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A B S T R A C T

Computation of viscoplastic fluid flows has always been a challenging task. Viscoplastic models are intrinsically
discontinuous at the yielded-unyielded interface, which leads to numerical difficulties, because of the singularity
in the Jacobian matrix of the resulting discretized equations. For this reason, several modeling or numerical
approaches have been proposed, the most popular being the Papanastasiou regularization (PR) and the
Augmented Lagrangian (AL) methods, respectively. Recently, studies on AL methods have focused on developing
accelerated algorithms, since the required computational cost of using AL is extremely high. In the present work,
a fast converging and efficient algorithm is proposed for tracking the yield surface and predicting the flow field
of viscoplastic fluids accurately. The numerical procedure is the Penalized Augmented Lagrangian (PAL)
method, which is based on a monolithic Newton solver for AL, where the governing equations of the Lagrange-
multiplier tensor for both the rate-of-strain projection and the extra-stress tensors are penalized. To test the
efficiency of our algorithm, five benchmark flow-problems with fixed, free and moving boundaries are studied.
First, the problem of the steady rise of a bubble in a viscoplastic medium is addressed validating the new
algorithm with the findings by Dimakopoulos et al. (2013). Then the entrance flow in a rectangular channel is
solved, where a primary unyielded region is found around the centerline in the developed part of the flow and
secondary unyielded regions near the entrance. In addition, the lid-driven cavity problem is solved, which is an
often used test for various numerical algorithms and the results are compared to relevant studies for viscoplastic
fluids such as those of Syrakos et al. (2013, 2014) and Treskatis et al. (2016). Furthermore, the developed flow in
a square duct is examined, similarly to Saramito (2016). Finally, the transient filament stretching of a shear-
thinning, yield stress fluid is examined, and the results are compared to those by Balmforth et al. (2010). In all
cases, either steady or transient, the algorithm captures the yield surfaces correctly, while maintaining a low
computational cost, because the convergence of the method requires only a few (i.e. 5–30) Newton iterations.
Based on these extensive tests, PAL is found to be superior combining accuracy and speed to all existing solution
methods for viscoplastic fluids.

1. Introduction

1.1. Yield stress fluids and computational challenges

Numerous engineering applications and natural phenomena involve
materials characterized as yield–stress materials. From a rheological
standpoint, they are also called viscoplastic fluids and are distinguished
from other non–Newtonian fluids, because of the existence of a stress
threshold, namely the yield–stress, which plays a crucial role in their
flow. The dual identity of viscoplastic fluids lies in the fact that they
behave as solids if the measure of the applied stress does not exceed the
yield–stress value, and flow as liquids if the yield–stress is surpassed.

Although the existence of a real yield-stress in viscoplastic fluids has
been debated, in most applications it is regarded as a very useful con-
cept for describing their behavior. Modeling yield-stress materials is
one of the elusive tasks in rheology due to the complexity and variety of
their structure. A recent review on viscoplastic fluids discussing the
aforementioned issues is the work of Balmforth et al. [5]. First,
Bingham [8] attempted to model viscoplastic materials. In a simplified
form, he assumed that the rate of deformation is zero when the material
is in the unyielded state, while the material flows as a Newtonian fluid
once it yields. A modification of the Bingham model, to include shear
thinning effects, led to the development of the Herschel-Bulkley (HB)
model [33]. The general three-dimensional form of this constitutive law
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Henceforth, the tilde ∼ over a variable denotes its dimensional
form. In the above equations, τ͠ is the extra stress tensor and γ̇͠ is the
rate-of-strain tensor, which is defined as = ∇ + ∇γ v v˙ ( )͠ ͠͠ T . The mag-
nitudes of the aforementioned tensors are given by:
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The model generally includes three parameters. They are the con-
sistency index k͠ (a generalized plastic viscosity), the flow index n,
which controls the shear–thinning or thickening behavior of the ma-
terial and, of course, the yield stress, τ͠y. When =n 1, the consistency
index becomes the plastic Bingham viscosity η͠p. In addition, the fluid is
characterized by its density ρ͠ and interfacial tension with air γ͠ .

One crucial limitation of the model is that for stresses lower than the
yield stress, the solid region is assumed to behave as a rigid (inelastic)
material. This introduces ambiguity, because in the unyielded domain
the extra stress remains undetermined and Eq. (1) reduces to:

=γ̇ 0͠ (3)

while at the same time, the velocity is subjected to the momentum
balance throughout. Indeed, the rate of deformation should be zero,
since the material is assumed to be a rigid solid. However, the equation
above has infinite solutions regarding the stress field. Any arbitrary
combination of shear and normal stresses that may develop in the un-
yielded region by the flow can satisfy Eq. (3), as long as the second
invariant of the stress tensor for this combination is lower than the yield
stress, providing an infinity of acceptable solutions. Thus, the problem
is ill-posed. Unfortunately, this is not the only drawback of this model.
The existence of the max term in Eq. (1) or the related discontinuous
viscosity introduces a numerical singularity in the Jacobian matrix, if a
Newton iterative scheme is adopted, when solving this non-regularized
formulation, due to the discontinuity of the derivative of the max
function .This is also stressed in the work of Saramito [52] and Saramito
and Wachs [55]. One way to overcome these shortcomings is to de-
termine the flow field in the yielded region only along with the yield
surface, as accomplished by Beris et al. [7] and Smyrnaios et al. [56].
However, this approach can be used only when the physics of the
problem allow us to have a good estimation of the location of the yield
surface before solving the problem.

The analysis in the present work is centered in the Herschel–Bulkley
model, which does not account for the elasticity of the material. The
more general approach is to include the elastic deformation in the
unyielded region of these materials, which are then called elasto-
viscoplastic. Such constitutive models have recently appeared in the
literature, Saramito [53,54], and avoid one of the discrepancies of any
purely viscoplastic model. Typically, in the unyielded region, the ma-
terial is considered to be a Neo-Hookean elastic solid, [24,25] and thus,
the stress there may be determined. Nevertheless, multiplicity of the
solutions is not removed, even in this case, as first shown by Cheddadi
et al. [12].

Predicting the yield surface has been extensively investigated in the
field of computational fluid mechanics. The vast majority of papers
involving flows of viscoplastic fluids, present numerical algorithms,
which are based on one of two approaches. The first approach is the
regularization models, where the discontinuous viscosity function is
smoothed in order to asymptotically match the original model, as dis-
cussed in the review by Mitsoulis and Tsamopoulos [37]. Arguably the
most commonly used approximation among them is Papanastasiou's
regularization (PR, Papanastasiou [43]). It approximates the fluid
rheology by a generalized Newtonian one, with a viscosity continuously
changing in the yielded and unyielded regions, according to Eq. (4):
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It is a popular method, because it is easy to implement and in-
troduces just one regularization parameter (∼N ) in order to smooth the
discontinuous viscosity function, via the exponential function. Relevant
to the present study and exclusively based on the Papanastasiou reg-
ularization is the work of Damianou and Georgiou [13]. They examined
the Poiseuille flow of a Herschel–Bulkley fluid in a rectangular duct,
emphasizing wall-slip and assuming that it follows a law similar to HB.
From a computational perspective, they regularized both the con-
stitutive model and the slip equations according to Damianou et al. [14]
and obtained accurate results when the regularization parameters were
sufficiently large. Transient simulations of viscoplastic fluids with the
Papanastasiou regularization have been reported by Dimakopoulos and
Tsamopoulos [17] when air is displacing it from a tube and by Pa-
paioannou et al. [42] when it is injected in a tube. In addition to the
finite element method used in the previously mentioned publications,
Syrakos et al. [57–60] have used the finite volume method with the
Papanastasiou regularization for the steady and transient lid–driven
cavity flow and the flow inside an extrusion damper. Finally, Burgos
et al. [10] have compared the predictions of the Papanastasiou model as
well as the biviscosity model to the original HB model in the determi-
nation of yield surfaces in an antiplane shear flow. It is no wonder why
the Papanastasiou approximation is so popular and employed in various
viscoplastic flows, regardless of geometry and type of flow. It is simple
to implement in any solver (e.g. FD, FEM or FVM) and it follows phy-
sical intuition. Of course, it comes with drawbacks, as it will be seen
later.

