝜏𝑟𝑧 ) 
𝜕𝑟 

+ 𝜀 
𝜕 𝜏𝑧𝑧 

𝜕𝑧 
(20)

nd 

 

3 𝑅𝑒 

( 
𝑣 𝑟 

𝜕 𝑣 𝑟 

𝜕𝑟 
+ 𝑣 𝑧 

𝜕 𝑣 𝑟 

𝜕𝑧 

) 
= − 

𝜕𝑝 

𝜕𝑟 
+ 𝜀 

𝜕 𝜏𝑟𝑟 

𝜕𝑟 
+ 𝜀 2 

𝜕 𝜏𝑟𝑧 

𝜕𝑧 
+ 𝜀 

𝜏𝑟𝑟 − 𝜏𝜃𝜃

𝑟 
(21)

here 

 ≡ 𝑅 

∗ 

𝐿 

∗ (22)

s the aspect ratio and 

𝑒 ≡ 𝜌∗ 𝑅 

∗ 2 𝜏∗ 0 

𝜇∗ 
0 
2 (23)

s the Reynolds number. 
78 
he components of the dimensionless rate-of-deformation tensor

 Eq. (10) ) are as follows: 

̇ 𝑟𝑟 = 2 𝜀 
𝜕 𝑣 𝑟 

𝜕𝑟 
, �̇�𝑟𝑧 = 

𝜕 𝑣 𝑧 

𝜕𝑟 
+ 𝜀 

𝜕 𝑣 𝑟 

𝜕𝑧 
, �̇�𝑧𝑧 = 2 𝜀 

𝜕 𝑣 𝑧 

𝜕𝑧 
, �̇�𝜃𝜃 = 2 𝜀 

𝑣 𝑟 

𝑟 
(24)

s for the non-zero components of the stress tensor we now have 
 

�̇�𝑖𝑗 = 0 , 𝜏 ≤ 1 + 𝛽𝑝 

𝜏𝑖𝑗 = 

(
1+ 𝛽𝑝 
�̇�

+ 1 + 𝛼𝑝 

)
�̇�𝑖𝑗 , 𝜏 > 1 + 𝛽𝑝 

, 𝑖𝑗 = 𝑟𝑟, 𝑟𝑧, 𝑧𝑧, 𝜃𝜃 (25)

here 

 ≡ 𝑎 ∗ 𝜏∗ 
𝑜 
𝐿 

∗ 

𝑅 

∗ , 𝛽 ≡ 𝛽∗ 𝜏∗ 
𝑜 
𝐿 

∗ 

𝑅 

∗ (26)

re the dimensionless plastic-viscosity and yield-stress growth parame-

ers, 

̇ = 

√ √ √ √ 2 𝜀 2 
[ ( 

𝜕 𝑣 𝑟 

𝜕𝑟 

) 2 
+ 

( 
𝜕 𝑣 𝑧 

𝜕𝑧 

) 2 
+ 

(𝑣 𝑟 
𝑟 

)2 ] 
+ 

( 
𝜕 𝑣 𝑧 

𝜕𝑟 
+ 𝜀 

𝜕 𝑣 𝑟 

𝜕𝑧 

) 2 
(27)

nd 

= 

√ 

1 
2 
(
𝜏2 
𝑟𝑟 
+ 𝜏2 

𝑧𝑧 
+ 𝜏2 

𝜃𝜃

)
+ 𝜏2 

𝑟𝑧 
(28)

he above equations hold in the yielded domain 𝐷 = {( 𝑧, 𝑟, 𝜃) ∶ 0 < 𝑧 <

 , 𝜎( 𝑧 ) < 𝑟 < 1 , 0 ≤ 𝜃 < 2 𝜋} . The dimensionless form of Eq. (18) is 

 ∫
1 

0 
𝜎
[{
− 𝜎𝑧 (− 𝑝 + 𝜀 𝜏𝑧𝑧 ) + 𝜏𝑟𝑧 

}]
𝑟 = 𝜎( 𝑧 ) 𝑑𝑧 + 𝜎2 

𝑖𝑛 
𝑝 𝑖𝑛 − 𝜎2 

𝑜𝑢𝑡 
𝑝 𝑜𝑢𝑡 = 0 (29)

he system of Eqs. (19) –(21) and (29) is closed by appropriate bound-

ry conditions. At the wall, no-slip and no-penetration conditions are

mposed, i.e. 

 𝑟 = 𝑣 𝑧 = 0 at 𝑟 = 1 , 0 ≤ 𝑧 ≤ 1 (30)

long the yield surface, the constant core velocity is imposed: 

 𝑟 = 0 , 𝑣 𝑧 = 𝑣 𝑐 at 𝑟 = 𝜎( 𝑧 ) , 0 ≤ 𝑧 ≤ 1 (31)

nd all components of the rate-of-deformation tensor vanish: 

̇ 𝑟𝑟 = �̇�𝑟𝑧 = �̇�𝜃𝜃 = �̇�𝑧𝑧 = 0 at 𝑟 = 𝜎( 𝑧 ) , 0 ≤ 𝑧 ≤ 1 (32)

egarding the total pressure, this is zero at the exit of the tube ( z = 1),

nd equal to the dimensionless pressure difference driving the flow at

he tube entrance ( z = 0): 

 ( 𝑟, 0) = Δ𝑃 , 𝑝 ( 𝑟, 1) = 0 (33)

here Δ𝑃 ≡ ( 𝑝 ∗ 
𝑖𝑛 
− 𝑝 ∗ 

𝑜𝑢𝑡 
) 𝑅 

∗ ∕( 𝐿 

∗ 𝜏∗ 0 ) . 