The second approach, which is the focus of the present work, is
based on variational principles, which require that the functions that
constitute the solution of a problem should maximize or minimize
certain functionals. A benchmark study for viscoplastic flows also using
variational principles is the work by Beris et al. [7] where the sedi-
mentation of a sphere in a viscoplastic fluid is studied. In addition,
variational inequalities have been used in many studies by Muravleva
and Muravleva [38–40]. Furthermore, Dubash and Frigaard [20] used
Prager's variational principles in order to estimate the conditions under
which the rise of a bubble in an HB fluid stops. The most famous var-
iational approach for the solution of viscoplastic problems is the Aug-
mented Lagrangian (AL) method, which is based on Variational In-
equalities, either of rate–of–strain minimization or stress maximization.
This method has been introduced by Hestenes [34] and Powell [48] for
the solution of optimization problems. Glowinski and co-workers
[21,28,29] advanced and applied it to the linear Stokes problem and to
non–linear problems, such as the flow of Bingham-type fluids.

Briefly, according to the AL method, in order to solve the visco-
plastic flow problem, a functional is defined, which is minimized by the
correct solution. The singularity that arises at the yield surface is re-
medied by the introduction of a Lagrange multiplier, related to the
stress tensor, which aids in the relaxation of computing the velocity
gradient. Additionally, a “quadratic” term is incorporated in the func-
tional to accelerate the convergence of the iterative scheme. The two
aforementioned terms are multiplied by certain coefficients which are
updated in each iteration according to a conjugate gradient method.
Dimakopoulos et al. [15] simulated the steady bubble rise in Her-
schel–Bulkley fluids following either the PR or the AL approach. The
mass and momentum conservation equations along with the con-
stitutive equations were solved in order to study the buoyancy-driven
rise of a bubble in a viscoplastic medium, mainly in order to examine
the deformation and shape of the bubble and also the conditions for its
entrapment. From a physical perspective, an important conclusion was
that shear–thinning does not affect the entrapment conditions and,
additionally, viscoplasticity cannot lead to the formation of cusps in the
south pole of the bubble giving it an inverted tear–drop shape. This left
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elastic effects to be their only possible cause. As for the computational
techniques, the regularized problem was solved using direct New-
ton–Raphson iterations while for the AL formulation a three-stage Pi-
card scheme was employed with adjustment of parameters. Overall, the
accuracy of the AL method was found to be superior in capturing the
yield surfaces either away from the bubble or around its equatorial
plane and its back side. An inherent disadvantage of the Papanastasiou
regularization is that it predicts a very slow flow even beyond the yield
surfaces which contradicts the physical implications of the model, al-
though a critical Bingham number can be defined relatively accurately.
On the other hand, the main drawback when using the AL method is the
very high computational cost, especially when considering 2D pro-
blems. In fact, it was found that the AL was about 1.000–10.000 times
slower than the Papanastasiou approximation method! This observation
serves as the motivation for the present work. More specifically a
modified AL method is proposed which remedies the slow convergence
associated with the original AL method and simultaneously improves
the accuracy in comparison to the PR method.

1.2. Other works involving the AL method and the current effort to
accelerate it

Apart from the benchmark problem of the steady bubble rise, the AL
method has been successfully employed in various studies involving
simulations of viscoplastic fluids. Wachs [65] studied the steady
Bingham flow through an eccentric annulus, motivated by engineering
applications like mud or cement slurry flow. Another problem of great
importance encountered in geophysics and engineering applications is
the dam break flow, which has been studied numerically by Liu et al.
[36]. A two–dimensional dambreak has been simulated using a reg-
ularization technique and/or an Augmented Lagrangian scheme. It was
found that the two methods provided similar results. However, the AL
algorithm was overall slower and was mostly used when examining the
flow close to failure or when the motion was tending to stop. Another
application in the geophysics area is the study of lava flows. In the work
of Robertson and Kerr [49] lava is assumed to behave like a Bingham
viscoplastic material flowing inside a rectangular channel and was
determined via a multigrid based AL scheme. In this case, the Papa-
nastasiou approximation could not predict true plug regions arising in
the flow and the AL method is consequently preferred. Using this
method, the authors could capture plug regions even for small Bingham
numbers, thus pointing out that the AL has a closer connection to the
physics of this fluid flow than the regularization technique.

In the recent computational rheology literature, there has been an
effort for the development of accelerated algorithms for the solution of
viscoplastic flows, while maintaining the high-accuracy of the results. A
numerical method for faster resolution of viscoplastic fluid problems
was proposed by Saramito [52], based on the Newton method. As al-
ready stated, solving the original non-regularized viscoplastic law via
the Newton method produces a singular Jacobian matrix, which needs
to be regularized, compromising the super-linear convergence of the
method. Saramito [52] achieved the solution of the singular Jacobian
problem by using a preconditioner and avoiding the need for regular-
ization. The methodology he used is similar to that described in the
work of Alart and Curnier [1]. In terms of computational cost, this
damped Newton method was found to be better than the AL approach
by reducing the necessary computational time, while producing equally
satisfactory results in predicting the yield surface. Additionally, a quite
fast and efficient modification of the AL scheme is presented in the
work of Treskatis et al. [62]. They studied the steady state, creeping
flow of a non-regularized viscoplastic material in a cavity. The method
used a class of proximal gradient algorithms, called FISTA (Fast Itera-
tive Shrinkage–Thresholding) algorithm, which achieves minimization
of the cost function at a fast rate, while keeping the computational cost
relatively low. Using this algorithm, they were able to efficiently cal-
culate the yielded/unyielded regions. Last but not least, in a very recent

publication by Bleyer [9], an interior point method is employed
showing promising convergence properties even in 3-Dimensional
problems, which are traditionally very costly computationally. These
works highlight the fact that the need for new accelerated methods is a
topic of intense research and that there are still opportunities for new
ideas to emerge.

The present work explores the application of a new modification of
the AL method with accelerated converge properties combined with
improved accuracy of the results to several benchmark problems. This
method is based on a monolithic Newton solver and is described in §2.
Subsequently, in §3, it is tested with the free boundary problem of the
steady rise of a bubble in a viscoplastic medium. In §4, §5 and §6, the
steady entrance flow in a rectangular channel, the lid-driven cavity flow
and the fully developed flow in a square duct are solved, respectively,
and in §7 the transient filament stretching is examined. In all cases, our
results with the PAL method are compared to those from the PR and/or
the original AL either computed by us or reported in the literature.
Conclusions are drawn in §8.

2. The penalized augmented Lagrangian method

The new numerical scheme is based on coupling the Augmented
Lagrangian method with the penalty procedure in order to update the
Lagrangian multipliers. Hence, it will be called PAL (Penalized
Augmented Lagrangian) method. Our previous implementation of the
AL algorithm, presented in Dimakopoulos et al. [15], involved a multi-
stage procedure. The AL algorithm begins with the application of the
Cauchy–Schwarz inequality on two symmetric, second order tensors.
Thus, a point wise inequality is obtained, valid in both the solid and
liquid regions. The yield stress term is replaced by its upper bound,
since this term is not a differentiable function of its argument γ̇͠ , when

→γ̇ 0͠ , because of the square root in the definition of the second in-
variant. The variational inequality is derived by

(i) Taking the inner product of the equation of motion with the de-
viation of a trial velocity from the exact velocity and integrating
over the entire domain, Ω,

(ii) Introducing the point-wise, variational inequality,
(iii) Performing integration by parts,
(iv) Using the incompressibility constraint and finally,
(v) Introducing the various boundary conditions on the stress or the

velocity field.