.2. The zero-order approximation 

For long tubes, the geometrical aspect ratio ɛ is a small parameter

nd if the remaining dimensionless numbers and parameters are of order

nity with respect to 𝜀 (or smaller) then a lubrication type approxima-

ion can be utilized to simplify the governing equations and accompa-

ying auxiliary conditions. Thus, a leading order problem can be formu-

ated provided that: 

 < 𝜀 << 1 , 𝑅𝑒, 𝑎, 𝛽, Δ𝑃 ≤ 𝑂(1) (34)

or the sake of simplicity, we avoid introducing new symbols for the

ero-order variables; hence, hereafter all variables are the zero-order

nes. In the yielded region, i.e. for 𝜎( z ) ≤ r ≤ 1, all the governing equa-

ions and auxiliary conditions at zero-order are simply obtained by set-

ing 𝜀 = 0. Hence, at zero order the continuity and momentum Eqs. (19) –

21) become: 

1 
𝑟 

𝜕( 𝑟 𝑣 𝑟 ) 
𝜕𝑟 

+ 

𝜕 𝑣 𝑧 

𝜕𝑧 
= 0 (35)

 

𝜕𝑝 + 

1 𝜕( 𝑟 𝜏𝑟𝑧 ) = 0 (36)

𝜕𝑧 𝑟 𝜕𝑟 
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T
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w
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E
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O  

r  

t
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E

2

S  
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2

T  
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s  

𝑄  

C  
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f

𝑄

E  
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i  

a  

c

 

𝑝  

c  

t  

o  

c

3

 

E  

e  
nd 

 

𝜕𝑝 

𝜕𝑟 
= 0 (37)

t turns out that only the rz-components of the rate-of-deformation and

iscous stress tensor are non-zero, i.e. 

̇ 𝑟𝑧 = 

𝜕 𝑣 𝑧 

𝜕𝑟 
(38) 

ith 

̇ = 

|||| 𝜕 𝑣 𝑧 𝜕𝑟 

|||| = − 

𝜕 𝑣 𝑧 

𝜕𝑟 
(39)

the velocity decreases with r ) and 
 

𝜕 𝑣 𝑧 

𝜕𝑟 
= 0 , 𝜏 ≤ 1 + 𝛽𝑝 

𝜏
𝑟𝑧 

= −(1 + 𝛽𝑝 ) + (1 + 𝛼𝑝 ) 𝜕 𝑣 𝑧 
𝜕𝑟 

, 𝜏 > 1 + 𝛽𝑝 
(40) 

he zero-order boundary conditions that accompany the above equa-

ions are the same as Eqs. (30) –(33) . Finally, the integral Eq. (29) at

ero-order becomes: 

 ∫
1 

0 
𝜎( 𝜏𝑟𝑧 + 𝜎′𝑝 ) 𝑟 = 𝜎( 𝑧 ) 𝑑𝑧 + 𝜎2 

𝑖𝑛 
Δ𝑃 = 0 (41)

here hereafter the prime denotes differentiation with respect to z .

iven that 𝜏𝑟𝑧 = −(1 + 𝛽𝑝 ) at the yield surface ( 𝑟 = 𝜎( 𝑧 ) ), we get 

 ∫
1 

0 
𝜎
[
−(1 + 𝛽𝑝 ) + 𝜎′𝑝 

]
𝑑𝑧 + 𝜎2 

𝑖𝑛 
Δ𝑃 = 0 (42)

ntegrating by parts the second term of the integrand gives: 

1 

0 
𝜎

( 
1 + 𝛽𝑝 + 

𝜎𝑝 ′

2 

) 
𝑑𝑧 = 0 (43)

rom Eq. (37) , it is deduced that the pressure depends only on z , i.e. 𝑝 =
 ( 𝑧 ) , and so do the yield-stress 𝜏y and the plastic viscosity 𝜇. Integrating

q. (36) with respect to r and demanding that 𝜏𝑟𝑧 = − 𝜏𝑦 = −(1 + 𝛽𝑝 ) at

he yield surface, we find that 

𝑟𝑧 = 

𝑝 ′

2 

( 
𝑟 − 

𝜎2 

𝑟 

) 
− (1 + 𝛽𝑝 ) 𝜎

𝑟 
(44)

ombining Eqs. (44) and (40) , integrating once again and applying the

o-slip boundary condition at the wall ( 𝑣 𝑧 ( 𝑟 = 1 , 𝑧 ) = 0 ), we obtain the

ollowing expression for the axial velocity component: 

 𝑧 ( 𝑟, 𝑧 ) = 

𝑝 ′

4(1 + 𝛼𝑝 ) 
(
𝑟 2 − 2 𝜎2 ln 𝑟 − 1 

)
− 

1 + 𝛽𝑝 

1 + 𝛼𝑝 
( 1 − 𝑟 + 𝜎 ln 𝑟 ) (45)

herefore, the constant velocity of the unyielded core is 

 𝑐 = 𝑣 𝑧 ( 𝜎, 𝑧 ) = 

𝑝 ′

4(1 + 𝛼𝑝 ) 
(
𝜎2 − 2 𝜎2 ln 𝜎 − 1 

)
− 

1 + 𝛽𝑝 

1 + 𝛼𝑝 
( 1 − 𝜎 + 𝜎 ln 𝜎) (46)

As for the radial velocity component, this can be found by integra-

ion of the continuity Eq. (35) with respect to r and applying the no-

enetration boundary condition ( 𝑣 𝑟 ( 𝑟 = 1 , 𝑧 ) = 0 ): 

 𝑟 = 

1 
𝑟 ∫

1 

𝑟 

𝜕 

𝜕𝑧 

(
𝜉𝑣 𝑧 ( 𝜉, 𝑧 ) 