In this way, the constitutive relation is combined with the equation
of motion resulting in a large system of equations, which is solved
iteratively. Because the variational inequality is defined over the entire
flow domain, its solution simultaneously provides the location of the
yield surface. This derivation resembles the standard steps taken to
derive the weak form of the governing equations in the standard
Galerkin/Finite Element method. Let u be the correct velocity field and
v a trial velocity field satisfying only the velocity boundary conditions.
Then the variational inequality for this problem reduces to

− + − + − ≥ −c u v u a u v u j v j u L v u( , ) ( , ) ( ) ( ) ( )͠ ͠ ͠ ͠͠ ͠ ͠ ͠ ͠ ͠ (5)

In the above, c stands for the functional of the inertia terms, a is the
functional for viscous dissipation, j is the yield stress dissipation func-
tional and L is the functional of the gravitational forces in the bulk and
capillary forces on gas/liquid interfaces. These are given by the fol-
lowing analytical expressions:
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where η γ u( ˙ ( ) )͠ ͠ is the plastic viscosity and ∂Ωb the free surface
boundary. The dependence of the plastic viscosity on γ̇͠ makes the
former non-differentiable as well, in Herschel-Bulkley fluids. The in-
ertia and yield stress functionals are nonlinear in the unknown velocity.
The inequality is satisfied, if the following functional is minimized:

= +
+

+ −J u c u u
n

a u u j u L u( ) ( , ) 1
1

( , ) ( ) ( )͠ ͠ ͠ ͠ ͠ ͠ ͠
(7)

The singularity introduced by the second invariant of the rate-of-
strain tensor γ̇͠ , is approximated by employing a projection tensor q͠ .
The equivalence to the previous functional is imposed by introducing a
Lagrangian tensor λ͠ . This leads to a new functional containing λ͠ :

∫= + − − = −G u q λ J u λ γ q λ γ q λ γ q d( , , ) ( ) ( , ˙ ) , ( , ˙ ) : ( ˙ ) Ω͠ ͠ ͠ ͠͠ ͠ ͠ ͠ ͠͠ ͠ ͠ ͠
Ω

(8)

The convergence of this iterative scheme is extremely slow, how-
ever. A significant acceleration can be achieved by adding a quadratic
term where an adjustable, positive augmentation parameter is in-
troduced, ≥r 0͠ , hence the term “Augmented Lagrangian” method:

∫= + −G u q λ G u q λ r γ q d( , , ) ( , , ) 1
2

˙ Ω͠͠ ͠ ͠͠ ͠ ͠͠ ͠r
Ω

2
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The solution procedure by Dimakopoulos et al. using ALG2 [15]
consisted of 3 distinct stages. The new idea in the present work is to
relax the constraint of stage 3 (i.e. the updating of the Lagrange mul-
tiplier in the solution procedure) in the aforementioned paper, using a
penalty method, thus enabling us to obtain results quickly and to the
required accuracy. Moreover, in this way, the multistage approach of
[15] is avoided and a monolithic scheme is applied based on New-
ton–Raphson iterations. In short, our application consists of writing the
continuity and momentum balances, along with the constitutive model,
and modifying them by introducing penalty terms, so that the diagonal
elements of the Jacobian do not become equal to zero and thus leading
to a destructive singularity. The idea of penalizing equations to avoid
numerical difficulties is quite common. For example, Bercovier and
Engelman [6] have used a penalty method for the continuity equation
in a Bingham fluid problem, but this approach has been used even for
Newtonian fluids. In fact, the addition of the quadratic term to
G u q λ( , , )͠͠ ͠ to obtain G u q λ( , , )͠͠ ͠r and the AL method has been called
penalization in [21, 28]. However, because of the functional

−λ γ q( , ˙ )͠͠͠ , the minimization can be achieved without making the
parameter r͠ tend to zero, which, using ordinary penalization methods,
would have the effect of causing a deterioration in the conditioning of
the system to be solved. The same authors have called the ALG proce-
dure “regularization” of the original problem. In recent years however,
this term has been used very extensively when the constitutive model is
directly modified, resulting in the Papanastasiou, biviscosity and Ber-
covier and Engelman models. Following this trend and to keep things
clear, we consider our new method a modification of the AL procedure
and not a regularization method.

The new method will be presented with the equations in dimen-
sional form, because different nondimensionalization is required for the
specific problems to be examined. Clearly, the new method can be ea-
sily implemented on any other problem. The continuity equation and
the momentum conservation equation, written in terms of the Cauchy
stress tensor, are:

∇ =∼ u· 0͠ (10)

= ∇ +ρ Dv
Dt

σ ρ g·͠
͠ ͠͠ ͠͠

(11)

The total stress tensor is split into the pressure and the extra stress
tensor:

= − +σ p I τ͠͠ ͠ (12)

The extra stress tensor is further split into two “parts”. One part is
the Lagrangian tensor λ͠ , and the other part is a term involving a dif-
ference between the “real” rate-of-strain tensor γ̇͠ and the projection of
the rate-of-strain tensor q͠ :

= − +τ r γ q λ( ˙ )͠͠ ͠͠ ͠ (13)

Upon convergence, the Lagrangian tensor should be equal to the
actual extra stress tensor, satisfying both the continuity and the mo-
mentum equations, since the “difference” term disappears. There are
two algorithm-related parameters in PAL. The first one is a so-called
augmentation parameter r͠ which also appears in the original AL
method and it multiplies the “difference” term in Eq. (13). The elements
of the projected rate-of-strain tensor are computed by satisfying the
constitutive model:
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Note that the same expression of the extra stress tensor, Eq. (13), is
used in both the momentum and the constitutive model equations. The
only thing remaining now is to force the −γ q( ˙ )͠͠ term, “difference” or
“projection” term, to vanish and force the Lagrange multipliers tensor
to become the actual extra stress tensor. Since the constitutive model
equations were used to compute the projected rate-of-strain tensor, we
need an equation for the Lagrange multipliers tensor. To this end, we
introduce the second algorithm-related parameter, the so-called penalty
parameter, denoted by r͠p, which determines the accuracy of the entire
scheme via the “strictness” of the penalty method. This is attained by a
penalty-type equation:

= −λ r γ q( ˙ )͠ ͠͠͠ p (15)

For sufficiently large values of r͠p, since λ͠ is finite, the difference
− →γ q( ˙ ) 0͠͠ and, therefore the Lagrangian tensor converges to the

true extra stress tensor, since it should simultaneously satisfy both the
momentum and constitutive model equations. One last thing to note is
that, as we will see shortly, this so-called penalty parameter generates
similar results to a regularization parameter, if a direct comparison to
the Papanastasiou method is made. Therefore, it is also interesting to
explore if the new method is superior to the Papanastasiou regular-
ization.

The grid is generated by solving a system of quasi-elliptic partial
differential equations, Eqs. (16) and (17), in order for the mesh to
follow any deformation of the domain occupied by the liquid [16].
These equations determine the connection between the node co-
ordinates in the physical domain (X, Y) to those defined in a simpler
(usually fixed) computational one (ξ, ζ). Indicatively, they are given
below for Cartesian coordinates and in dimensionless form:

∇
⎧
⎨
⎩

⎛

⎝
⎜

+
+

+ −
⎞

⎠
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⎫
⎬
⎭

=
X Y
X Y

ζ· ɛ (1 ɛ ) 0ζ ζ

ξ ξ
1

2 2

2 2 1

(16)

∇ ∇ =ξ· 0 (17)

In the above, ɛ1 is an adjustable parameter to optimally adjust the
coordinate orthogonality to mesh informity in each problem.