)
𝑑𝜉 (47) 

ubstituting the axial velocity from Eq. (45) in Eq. (47) and integrating

ives an expression for v r which contains p ″ . However, we exploit the

act that v c is constant and take the derivative of Eq. (46) with respect

o z. The resulting expression is used to eliminate p ″ from the expression

or v r yielding the following expression for the radial velocity: 

 𝑟 ( 𝑟, 𝑧 ) = 

(
𝑟 2 ( ln ( 𝑟 2 ) − 1) + 1 

)
(1 − 𝜎2 ) + (1 − 𝑟 2 ) 2 ln ( 𝜎) 

4 𝑟 (1 + 𝑎𝑝 ) 
(
1 + 𝜎2 ( ln ( 𝜎2 ) − 1) 

)
×
(
1 + 𝛽𝑝 + 𝑝 ′𝜎

)
𝜎′ + 𝑓 ( 𝑟, 𝑧 ) ( 𝛽 − 𝑎 ) 𝑝 ′

(1 + 𝑎𝑝 ) 2 
, 𝜎( 𝑧 ) ≤ 𝑟 ≤ 1 (48) 

here 
79 
( 𝑟, 𝑧 ) = − 

1 
6 𝑟 

+ 

𝑟 

2 
− 

𝑟 2 

3 
− 

𝜎
(
𝑟 2 (1 − ln ( 𝑟 2 )) − 1 

)
4 𝑟 

+ 

(
(1 − 𝑟 2 ) 2 + 2 𝜎2 

(
𝑟 2 (1 − ln ( 𝑟 2 )) − 1 

))
( 1 + 𝜎( ln ( 𝜎) − 1 ) ) 

4 𝑟 (1 + 𝜎2 
(
ln ( 𝜎2 ) − 1 

)
) 

(49) 

q. (48) reveals a very interesting feature of the flow. For 𝑎 = 𝛽 the

ast term in Eq. (48) is zero. Moreover, because 𝑣 𝑟 ( 𝑟 = 𝜎( 𝑧 ) , 𝑧 ) = 0 ,
q. (48) gives 𝜎′ = 0 , which implies that the shape of the interface 𝜎

s constant, as indicated also by the numerical results below. 

One approach to proceed is by exploiting the fact that v c is con-

tant, i.e. 𝜕 𝑣 𝑐 ∕ 𝜕𝑧 = 0 . Hence, the z-derivative of Eq. (46) is zero which

eads to a second-order ODE which contains p, p ′ , p ″ , 𝜎 and 𝜎′ . This ODE

hould be solved together with 𝑣 𝑟 ( 𝑟 = 𝜎( 𝑧 ) , 𝑧 ) = 0 which is a first-order

DE which contains p, p ′ , 𝜎 and 𝜎′ . Thus, three auxiliary conditions are

equired to obtain a unique solution. These are the integral Eq. (43) and

he two boundary conditions (33) : 

 (0) = Δ𝑃 , 𝑝 (1) = 0 , ∫
1 

0 
𝜎

( 
1 + 𝛽𝑝 + 

𝑝 ′𝜎

2 

) 
𝑑𝑧 = 0 (50)

However, the problem can be further simplified as follows.

q. (47) evaluated at 𝑟 = 𝜎( 𝑧 ) and multiplied by 2, gives 

 ∫
1 

𝜎( 𝑧 ) 

𝜕 

𝜕𝑧 

(
𝑟 𝑣 𝑧 ( 𝑟, 𝑧 ) 

)
𝑑𝑟 = 0 

ince 𝑣 𝑧 ( 𝑟, 𝑧 ) = 𝑣 𝑐 = constant for 0 ≤ r ≤ 𝜎( z ) the above equation can be

ewritten as: 

 ∫
1 

𝜎( 𝑧 ) 

𝜕 

𝜕𝑧 

(
𝑟 𝑣 𝑧 ( 𝑟, 𝑧 ) 

)
𝑑𝑟 + 2 ∫

𝜎( 𝑧 ) 

0 

𝜕 

𝜕𝑧 

(
𝑟 𝑣 𝑧 ( 𝑟, 𝑧 ) 

)
𝑑𝑟 = 

𝑑 

𝑑𝑧 

( 

2 ∫
1 

0 
𝑣 𝑧 𝑟𝑑𝑟 

) 

= 0 

he quantity inside the parenthesis is simply the dimensionless volu-

etric flow-rate Q and therefore the above equation implies that Q is

onstant along the tube (as it should be expected since the fluid is con-

idered incompressible). Since v z has been found, we can evaluate Q :

 = 2 ∫
1 

0 
𝑟 𝑣 𝑧 𝑑𝑟 = 2 ∫

𝜎

0 
𝑟 𝑣 𝑐 𝑑𝑟 + 2 ∫

1 

𝜎

𝑟 𝑣 𝑧 𝑑𝑟 = 𝜎2 𝑣 𝑐 + 2 ∫
1 

𝜎

𝑟 𝑣 𝑧 𝑑𝑟 (51)

arrying out the integration we find Q as a function of 𝜎, p, p ′ and v c ,

.e. 𝑄 = 𝑄 ( 𝜎, 𝑝, 𝑝 ′, 𝑣 𝑐 ) . Eliminating p ′ by means of Eq. (46) leads to the

ollowing algebraic equation: 

 = 

(1 − 𝜎) 2 

4 
[
1 + 𝜎2 (2 ln 𝜎 − 1) 

]
×
{ 

( 𝜎 + 1) 2 𝑣 𝑐 + 

1 + 𝛽 𝑝 

3(1 + 𝛼 𝑝 ) 
[
(1 + 2 𝜎)(1 − 𝜎2 ) + 𝜎 ln 𝜎(3 + 2 𝜎 + 𝜎2 ) 

]} 

(52) 

qs. (46) and (52) constitute a system of two equations, the first of which

s a first-order ordinary differential equation, which contains p, p ′ , 𝜎 and

 c , and the second one is an algebraic equation, with unknowns 𝜎, p, Q ,

nd v c . Since the ODE is of first order, only one boundary condition

s required, but due to the presence of v c and Q in the equations, two

dditional auxiliary conditions are needed. Thus, the same boundary

onditions given above by Eq. (50) are used. 