The entire equation set is solved using the mixed finite element
method for the discretization of the velocity, node positions in the
mesh, pressure and stress fields. The velocity and position vectors are
approximated with 6-node Lagrangian basis functions, while the stress
(or the Lagrange multipliers) and pressure fields by 3-node basis
functions. The procedure has been described in Dimakopoulos and
Tsamopoulos [15] and successfully used in many studies, e.g. Pettas
et al. [46], Chatzidai et al. [11], Papaioannou et al. [42], Fraggedakis
et al. [27], and Dimakopoulos et al. [19] where the material undergoes
large deformations and free surfaces are present. Recently, Fraggedakis
et al. [26], extended this method to three-dimensional flows.
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Using the PAL scheme, the residual vector Res consists of the weak
form residuals of the governing equations. More details on the form of
the residuals can be found in previous works , e.g. [41, 63]
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The primary unknown of the momentum residuals ResM is the ve-
locity field v, of the grid residuals, ResG is the node position vector x , of
the continuity residuals ResC is the pressure p͠ , of the constitutive model
residualsResQ is the projection rate of deformation tensor q͠ , and of the
Lagrangian residuals ResΛ are the entries of the Lagrangian stress tensor
λ͠ . Therefore, the Jacobian matrix will consist of blocks and will have
the following form:
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It can be clearly seen that with the additional Eq. (15), the only zero
entry in the diagonal of the Jacobian is the one generated by the con-
tinuity equation. The choice of the PAL parameters, the augmentation
parameter, r͠ and the penalty parameter, r͠p, is crucial and is made
considering the following. Ideally, the “projection” term vanishes under
two conditions: (i) →r 0͠ or (ii) → ∞r͠p (or both happening simulta-
neously). Although these extreme values seem tempting to use, they do
not allow the method to converge, because the original discontinuous
problem is recovered. For the computations in this work, the assump-
tion that was made with ALG2 [15] is followed, where =r 1 (di-
mensionless for that matter), since it plays a more neutral role in the
accuracy of the scheme and its actual value does not affect the solution
as explained earlier. In fact, we have performed some tests with smaller
values of r, e.g. =r 0.1, and we found that this parameter has a two-fold
impact. First of all, the smaller r is, the “faster” the contribution of

−γ q˙ vanishes in the first iterations. A Newton iteration procedure is
more likely to diverge when r attains small values, since the Jacobian
matrix becomes more sensitive to disturbances of the two tensors γ q˙ & .
In addition, we found out that for smaller r, we could not significantly
raise the value of the penalty parameter rp as desired for better accu-
racy. Ultimately, it was seen that more accurate solutions were obtained
by increasing the penalty parameter with a fixed r parameter rather
than decreasing r for a fixed rp. Thus, we used =r 1 throughout the rest
of this study and varied only the penalty parameter.

A comparison of our new method to the ones proposed by Saramito
[52] and Treskatis et al. [62] recently in order to accelerate the original
AL method without resorting to regularization of the constitutive
model, can be found in Table 1. In what follows, the proposed method is
put to the test by solving four steady state problems and one transient
problem and comparing the results to other studies and numerical
methods using either the PR or the AL method.

A brief description is given here of the test cases examined in this
paper. Each case has a different geometry and/or driving force gen-
erating the flow. Schematically they are given in Fig. 1:(A) the buoy-
ancy-driven steady rise of a gas bubble of constant volume ∼Vb and
equivalent radius ∼Rb, in viscoplastic quiescent fluid, (B) the steady en-
trance flow of a viscoplastic material with plug velocity profile (∼Uo)

across the entrance of a Cartesian channel having a half - width equal to
L͠ , (C) the steady flow of a viscoplastic fluid in a square cavity with side
lengths equal to L͠ , due to horizontal motion of its lid with constant
velocity ∼Uo, (D) the steady fully-developed flow of a viscoplastic fluid in
a duct with square cross-section, driven by a constant pressure gradient,

≡ ∇∼f e P·͠ z , in the z͠ -direction, and (E) the transient stretching of vis-
coplastic filament with initial uniform radius equal to ∼R and height
equal to L͠o, and a constant stretching velocity ∼Uo. The governing
equations Eqs. (10)–((17)) of each problem is non-dimensionalized by a
group of scales summarized in Table 2, which leads to the formation of
a set of dimensionless numbers, shown in Table 3. All variables have
been defined already except for the viscocapillary time-scale, which is
defined as = ∼t kR γ( / ) .͠ ͠ ͠vc

n1/

The common characteristic in each case is that irrespective of the
scaling that is followed, the Bingham number can be defined and thus
the dimensionless constitutive equation for the projection of the rate of
strain rate, Eq. (14), becomes:

− =τ Bn
τ
τ

qmax(0 , ) n1/

(20)

The momentum and continuity equations are scaled accordingly
following the non-dimensionalization of each case into account. Each
section that follows presents a brief description of the problem along
with boundary conditions.

3. Bubble rise

The first problem examined is the steady rise of a bubble in a
Viscoplastic fluid. This problem has been solved both for a Bingham
fluid by Tsamopoulos et al. [63] using the PR method and by Dima-
kopoulos et al. [15] using both the PR and the AL methods for Bingham
and HB fluids. We compare our results with those obtained by Dima-
kopoulos et al. [15] for a ΗΒ fluid for relatively large exponents of PR.
Thus these results are ideal for a thorough comparison with the present
results. The dimensionless bubble velocity and the drag coefficient are
plotted for =Ar Bo n( , , ) (1, 20, 0.7) and for different Bingham num-
bers. The results were obtained using a First-Order Continuation (FOC)
scheme. In order to compare on equal basis with the computation times
of Dimakopoulos et al. [15], the mesh initially consisted of 50 and 100
elements in the azimuthal and radial direction respectively, but had
multiple refinement stages. The elements are doubled once up to =r 4
in both directions, then once again up to =r 2 and finally once more up
to =r 1.25. This is exactly the mesh used in [15]. The same convergence
criterion is also adopted in the current work by terminating the
Newton-Raphson iterations, if the residual norm drops below −10 9. Two
critical quantities of interest are the rise velocity of the bubble, which
determines whether the bubble can be considered motionless and the
drag coefficient, defined by the following expression:

= = =∼

∼

∼C F

ρ U πR

F
πArU ArU

2 2 8
3͠

d
b

2 2 2 2
(21)

This last expression results from substituting the force exerted on
the bubble by buoyancy; see [15]. Following the aforementioned work,
the augmentation parameter is kept constant and equal to =r 1, while
the value of the penalty parameter is varied. Results with three different
values of rp are presented in Fig. (2).

As Bn increases, the fluid attains a more “plastic” like nature.
Therefore, material yielding is obstructed more, until a critical Bingham
number is reached where Urise→ 0 and the bubble is entrapped inside
the fluid. This also increases the drag coefficient on the bubble via
Eq. (21). Both the drag coefficient and the rise velocity predictions
depend on the choice of rp in a manner similar to their dependence on
the Papanastasiou exponent. Theoretically, as rp→∞, the solution
obtained will be more accurate, i.e., closer to the predictions of the
original AL method. It turns out that for this particular problem, the
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solution obtained with the PAL method gives similar results with the
Papanastasiou regularization for a penalty parameter one order of
magnitude lower than the corresponding Papanastasiou exponent. Ex-
amining Fig. 2, we observe that the rise velocity decreases linearly in
the semi-log scale for low Bingham numbers, however as the critical Bn
is approached it decreases abruptly. This is caused by the quicker ap-
proach of the yield surface to the bubble surface. Similarly, the PAL
method predicts a very steep increase of the drag coefficient, which, as
the penalty parameter increases, asymptotically approaches infinity at
the critical Bn. However, both the PR and the PAL methods predict that
after the critical number there is a second change of the slope of the
curve where both the velocity and the drag coefficient vary at a slower
rate and seem to approach an asymptotic value, which is not physically
acceptable. In fact, Urise→m and Cd→M where m and M are a very
small and a very large number, respectively, and they depend on the
choice of the penalty parameter in PAL or the exponent in PR. The
performance of the algorithm is evaluated through the required New-
ton–Raphson iterations for convergence, following the aforementioned
continuation procedure. For the first order continuation on Bingham
number, a step of = −BnΔ 10 3 was used in order to have a “good” initial

guess. The number of iterations is reported for 0≤ Bn≤ 0.16, i.e., up to
slightly larger than the critical Bn, accounting for a total of 160 con-
tinuation steps.