Solving the system of (46) , (52) and (50) gives directly v c , Q , and

 = 𝑝 ( 𝑧 ) , 𝜎 = 𝜎( 𝑧 ) . Then, the velocity components v z and v r are readily

alculated by means of Eqs. (45) and (48) , respectively. In the next sec-

ion, the above system of equations is solved using two different meth-

ds, an analytical technique and a numerical method, which are dis-

ussed next. 

. Methods of solution 

Before proceeding with the general solution of the system of

qs. (43) , (48) and (49) , recall that an analytical solution of the gen-

ral flow (without the use of the lubrication approximation) exists when
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he two growth coefficients 𝛼 and 𝛽 are equal [7] . This is also the case

ith the lubrication-approximation solution derived above. Indeed, for

= 𝑎 > 0 , one finds from Eqs. (46) and (48) that the radial velocity

anishes and thus the radius of the unyielded core is constant while

 𝑧 = 𝑣 𝑧 ( 𝑟 ) only. More specifically, 

̃ = 

2 𝑎 
ln (1 + 𝑎 Δ𝑃 ) 

, �̃� 𝑐 = 

( ̃𝜎 − 1) 2 

2 ̃𝜎
, �̃� = 

1 
8 ̃𝜎

− 

1 
6 
+ 

�̃�3 

24 
(53)

hile the pressure and the velocity are given by: 

̃ = 

(1 + 𝑎 Δ𝑃 ) 1− 𝑧 − 1 
𝑎 

, �̃� 𝑧 = ( 𝑟 − 1) 
(
1 − 

1 + 𝑟 

2 ̃𝜎

)
, �̃� 𝑟 = 0 (54)

e point out that the above solution is simply the first term of the Taylor

xpansion of the analytical solution derived by Ioannou and Georgiou

7] in terms of the aspect ratio ɛ . The critical pressure gradient, ΔP c ,

elow which no flow occurs can be found from Eq. (50) as the pressure

t which �̃� = 1 : 

𝑃 𝑐 = 

𝑒 2 𝑎 − 1 
𝑎 

(55)

For 𝛽 = 𝑎 → 0 , the solution reduces to: 

̃ = 

2 
Δ𝑃 

, �̃� 𝑐 = 

Δ𝑃 
4 

− 1 + 

1 
Δ𝑃 

, �̃� = 

Δ𝑃 
16 

− 

1 
6 
+ 

1 
3 (Δ𝑃 ) 3 

(56)

̃ = (1 − 𝑧 )Δ𝑃 , �̃� 𝑧 = ( 𝑟 − 1) 
(
1 − Δ𝑃 1 + 𝑟 

4 

)
, �̃� 𝑟 = 0 (57)

nd the critical pressure difference is Δ𝑃 𝑐 = 2 . The above special solu-

ions are the base state for the perturbation solution. Moreover, they are

seful in testing the numerical method described below. 

.1. Numerical method 

We solve the system of (46) , (52) and (50) using a pseudospectral

ethod with Chebyshev orthogonal polynomials. The method is stan-

ard, and details can be found in any textbook on spectral methods (see

or instance [12] ). Briefly, first we map the dimensionless physical do-

ain [0, 1] into the computational domain [−1 , 1] by introducing a new

ndependent variable y as 𝑦 = 2 𝑧 − 1 ⇔ 𝑧 = (1 + 𝑦 )∕2 . Then, the pressure

nd the shape of yield surface are represented as: 

 ( 𝑦 ) = 

𝑀 ∑
𝑘 =0 

�̂� 𝑘 𝑇 𝑘 ( 𝑦 ) , 𝜎( 𝑦 ) = 

𝑀 ∑
𝑘 =0 

�̂�𝑘 𝑇 𝑘 ( 𝑦 ) (58)

here �̂� 𝑘 and �̂�𝑘 are the spectral coefficients of p and 𝜎, respectively,

 is the total number of coefficients, and 𝑇 𝑘 ( 𝑦 ) ≡ cos ( 𝑘 cos −1 ( 𝑦 )) are

he Chebyshev polynomials. This representation generates 2 M + 2 un-

nowns which, along with v c and Q , require 2 M + 4 equations. Since the

overning equations are strongly non-linear, the computational domain

s discretized in M + 1 nodes and the discretized form of Eq. (46) at all

odes except from the first one, the discretized form of Eq. (52) at all

odes, and the three auxiliary conditions of Eq. (50) , provide 2 M + 4

lgebraic equations. This system of non-linear equations is solved us-

ng a Newton iterative scheme with an absolute convergence criterion

0 -12 . The values of M were chosen in the range between 8 and 14 (de-

ending on the magnitude of the parameters); in all cases both p and

were resolved down to machine accuracy. Before presenting the re-

ults, however, we also describe a perturbation method which allows

he derivation of an asymptotic solution of the system of interest. 

.2. Asymptotic solution 

In order to find an approximate analytical solution of the flow, a

erturbation method is employed with the small parameter being the

ifference between the two growth parameters 𝛿 ≡ 𝛽 − 𝑎 . Then all un-

nown variables are expanded in standard power series in terms of 𝛿:
Δ  

80 
= 𝜒0 + 𝛿 𝜒1 + 𝛿2 𝜒2 + ... as 𝛿 → 0 , where 𝜒 = 𝑝, 𝜎, 𝑣 𝑐 , 𝑄 (59) 

he zero-order terms have been already derived above; these are given

y Eqs. (50) and (51) for 𝑎 = 𝛽 > 0 and by Eqs. (53) and (54) for 𝑎 = 𝛽 =
 : 

 0 = �̃� , 𝜎0 = �̃�, 𝑣 𝑐0 = �̃� 𝑐 , 𝑄 0 = �̃� (60)

ubstituting expressions (56) and (57) into Eqs. (46) , (52) and (50) ,

xpanding all quantities suitably, and collecting all terms of the same

owers in 𝛿, results in sequence of perturbation problems. We solve ana-

ytically the equations at O ( 𝛿) and O ( 𝛿2 ). Hence, the asymptotic solution

or all variables is found in series form with three terms: 

𝑎𝑠𝑦𝑚 = 𝜒 + 𝛿 𝜒1 + 𝛿2 𝜒2 , 𝜒 = 𝑝, 𝜎, 𝑣 𝑐 , 𝑄 (61)

owever, the analytical solutions at first and second order in 𝛿 are

oo long to be given here. Thus, expressions (61) are mainly used to

heck and validate the numerical results. In fact, these approximate so-

utions can also be processed further using series-convergence accelera-

ion techniques, such as Shanks’ non-linear transformation [13] . Indeed,

n improved approximate solution for all variables is the following: 

𝑎𝑐𝑐 = 𝜒 + 

𝛿 𝜒2 
1 

𝜒1 − 𝛿 𝜒2 
, 𝜒 = 𝑝, 𝜎, 𝑣 𝑐 , 𝑄 (62)

omparisons of 𝜒acc with 𝜒asym 

are performed in the next subsection. 

.3. Code verification 

First, we verified the correctness of the pseudospectral method by

omparing the numerical results with the analytical solution given by

qs. (53) and (54) . As a test-case we set Δ𝑃 = 30 and 𝑎 = 𝛽 = 0 . 1 , 0 . 15
nd 0.2. In all cases, the calculated solutions with M = 10 were accurate

p to 10 significant digits. As a second test-case, we set 𝑎 = 0 . 1 , 𝛽 = 0 . 15 ,
nd Δ𝑃 = 30 to run the pseudospectral code and get the numerical re-

ults 𝜒num 

; both the pressure and the yield surface were resolved down

o machine accuracy using only M = 12 spectral coefficients. This indi-

ates that for typical values of the dimensionless parameters the maxi-

um accuracy for all variables is achieved with the pseudospectral code;

s such, the solution is considered exact. We also used the analytical

symptotic and improved solutions ( 𝜒asym 

, 𝜒acc , respectively) and cal-

ulated the per cent absolute relative errors: 

 𝜒,𝑎𝑠𝑦𝑚 ( 𝑧 ) = 100 
|||||1 − 

𝜒𝑎𝑠𝑦𝑚 ( 𝑧 ) 
𝜒𝑛𝑢𝑚 ( 𝑧 ) 

|||||, 𝜀 𝜒,𝑎𝑐𝑐 ( 𝑧 ) = 100 
||||1 − 

𝜒𝑎𝑐𝑐 ( 𝑧 ) 
𝜒𝑛𝑢𝑚 ( 𝑧 ) 

|||| (63)

here 𝜒 = 𝜎, 𝑝 . The calculated errors for the yield surface and the pres-

ure are plotted in Fig. 2 . We observe that the error for the asymptotic

olution is very low and that its maximum error values (2% for 𝜎, and

ess than 0.1% for p ) are observed at the exit of tube ( z = 1). This clearly

ndicates that the perturbation scheme is reliable and that the three-term

olutions are excellent approximate solutions to the exact (calculated

umerically) solutions. 

We also see in Fig. 2 that the improved (accelerated-convergence) so-

ution is slightly more accurate than the asymptotic solution throughout

he tube. This indicates that the Shanks transformation for the acceler-

tion of convergence of the three-term asymptotic solution works quite

ell. The fact that the two solutions are very close confirms the conver-

ence of the results (as already indicated by the low relative errors). It

hould be emphasized however, that if 𝛼 is large and 𝛿 = 𝛽 − 𝑎 ≤ 0 . 1 (ap-

roximately) the asymptotic and improved solutions do not give phys-

cally accepted solutions. Thus, we derive the results using the pseu-

ospectral code and use the asymptotic/improved solutions as an inde-

endent check of the numerical results. 

. Results and discussion 

Since the fluid is viscoplastic, flow occurs only above a critical value

P of the imposed pressure difference. As mentioned above, this critical
c 
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Fig. 2. Absolute relative error for: (a) the shape of the interface and (b) the 

pressure when 𝛼 = 0.1, 𝛽 = 0.15 and ΔP = 30. The dotted lines correspond to the 

asymptotic solution and the solid ones to the improved (accelerated) solution. 