As the penalty criterion becomes “stricter”, the required iterations
increase, but not very much. For =r 10p

4 each steady state solution for
a different Bn required about 10 iterations, for =r 10p

5 the iterations
increased to about 20 and for =r 2.5·10p

5 they increased further to
about 25-30. Moreover, as the penalty parameter increases, the re-
quired iterations for convergence fluctuate more intensely. Another
practical result that is shown in Fig. 3 is the total elapsed time for
convergence of the NR scheme for representative Bingham numbers. It
can be seen that the required time per NR iteration is pretty consistent
and close to a half minute. The differences in the total time arise due to
the difference in the number of required iterations.

It is also interesting to present how the magnitude of the norm of the
residual vector, which provides the convergence criterion, evolves with
each subsequent iteration. Fig. 4 shows this dependence for a typical
value of =Bn 0.05, which is in the region where the iterations for
convergence present the maximum spikes. The L2 norm of the residual
is defined as

Table 1
Comparison of the method proposed by Saramito [52] and Treskatis et al. [62] to our method.

Main solution idea Finite elements space Solver Tested cases

Saramito (2016)
[52]

Use a preconditioner for the singular
Jacobian matrix

Standard Taylor Hood elements for v and p
& linear discontinuous approximations of
stresses

Newton Raphson & Iterative solver for the
linearized problem

Flow in a square
duct

Treskatis et al.
(2016) [62]

Accelerated dual proximal gradient
method

P1-iso-P2/P1 element Stage – wise solution procedure using conjugate
gradients.

Lid-driven
cavity

Present work Augmented Lagrangian method along
with penalization of the augmented
equations

Standard Taylor Hood elements for all
variables

Sparse direct solver or iterative solver for the NR
solution of the linearized problem (e.g., PARDISO
[45], Watson [31] & MUMPS [2])

Bubble rise (A)
Channel
entrance (B)
Lid-driven
cavity (C)
Square duct (D)
Filament stretch
(E)

Fig. 1. Problems solved in the paper in order (A–E).
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= <Res Res Res tolerance·L2 (22)

Even in the first iteration, the residual norm is relatively low, in-
dicating that the FOC scheme produces a good initial guess for the next
continuation step. In a semi-logarithmic plot, the residual norm de-
creases linearly with the number of elapsed iterations. Close to con-
vergence with residual in the order of −O (10 )8 , it decreases at a slower
rate for a few iterations until it ultimately drops below the desired
threshold for convergence. More practically, it is interesting to evaluate
the real speed-up of the algorithm. In real time, the results for =r 10p

4

were obtained in about 10 h, those of =r 10p
5 in about 20 h and those of

=r 2.5·10p
5 roughly in a day. The computations were performed on a

single computational node. For the record, Dimakopoulos et al. [15]
needed about 1 day with =N 105, 7 days for =N 106 and 32 days (!)
using the Augmented Lagrangian Method, because it required several
thousands of iterations per step. Therefore the results with the new
method have the same precision and are obtained in a day, as those
obtained in a week with the PR, while the AL achieves superior accu-
racy, but takes much more time.

As it was previously stated, an important aspect in any study of

viscoplastic fluid flow is capturing the yield surface accurately. In [15],
it was shown that the Papanastasiou approximation overestimated the
yield surface, and a more accurate solution was reached as the Papa-
nastasiou exponent increased. Physically this is anticipated, because
increasing N, makes the unyielded material more solid-like, which in
turn decelerates the bubble motion. In Fig. 5, the yield surface around
the bubble along with the bubble shape are compared to the predictions
of the original AL method and the strictest Papanastasiou case.

In the left panel of Fig. 5, the similarity of the yield surfaces and the
bubble shapes is quite remarkable. The yield surface forms the usual
envelope surrounding the bubble and a larger yielded region at the
equatorial plane of the bubble, for reasons explained in [15]. The size
and shape of the bubble are also nearly identical. The prediction of the
Papanastasiou regularization in the right panel is somewhat worse than
that by the PAL method, as it predicts a larger yield surface. The ap-
pearance of an unyielded region on the bubble surface around the
equatorial plane is observed in all cases. With regard to the two velocity
components, their profiles obtained by the PAL method are compared
with those of Dimakopoulos et al. [15] for the Papanastasiou regular-
ization.

Table 2
The characteristic scales arising in each of the five test cases.

Flow problem\Mechanism& variable Length Velocity Stress Mechanism generating the flow References

Bubble rise (A in Fig. 1) ∼Rb ∼ +ρ g R k( / )͠͠͠ b
n n1 1/ ∼ρ g R͠͠ b Buoyancy, g͠ [15,63]

Channel entrance (B in Fig. 1) L͠ ∼Uo
∼k U L( / )͠ o

n Plug velocity field at entrance, ∼Uo [47]

Lid-driven cavity (C in Fig. 1) L͠ ∼Uo
∼k U L( / )͠ o

n Moving lid with constant velocity, ∼Uo [58-60]

Square duct (D in Fig. 1) L͠ L f L k( / )͠͠ ͠ ͠ n1/ f L͠ ͠ Pressure gradient ≡ ∇∼f e P·͠ z [52]

Filament stretch (E in Fig. 1) ∼R ∼ ∼R kR γ/( / )͠ ͠ n1/ k t/ ͠͠ vc
n Moving upper plate with constant velocity, ∼Uo [3-4]

Table 3
The dimensionless numbers that arise in each case.

Flow Problem Bn (Bingham) Re (Reynolds) Ar (Archimedes) Bo (Bond)

Bubble rise (A in Fig. 1) ∼τ ρ g R/͠ ͠͠y b
⎜ ⎟
⎛
⎝

⎞
⎠

∼− +ρ g R k/͠͠ n
b

n
n

2 (2 ) ( 2) 2
1/ ∼ρ g R γ/ ͠͠͠ b

2

Channel entrance (B in Fig. 1) ∼τ k U L/ ( / )͠ ͠y o
n ∼ −ρ U L k/ ͠͠ ͠o

n n2

Cavity (C in Fig. 1) ∼τ k U L/ ( / )͠ ͠y o
n ∼ −ρ U L k/ ͠͠ ͠o

n n2

Square duct (D in Fig. 1) τ f L/͠ ͠ ͠y ∼ −ρ U L k/ ͠͠ ͠o
n n2

Filament stretch (E in Fig. 1) ∼τ R γ/͠ ͠y
∼ ∼ρ R γ γ kR( / )( / )͠͠ ͠͠ n3 2/ ∼ρ g R γ/ ͠͠͠ 2

Fig. 2. Dimensionless rise velocity and drag coefficient for a rising bubble vs. Bn. The other parameters are =Ar Bo n( , , ) (1, 20, 0.7).The current results are compared to those of
Dimakopoulos et al. [15].
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The direct comparison of the PAL method velocity predictions with
=r 2.5 ·10p

5 to the PR ones with =N 106 close to the bubble entrapment
conditions, i.e. when the velocities decrease considerably and the

deviations between the two methods are expected to be maximized,
reveals that they are qualitatively similar but not quantitatively. As
observed in Fig. 6, the PAL method predicts a smaller value for both the
azimuthal and the radial velocity. The azimuthal velocity at the equa-
torial plane near the bubble and the radial velocity near the axis of
symmetry predicted by the PAL method are 35% lower than the cor-
responding ones predicted by PR. Since the results depicted here por-
tray the conditions near criticality, these results show that indeed the
PAL method produces more accurate results.