The error is calculated based on the numerical solution which is resolved down 

to machine accuracy. 

p  

s  

s  

𝑎

Δ

 

q  

(  

i  

t  

t  

c  

v  

Δ  

t  

a  

u

 

a

(  

p  

s  

i  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1

2

3

4

5

6

7

8

9

10

=0.05, 0.2, 0.5, 0.75

P
c

Fig. 3. Effect of the yield-stress growth parameter 𝛽 on the critical pressure 

difference, ΔP c for different values of the plastic-viscosity growth parameter 𝛼. 
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Fig. 4. Effect of the plastic-viscosity growth parameter 𝛼 on the critical pres- 

sure difference, ΔP c for (a) small and (b) large values of the yield-stress growth 

parameter 𝛽. 
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i

ressure difference is found as the highest pressure at which the yield

urface touches the wall, i.e. 𝜎 = 1 anywhere in the tube. In the previous

ection, ΔP c has been derived analytically for the special case where

 = 𝛽: 

𝑃 𝑐 = 

{ 

𝑒 2 𝑎 −1 
𝑎 

, 𝑎 = 𝛽 > 0 
2 , 𝑎 = 𝛽 = 0 

(64) 

Obtaining an analytical expression of ΔP c when a ≠ 𝛽 is out of the

uestion. This is thus determined either numerically or asymptotically

see Eqs. (61) or (62) , respectively). Representative results are provided

n Figs. 3 and 4 . It should be noted that in the range of the parame-

ers for which the asymptotic series solution is physically admissible,

he agreement between the asymptotic and numerical solutions is ex-

ellent. Fig. 3 shows ΔP c versus the yield-stress growth parameter 𝛽 for

arious values of the plastic-viscosity growth parameter, a . In Fig. 4 ,

P c is plotted versus 𝛼 for various values of 𝛽. The growth parame-

ers a, 𝛽 should be small, but in order to exaggerate the differences

nd the effects of the two parameters, we also used values as large as

nity. 

In Fig. 3 , we observe that ΔP c increases monotonically with 𝛽 for

ll values of 𝛼. This is expected, since the yield stress increases with 𝛽

recall that 0 ≤ p ≤ ΔP ). If now 𝛽 is fixed, an increase in a enhances the

lastic viscosity of the fluid. Even though intuitively the critical pres-

ure difference for a more viscous fluid is expected to be higher, this

s not true at high values of 𝛽. For fixed values of 𝛽 higher than 0.3,
81 
P c decreases with a . The effect of a on ΔP c is more clearly seen in

ig. 4 where results for low and high values of 𝛽 are presented. In the

ormer case ( Fig. 4 (a)), the dependence of ΔP c on a is weak and ΔP c 
asses through a minimum. At higher values of 𝛽 the variation of ΔP c 
ith a becomes more significant and the minimum is shifted farther to

he right so that ΔP c appears to decrease monotonically in the range of

nterest. 
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Table 1 

Indicative values of 𝛼 and 𝛽 corresponding to the B34 oil-based drilling fluid studied by Hermoso et al. [2] . 

T (°C) Calculated material constants Dimensionless numbers when 𝜀 = 10 −4 

𝜇∗ 
0 (Pa s) 𝜏∗ 0 𝜏0 (Pa) 𝛼∗ (Pa -1 ) 𝛽∗ (Pa -1 ) 𝛼 𝛽

40 0.152 0.144 5.68E − 08 1.02E − 7 8.18 10 -5 1.47 10 -4 

80 0.028 0.061 2.93E − 08 5.41E − 8 1.79 10 -5 3.30 10 -5 

100 0.017 0.075 1.65E − 08 3.08E − 8 1.24 10 -5 2.31 10 -5 

120 0.011 0.022 1.80E − 08 1.61E − 8 3.96 10 -6 3.54 10 -5 

140 0.01 0.141 2.59E − 08 1.27E − 8 3.65 10 -5 1.79 10 -5 

Fig. 5. Variation of (a) the plug-core velocity, v c and (b) the volumetric flow- 

rate, Q, with the applied pressure difference ΔP for 𝛽 = 0.15 and various values 

of the plastic-viscosity growth parameter 𝛼. 
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Fig. 6. The effect of the of the yield-stress growth parameter 𝛽 on (a) the shape 

of the yield surface, 𝜎, and (b) the modified pressure, ̃𝑝 , for 𝛼 = 0 (constant plastic 

viscosity) and ΔP = 10. 
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It is instructive to resort to available experimental data in order to get

 feeling of the magnitudes of 𝛼 and 𝛽. Ioannou and Georgiou [7] deter-

ined the values of the rheological parameters corresponding to the B34

il-based drilling fluid studied at different temperatures and pressures

y Hermoso and co-workers [2] . In Table 1 , we tabulate the values of 𝛼

nd 𝛽 at different temperatures, calculated assuming that a representa-

ive aspect ratio in oil-drilling is 𝜀 = 0 . 0001 . We observe the following:

a) the values of both parameters are of about the same order and well

elow unity but it should also be noted these would increase if ɛ is re-

uced further; (b) at low temperatures 𝛼 < 𝛽 and at higher temperatures

> 𝛽. In the discussion of the results we intentionally consider higher

alues of 𝛼 and 𝛽 because these may be encountered in other applica-

ions and also in order to exaggerate the effects of these two parameters.
82 
In Fig. 5 , the velocity of the unyielded core, v c , and the volumetric

ow rate, Q , for 𝛽 = 0 . 15 and various values of a are plotted as functions

f the applied pressure difference ΔP in the range 5 ≤ ΔP ≤ 60, which is

bove the critical values of ΔP c . The results for 𝑎 = 𝛽 = 0 . 15 were calcu-

ated using Eqs. (50) and (51) . In all cases, both v c and Q increase mono-

onically as the imposed pressure difference ΔP is increased. When a < 𝛽,

here exists always a solution, at least for the range of ΔP examined here.

hen a > 𝛽, however, solutions exist only up to a critical value of ΔP ,

hich decreases with the plastic-viscosity growth parameter a (recall

hat a higher value of a corresponds to a more viscous fluid). A similar

bservation for the existence of solutions has been reported previously

or Newtonian [14] and viscoelastic [15] fluids with pressure-dependent

iscosity. 
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Fig. 7. The effect of the of the plastic-viscosity growth parameter 𝛼 on (a) the 

shape of the yield surface, 𝜎, and (b) the modified pressure, ̃𝑝 , for 𝛽 = 0 (constant 

yield stress) and ΔP = 5. 
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Fig. 8. The effect of the of the yield-stress growth parameter 𝛽 on (a) the shape 

of the yield surface, 𝜎, and (b) the modified pressure, ̃𝑝 , for 𝛼 = 0.05 and ΔP = 10. 
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We proceed with the effects on the pressure distribution along the

ube and the shape of the yield surface 𝜎. In order to focus on the relative

hanges which may be small, we consider the modified pressure 

̃ ≡ 𝑝 − (1 − 𝑧 )Δ𝑃 (65)

hich is actually the deviation from the linear pressure distribution cor-

esponding to the flow of Bingham plastic with constant rheological pa-

ameters ( 𝑎 = 𝛽 = 0 ). In Fig. 6 , the effect of the yield-stress growth pa-

ameter is illustrated for a fluid of constant plastic viscosity ( 𝛼 = 0) and

𝑃 = 10 . The values of 𝛽 were chosen in the range from 0 up to 0.75.

hus, the yield-stress decreases from 𝜏𝑦 = 1 + 10 𝛽 at the entrance to

𝑦 = 1 at the exit of the tube. For 𝛽 = 0, the radius of the unyielded core

s constant, given by 𝜎 = 2∕Δ𝑃 = 0 . 2 . In all the other cases, a slight in-

rease of 𝜎 is observed. The velocity of the unyielded region decreases

ast, from v c ≈1.60 for 𝛽 = 0 down to v c ≈0.0564 for 𝛽 = 0 . 75 ; a sub-

tantial increase of 𝛽 is then required in order to reduce further the core

elocity and to move the yield surface close to the wall. Finally, the cor-

esponding modified pressures are plotted in Fig. 6 (b). When 𝑎 = 𝛽 = 0 ,
he modified pressure is zero, as expected from Eq. (57) . When 𝛽 ≠0, �̃�

s negative, exhibiting a minimum close to the middle of the tube; thus

̃ ′( 𝑧 𝑐 ) = 0 which implies that 𝑝 ′( 𝑧 𝑐 ) = −Δ𝑃 where z c is slightly less than

.5. As expected, �̃� increases in magnitude as 𝛽 is increased but its shape

emains similar. 

The effect of the plastic-viscosity growth parameter 𝛼 for a fluid of

onstant yield-stress ( 𝛽 = 0) and Δ𝑃 = 5 is illustrated in Fig. 7 . As men-

ioned above, for 𝑎 = 𝛽 = 0 the unyielded core is cylindrical of radius
83 
= 2∕Δ𝑃 = 0 . 4 , and the modified pressure is zero, i.e. the pressure dis-

ribution is linear. In all other cases ( 𝑎 > 𝛽 = 0 ), the radius of the core

s not constant, exhibiting a monotonic decrease. It is also interesting

o notice that all the yield surface profiles cross at the same distance

rom the entrance of the tube, slightly before the middle of the tube. As

ar as the modified pressure is concerned we observe similar patterns as

n Fig. 6 . It is zero at the entrance and the exit of the tube, and nega-

ive elsewhere, showing a minimum, which appears shortly before the

iddle of the tube at the same position where the yield surfaces cross. 

Fig. 8 shows the yield surface and the modified pressure for 𝛼 = 0.05,

𝑃 = 10 and values of 𝛽 from 0 up to 0.7. We observe that the shape

f the yield surface depends on the relative values of the growth pa-

ameters. The radius of the unyielded core decreases monotonically for

< a , remains constant for 𝛽 = 𝑎 , and increases monotonically for 𝛽 > a .

he modified pressure profiles are qualitatively the same as those in

igs. 6 and 7 . 

In Fig. 9 we plotted the yield surfaces for various values of the ap-

lied pressure difference, starting from ΔP ≈ΔP c (in which case 𝜎 ≈1)

nd increasing ΔP in order to obtain a yield surface as close as possible

o the axis of the symmetry of the tube. First, in Fig. 9 (a), the results

re presented for 𝑎 = 𝛽 = 0 for which Δ𝑃 𝑐 = 2 ; in this case, the radius of

he unyielded core is constant, 𝜎 = 2∕Δ𝑃 . In Fig. 9 (b), results are shown

or 𝑎 = 0 . 2 , 𝛽 = 0 , i.e. for a fluid with constant yield stress, for which

𝑃 𝑐 = 2 too. Since 𝛽 < 𝛼, the radius of the unyielded core is decreas-

ng downstream. In Fig. 9 (c), the plastic viscosity is constant, i.e. 𝑎 = 0 ,
hile the yield stress varies with the pressure with 𝛽 = 0 . 2 ; these pa-



K.D. Housiadas et al. Journal of Non-Newtonian Fluid Mechanics 260 (2018) 76–86 

Fig. 9. Yield surfaces for various values of the imposed pressure difference ΔP : (a) 𝛼 = 𝛽 = 0; (b) 𝛼 = 0.2, 𝛽 = 0; (c) 𝛼 = 0, 𝛽 = 0.2; (d) 𝛼 = 𝛽 = 0.2. The radius 𝜎 of the 

plug core is constant when 𝛼 = 𝛽, decreasing when 𝛼 > 𝛽 and increasing when 𝛼 < 𝛽. 
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ameters give ΔP c ≈2.48. Since 𝛽 > 𝛼, the radius of the unyielded core

s increasing downstream. Last, in Fig. 9 (d) the results are shown for

 = 𝛽 = 0 . 2 which give ΔP c ≈2.46. 