4. Channel entrance

This is a particularly important problem due to the fact that con-
fined flows either in straight or corrugated channel allow the testing of
various phenomena, such as in Tsouka et al. [64]. The boundary con-
ditions impose plug flow at the inlet, no slip and no penetration at the
upper plate and symmetry at the mid-plane. Finally, at the exit
boundary, the Open Boundary Condition (OBC) is employed as dis-
cussed in Papanastasiou et al. [44] and Dimakopoulos et al. [18]. In-
ertia is neglected, =Re 0, because our main interest is in determining
the yield surfaces. The total length of the long channel is =x 10 and is
divided into three regions extending, respectively, up to =x 21 , =x 62

and ≡ =x x 103 . The first region, where the flow develops, is the most
important one and is discretized using 130 elements in the x direction.
Each of the other two regions is discretized using 50 elements in each

Fig. 3. Newton–Raphson iterations and elapsed time for the PAL method results of Fig. 2.

Fig. 4. Decrease of the residual norm at each NR iteration for
=Ar Bo n Bn( , , , ) (1, 20, 0.7, 0.05), i.e. in one step of the computations in Fig. 3.
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region in the x-direction. Throughout, the y-direction is tessellated
using 100 elements. The flow has been recently studied by Philippou
et al. [47].

Fig. 7 depicts the yield surfaces for various Bingham numbers and

methods of solution. For the PAL method, the augmentation parameter
was set equal to =r 1, as in the bubble case, and the penalty parameter
is given in the figure caption. For the Papanastasiou approximation, the
dimensionless exponent is set equal to =N 500, similar to the values

Fig. 5. Comparison of yield surfaces and bubble shapes predicted by the PAL method to those predicted by Dimakopoulos et al. [15] near the critical Bn. The left panel shows the
comparison of the results with the original AL method (left half) to those from the present work with =r 2.5·10p 5(right half). The right panel is the comparison of AL (left half) to

Papanastasiou results (right half) with =N 106 (from [15]). The parameters are =Bn Ar Bo n( , , , ) (0.135, 1, 20, 0.7).

Fig. 6. Comparison of the azimuthal (a) and radial (b) velocity profiles predicted by the PAL method and the Papanastasiou regularization with =N 106. The parameters are
=Bn Ar Bo n( , , , ) (0.135, 1, 20, 0.7).

Fig. 7. Yielded (red) and unyielded (blue) regions of entrance flow in a rectangular channel for three values of Bn. The results are compared with the predictions of the Papanastasiou
model. The first row of panels includes results of the Papanastasiou approximation, the second-row results of the PAL method with =r 10p 3and the third row results of the PAL method

with =r 10p 4. Each column corresponds to =Bn (1, 5, 10)respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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used in the work of Karapetsas and Tsamopoulos [35] for the squeeze
flow of a viscoplastic fluid. In each panel, there are three unyielded
regions. There is the “core” unyielded region in the fully developed part
of the flow, an unyielded “island” closer to the entrance and between
the mid-plane and the wall and a small region at the entrance and at the
symmetry plane, which is hardly visible for =Bn 1. As expected, an
increase in Bingham number causes all three unyielded zones to in-
crease in size. The solution using either method produces similar results
for the same Bingham number. The shapes, locations, and sizes of the
yield surfaces are very much alike. One noticeable difference is ob-
served for larger Bingham numbers. Here the “core” unyielded region
intersects the symmetry plane almost vertically in the case of the PAL
method, but not so with the PR method.

In order to obtain the above results a zero order continuation
scheme on Bingham number was implemented, where the initial guess
for the next step is simply the solution of the previous step. The
Bingham number is varied in the range 0≤ Bn≤ 10. For the
Papanastasiou method, a value of =N 500 was used which is generally
considered small. Here in order for the method to converge, the con-
tinuation step could not exceed = −BnΔ 10 2, and it had to be even lower
in order to increase this Papanastasiou exponent. Alternatively, in order
for the PR to converge with a step of = −BnΔ 10 1 we had to use N∼ 100
or lower. Another approach would have been to initialize our compu-
tations for a specific value of Bn and low N exponent and perform a
continuation on the latter, but this is beyond the scope of this work. The
NR procedure converged in a fixed number of 7 iterations per step with
PR, while PAL needed more iterations per continuation step, as seen in
Fig. 8. However, the PAL algorithm had better convergence properties
overall, as the continuation step was an order of magnitude larger,

= −BnΔ 10 1. Therefore, the PAL method needed a total of 100 con-
tinuation steps, while the Papanastasiou regularization method re-
quired 1000 steps. The corresponding number of iterations can be seen
in the Fig. 8.

The PAL method, using =r 10p
3 required on average 15 iterations

per Bingham step and for =r 10p
4 about 20 iterations (Fig. 8). This

number of iterations follows the same pattern as in the bubble problem.
Ultimately, the real time required for the entire set of continuations in
Bingham number was ∼ 7 h using the PAL method and about ∼25 h
using the Papanastasiou approximation method, due to the much lower
continuation step. It is worth noting that when the Papanastasiou ex-
ponent is increased to =N 103, the scheme diverged after several steps.
Fig. 9 shows the required time for a specific Bingham to be reached,
during the continuation procedure, for the cases of PR with =N 500
and PAL with =r 10p

3. In addition, Fig. 9 shows the dependence of the
norm of the residuals on the number of iterations. For the

Papanastasiou method, the convergence is smooth and decreases
roughly an order of magnitude with each iteration, while for the PAL
method the residual norm varies linearly with an abrupt decrease near
convergence.

The main reason for the larger computation time with the PR
method is the well-known problem of lack of convergence of the
Newton–Raphson scheme, when the exponential factor in PR increases.
The only meaningful basis of comparison of the two methods is to get
results which are as close as possible to the “real” solution for the
minimum time needed for computations for a given range of Bingham
numbers. Under this perspective again, the PAL method was found to be
superior.

An additional aspect of the solution is the stiffness of the linear
problem that occurs by employing the NR method. One way to assess
this property is by the condition number of the Jacobian matrix at each
NR cycle. The corresponding feature of the Watson [31] library has
been used in order to calculate the condition number at each iteration.
The threshold for NR iterations is 100 per continuation step as they are
much more than the number of iterations in which the PAL method
typically converges. The continuation scheme is initiated with the
Newtonian case.

The results of Fig. 10 correspond to small (10(a)) and large (10(b))
Bingham numbers, respectively. The problem becomes stiffer as the
plastic nature of the material increases, mainly due to the presence of a
larger portion of unyielded areas where the numerical difficulties arise.

The results for the small Bingham numbers are summarized in
Table 4. The plot for small Bingham numbers is shown for up to ∼40
iterations for clarity, however the divergent cases surpassed the 100
iterations threshold. As expected, the condition number of the Jacobian
is roughly two orders of magnitude higher in the case of the PAL
method when compared to all cases of the PR solution. For the two
values of the penalty parameter, the condition numbers that are com-
puted are identical and the corresponding points in Fig. 10 overlap. The
higher values of the condition number in the PAL case, when compared
to PR, indicate that the matrix tends to become singular, a character-
istic of the original AL problem. As for the PR method, 3 cases are
shown of which only one converges. When using a value of =N 500, the
convergence depends on the continuation step and the divergent case
halts at =Bn 0.1 . By keeping the same continuation step, when

=N 1000 the continuation scheme diverged at =Bn 0.03. One possible
explanation of the inferior convergence behavior of the PR method, lies
in the fact that the exponential term of the PR method renders the
problem very sensitive to small perturbations. In other words, both
when the solution is updated following the ZOC (Zero-order-Con-
tinuation) scheme and on each NR iteration, the presence of the

Fig. 8. Number of Newton–Raphson iterations for the channel problem using the PAL method for =r 10p 3 (left), and =r 10p 4(right).
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exponential in the viscosity function with a large value of N changes the
correction vector abruptly and thus the solution vector of the NR is
“moving away” from the correct direction.

For the high Bingham number tests, the non-convergent cases have
been omitted and thus, only the tests (1), (4) and (5) are given in
Table 5 and Fig. 10(b). The deviation between PAL and PR have been
intensified in this scenario. Typically, the condition number of the Ja-
cobian using the PAL formulation are 5-6 orders of magnitude higher
than the PR method. The penalty parameter value in the PAL method in
this case gives rise to deviations on the condition number for Tests 1
and 4 which were absent before. In addition, the results qualitatively
agree with those reported for the bubble problem for the drag coeffi-
cient. In other words, for lower Bingham numbers, the PAL and PR

methods usually do not differ very noticeably, but the efficiency of PAL
is revealed as plasticity increases.

5. Lid-driven cavity

The lid-driven cavity problem is probably the most often used
benchmark problem for testing novel numerical methods in terms of
accuracy and overall performance. In this section, a comparison be-
tween our results and those of Treskatis et al. [62] is presented in order
to contrast some characteristics of our method and the FISTA algorithm
presented by these authors. The boundary conditions imposed are no-
slip and no-penetration in each side of the cavity. Motion is induced by
a constant translation of the lid. The problem is solved using the PAL
algorithm with =r 10p

3 and =r 10p
4 in order to examine the effect of

Fig. 9. Required time for reaching a specific Bingham number using ZOC and reduction of the residual norm as a function of NR iterations for =Bn 5.

Fig. 10. Plot of the condition number of the Jacobian matrix for small (left) and large (right) Bingham numbers. See text for description.

Table 4
Tested cases of low the Bingham numbers presented in Fig 10(a).

Case Method Regularization Factor Bn ΔBn Convergence

Test (1) PR =N 500 0.1 0.01 Yes
Test (2) PR =N 500 0.1 0.1 No
Test (3) PR =N 1000 0.03 0.01 No
Test (4) PAL =r 1000p 0.1 0.1 Yes
Test (5) PAL =r 10000p 0.1 0.1 Yes

Table 5
Tested cases of high Bingham number presented in Fig 10(b).

Case Method Regularization factor Bn ΔBn Convergence

Test (1) PR =N 500 10 0.01 Yes
Test (4) PAL =r 1000p 10 0.1 Yes
Test (5) PAL =r 10000p 10 0.1 Yes
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the penalty parameter to the flow variables and, especially, the yield
surfaces that are formed.

The pressure field inside the cavity along with the streamlines is
given in Fig. 11. The pressure field is very similar to that in Syrakos
et al. [60], thus validating that the present results are qualitatively
correct. It should be noted that our contours are generally sharper,
which is a characteristic of the presence of discontinuity in the con-
stitutive model. The penalty parameter affects the pressure contours
and the streamlines slightly, but without a noticeable difference.

Of more importance are the yield surfaces that are formed. First of
all, it is interesting to examine the predictions of our algorithm in
comparison to those by Syrakos et al. [58], where the PR method was
employed using various values for the dimensionless exponent. Before
doing so, it should be mentioned that the discontinuous yield stress
model has been found to have some intrinsic numerical “noise” near the
yield surface in this flow, Treskatis et al. [62]. Therefore, the contour
plots, i.e. the yielded/unyielded regions, are determined by boundaries
defined via = ±τ Bn(1 ɛ) , where a very small parameter ≃ −ɛ 10 3 is

used to include several contours that produce the yield surfaces shown.
However, this is not observed with the PR approximate model. In ad-
dition, following ref. [62], a uniform grid of 128 finite elements in each
direction has been used, although these authors also used adaptive
refinement of the mesh. In Fig (12), the set of dimensionless parameters
is =Bn Re n( , , ) (10, 0, 1) and the penalty parameter is =r 10p

4.
At first glance, the plots of Fig. 12 are qualitatively similar. Gen-

erally, there are two major unyielded regions. One in the bottom half of
the domain, away from the moving lid, and one resembling an island in
the middle of the upper half of the cavity. The upper surface of the
former has a parabolic shape. Particularly, near the side walls of the
cavity and the unyielded island, the values of the PR exponent affect the
solution. It can be seen from Syrakos et al. [58] that the unyielded
surface near the cavity side-walls has a maximum slightly away from
the walls. The black dashed line in the same figure (right in Fig. 12),
which is the numerically extrapolated solution for very large PR ex-
ponents, does indeed predict a perfect parabolic shape. In fact, this is
the shape obtained directly with the PAL method. Not only this, but also

Fig. 11. Pressure contours and streamlines predicted by the PAL method for two different values of the penalty parameter, with dimensionless parameters =Bn Re n( , , ) (20, 0, 1).

Fig. 12. Yielded (white) and Unyielded (black) regions for =Bn Re n( , , ) (10, 0, 1)using the PAL method with =r 10p 4 and compared to the predictions of Syrakos et al. [58] using the PR

method with =N (100, 200, 400) for the blue–dash , red–dash and black-solid lines respectively. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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the point of intersection of the parabolic yield surface with the side
walls is identical to the corresponding point obtained with the extra-
polated solution of [58]. Furthermore, for the given exponents of the PR
solution of [58], the “island” – like unyielded region is overly smooth,
in contrast to the sharper edges of the extrapolated solution. Once
again, the solution using the PAL method predicts a sharper yield sur-
face, similarly to the extrapolated solution. Thus, the PAL method is
shown to be a very accurate method for obtaining those unique char-
acteristics of viscoplastic fluids.

Next, it is useful to examine the effect of the penalty parameter to
the predicted yield surfaces in Fig. (13). The results are given for

=Bn Re n( , , ) (20, 0, 1) in order to be the same with those in Treskatis
et al. [62]. As mentioned earlier, the largest deviations are located near
the edges of the unyielded regions, although the penalty parameter is
increased considerably. One noticeable difference arises from the
parabolic profile of the lower unyielded region near the wall. It can be
seen that, for the lower penalty parameter, the yield surface does not
approach and eventually intersect the wall monotonically. A sharp

maximum arises, which approaches further the wall for the larger
penalty parameter. It is anticipated that this trend will continue until
the maximum in the yield surface coincides with the intersection with
the wall, which is the case when the AL method is used, like in Glo-
winski and Wachs [30]. Those sharp “tips” are located at a distance of
0.013 (when =r 10p

3) and 0.0031 (when =r 10p
4) from the wall.

Hence, this artificial “boundary layer” has thickness about 300 times
smaller than the domain's length and, thus, this deviation from the
predictions of the original AL method is negligible. In addition, the
“island” is smoother for the smaller penalty parameter, as expected
from the correspondence mentioned earlier between the penalty para-
meter and the PR exponent. The profiles are very similar to those of
[62], for =Bn 20.

Comparing the computational cost between our new method and
that by Treskatis et al. [62], we observe the following from Fig. 14. The
new PAL algorithm converges much faster, especially for larger
Bingham numbers, needing for Bn=20 just 20 iterations, whereas the
FISTA scheme requires about 200 iterations. Moreover, the number of
iterations with PAL remains fairly constant, whereas it increases ex-
ponentially with FISTA, as the Bingham number increases.