Finally, in Fig. 10 , we plotted the axial velocity profiles in the middle

f the tube ( z = 0.5) that correspond to all the cases shown in Fig. 9 . For

 = 𝛽 = 0 ( Fig. 10 (a)) and 𝑎 = 𝛽 = 0 . 2 ( Fig. 10 (d)) the velocity profile is

ndependent of z but not for 𝑎 = 0 . 2 , 𝛽 = 0 ( Fig. 10 (b)) and 𝑎 = 0 , 𝛽 = 0 . 2
 Fig. 10 (c)). For the lowest applied pressure difference, the radius of the

nyielded core tends to unity, i.e. 𝜎 = 2∕Δ𝑃 , and the magnitude of the

elocity tends to zero. As ΔP increases the velocity increases and the

adius of the unyielded core moves towards the axis of symmetry, as

xpected. 

.1. The skin friction coefficient 

The skin friction coefficient, C f , usually referred to as Fanning fric-

ion factor [16] , is a dimensionless shear stress at the wall of the tube,

.e. 

 𝑓 ≡ 𝜏∗ 
𝑤 

𝜌∗ 𝑢 ∗2 ∕2 
(66)
𝑠 

84 
here 𝑢 ∗ 
𝑠 

is the velocity scale, which in the present work is 𝑢 ∗ 
𝑠 
= 𝜏∗ 0 𝑅 

∗ ∕ 𝜇∗ 
0 .

ubstituting and dedimensionalizing 𝜏∗ 
𝑤 

by 𝜏∗ 0 gives: 

 𝑓 = 2 
𝜇∗2 
0 

𝜌∗ 𝜏∗ 0 𝑅 

∗2 
||𝜏𝑤 || = 2 

𝜇∗2 
0 

𝜌∗ 𝜏∗ 0 𝑅 

∗2 

( 
𝜏𝑦 − 𝜇

𝜕 𝑣 𝑧 

𝜕𝑟 

||||𝑟 =1 
) 

(67)

n the second equality above, we have used that 𝜏𝑤 = 𝜏𝑟𝑧 ( 𝑟 = 1) , as well

s that 𝜏y and 𝜇 are positive and 𝜕 𝑣 𝑧 ∕ 𝜕𝑟 |𝑟 =1 is negative. The dimension-

ess group in Eq. (67) is merely the inverse of the Reynolds number

defined in Eq. (23) ). Substituting 𝜏y and 𝜇 and evaluating the velocity

erivative give: 

 𝑓 = 

2 
𝑅𝑒 

[
𝜎

(𝜎𝑝 𝑧 
2 

+ 1 + 𝛽𝑝 

)
− 

𝑝 𝑧 

2 

]
(68)

ince C f varies with the axial distance , the average skin friction coef-

cient along the tube is considered. By means of Eq. (50) , it turns out

hat 

̂
 𝑓 ≡ ∫

1 

0 
𝐶 𝑓 𝑑𝑧 = 

Δ𝑃 
𝑅𝑒 

(69)

t is interesting to note that �̂� 𝑓 is independent of the growth parameters

and 𝛽. 
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Fig. 10. The axial velocity in the middle of the cylindrical tube ( z = 0.5) for various values of the imposed pressure difference ΔP : (a) 𝛼 = 𝛽 = 0; (b) 𝛼 = 0.2, 𝛽 = 0; (c) 

𝛼 = 0, 𝛽 = 0.2; (d) 𝛼 = 𝛽 = 0.2. 
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. Conclusions 

The axisymmetric Poiseuille flow of a Bingham plastic with

ressure-dependent rheological parameters has been studied using the

ubrication-approximation method of Fusi and Farina [11] , which has

he advantage of predicting the correct shape of the yield surface at

ero order. Both the plastic viscosity and the yield stress have been as-

umed to vary linearly with the pressure, thus attaining higher values

pstream. The perturbation method leads to explicit expressions for the

wo velocity components in terms of the radius of the unyielded core

( z ) and the pressure distribution p ( z ). These two variables are calcu-

ated by solving a system of a first-order ODE and an algebraic equation.

his is solved both numerically using a pseudospectral method and by

eans of simple perturbation method which allows the derivation of

ome asymptotic results. It is also solved analytically for the special

ase where the yield-stress growth parameter 𝛽 is equal to the plastic-

iscosity growth parameter 𝛼. The effects of these two parameters on

he critical pressure ΔP c required to drive the flow have been studied.

hile it increases monotonically with 𝛽 for any value of 𝛼, ΔP c decreases

ith the plastic-viscosity growth coefficient 𝛼 at least initially. When 𝛽

s low, this reduction is weak and ΔP c passes through a minimum, and

hen starts increasing with 𝛼; for higher values of 𝛽, ΔP c appears to de-

rease monotonically for the wide range of values considered and the

nitial reduction is more pronounced. It has also been demonstrated that
85 
he shape of the central unyielded core depends on the relative values

f a and 𝛽. This is contracting when 𝛽 < 𝛼, expanding when 𝛽 > 𝛼, and

ylindrical when 𝛽 = 𝛼. 

The method of Fusi and Farina [11] , exploited here in order to tackle

teady-state viscoplastic flow in a cylindrical tube, is more general and

an be applied to tubes of non-constant radius, e.g. expanding or con-

racting tubes, or tubes with a stenosis, or even with oscillating walls.

e are thus planning to extend the present work to flows more relevant

o industrial applications. 
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