An issue that may raise concerns about the PAL solution method is
its performance with iterative solvers which in many cases are prefer-
able, such as in 3D simulations. To this end, the problem is revisited by
using an iterative method of solving the linear system. A GMRES solver
is employed with an incomplete factorization preconditioner. The ILU
(τif,γif) / GMRES algorithm is preferred, because it is applicable in
saddle-point problems (e.g. incompressible flows). The index if stands
for incomplete factorization. The ILU(τif,γif)/GMRES algorithm is pre-
ferred due to its speed, if properly selected parameters are used. Out of
the two parameters associated with it, the first one is the τif drop-off
parameter. All entries(i, j) and (j, i) are dropped, if they are τif times
smaller than the diagonal entry (i, i), for i> j. The second one is the γif
parameter, which is the upper threshold for the zero entries in each row
and column. More details are given in the solver manual [31] and in
Gupta [32], Saad [50] and Saad and Schultz [51].

In general, the γif parameter should take large values in order that
the ILU(τif,γif) is efficiently applied in the system of equations formed by
(18) and (19). Its typical values range from 3 to 5. In all cases examined
in the linear-log Fig. 15, =γ 4.5if . It can be seen that the reduction of the
τif parameter increases almost linearly the average time for the as-
sembly of the precoditioner matrix. However, the total time eventually

Fig. 13. Yielded and unyielded regions for =Bn Re n( , , ) (20, 0, 1).

Fig. 14. Iterations for convergence of the lid-driven cavity problem in various cases. The
orange and purple bars were obtained by Treskatis et al. [62]. The red and blue bars are
the iterations using the PAL method. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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increases, since more iterations are needed for the solution of the linear
problem. It can be seen that there is an optimal value of the parameter,
approximately ≃ −τ 10if

5 in this case, for which the total completion
time for a GMRES step is minimized. Larger simulations, such as 3D
cases can exploit this finding, since the τif can be tuned for speedup.
Another characteristic is that by comparing the results for required
times in Fig. 15a it is seen that the generation of the preconditioner is
approximately ∼ 40% of the total solution time. It should be noted that
the time of a global GMRES step is related to the fact that the required
number of iterations was practically the same regardless the NR itera-
tion and the Bingham number, especially for lower values of τif.

Similar tests were undertaken for examining the effect of the γif
parameter. From the results depicted in Fig. 16, it is clear that γif
practically has no impact to the iterations needed for convergence of
the linear problem, the corresponding total time and the time required
for the generation of the preconditioner. Finally, it should be mentioned
that WATSON has a built-in utility that adjusts dynamically both these
parameters depending on a preliminary analysis of the input matrix.
This was not used in this work, but in general it is suggested that when
implementing the PAL scheme with this method for the solution of the

linear problem, it is a good idea to do preliminary runs and decide what
is optimal speed-wise.

6. Square duct

As mentioned before, Saramito [52] proposed a solution method for
Viscoplastic flows using a preconditioner to eliminate the discontinuity
of the Jacobian matrix. The method was showcased by solving the
square duct problem, which is briefly presented in this section. As
mentioned before, a uniform uni-directional pressure gradient is ap-
plied, driving the flow in a square duct. Therefore, the velocity vector is

=v v x y(0, 0, ( , ))͠ ͠ ͠ ͠z . The results are validated by comparison to both
those of Saramito [52] and Taylor and Wilson [61]. A basic difference
between the present work and Saramito's [52] is that here the geo-
metric symmetries are not exploited, therefore the problem is solved in
the entire square domain. The governing equations remain the same as
in the previous problems. As for the boundary conditions, no-slip is
imposed on all sides of the square.

The results for a Herschel-Bulkely fluid are shown in Fig. 17 and are
plotted for the upper-right “quadrant” for greater resolution. Of course,

Fig. 15. Average time(left) and iterations(right) for each GMRES step for various values of τif. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 16. Average time and iterations for each GMRES step for various values of γif.
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the solution is identical in all four corners of the square. The present
results resemble those of Taylor and Wilson [61] with regard to the
shape of the yield surfaces, their locations, and the critical Bingham
number, for which the dead regions in the corners merge with the core
unyielded region. In fact, the latter is found to be Bn≃ 0.27 and the
maximum velocity is = −v 1.69·10z max,

8 in this case. This critical

Bingham value has been shown not to be affected by shear – thinning
[52]. The computational grid used consists of 100 equispaced elements
in each direction.

Once again, the importance of the penalty parameter is highlighted
in Fig. 17, since it considerably affects the shape of the yield surfaces
near the corner. For the lowest value of the penalty parameter, the
shape of the yield surface is convex with respect to the corner, which is
not the correct shape of the yield surface according to the findings of
Saramito [52]. He predicted unyielded regions in the same locations
(for a different value of Bingham number due to a different selection of
characteristic length scales; see below), but the boundary of his un-
yielded region in the corner is concave with respect to the corner. This
is found with our code by increasing the penalty parameter. For =r 10p

5

the curvature of the line changes to concave and for the highest value
used, which is =r 10p

6, the boundary aligns with the inner yield line,
forming a circular section as expected.

Comparing our results for the yield surfaces predicted by the inexact
Newton's method of Saramito, it can be seen in Fig. 18 that the results in
both cases are in excellent agreement. Saramito uses =Bn 1 which is 4
times larger than the Bingham number used in our formulation. If the
square has a side length L͠ , we use this value as characteristic length,
whereas Saramito defines his Bingham number using the hydraulic
length, i.e. L0.25 ͠ as a characteristic length. Therefore, a rescaling
should take place since the yield stress and the pressure drop are
identical, in order to have comparable results.

As far as the performance of the algorithm is concerned, the residual
norm decreases with the elapsed iterations according to Fig. 19. Again
we have found that the PAL method is fast and converges in about 7 to 9

Fig. 18. Yield surfaces as predicted by Saramito (left) and the current method (right) for =Bn Re n( , , ) (0.25, 0, 0.5). The corresponding Bingham number for Saramito is =Bn 1 (see text).

Fig. 19. Decrease of residual norm with iterations for PAL method using various values of
the penalty parameter for the parameters of Fig. 17.

Fig. 17. Second invariant of stresses (color band) and the corresponding yield surfaces (black lines) for =Bn Re n( , , ) (0.2, 0, 0.5)and varying penalty parameter values. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 20. Time evolution of the filament shape and yielded/unyielded regions. The panels in the upper row show the predictions of the slender body approximation by Balmforth et al [3].
The panels in the middle row show the predictions of the PAL method with =r 10p 4. The panels in the lower row show the predictions of the Papanastasiou approximation with =N 103.

The dimensionless numbers used are =U Bn Bo Re( , , , ) (5, 5, 1, 0)o and =L 2o .
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iterations for the set of =Bn Re n( , , ) (0.2, 0, 0.5). However, as it was
also observed in [52], the convergence for a Bingham plastic (n=1) is
slower. In fact in the present case, the solution for

=Bn Re n r( , , , ) (0.2, 0, 1, 10 )p
5 needs roughly 3 times the number of

iterations needed for the shear – thinning fluid. Saramito [52] shows
the required iterations for converge for the inexact Newton's method,
for a typical value of =Bn 0.5 (according to his non-dimensionaliza-
tion) and various computational grids. For the grid consisting of 80
elements in each direction, it was seen that the required iterations were
roughly 17 when =n 0.3 and about 28 when =n 1. Therefore, the PAL
algorithm converges at a rate comparable (when n=1) or even higher
than (when n<1) the method of [52]. However, a really direct com-
parison cannot be made either for the exact number of iterations or for
the required time, partially, because Saramito [52] also performs re-
finement to increase the accuracy near the yield surfaces and solves the
problem taking into account all its symmetries.

7. Filament stretching

This is the only transient problem in the present work with a moving
liquid/air boundary. The non-dimensionalization follows the work of
Balmforth et al. [3,4] who studied this problem previously, using the
slender filament approximation and neglecting variations in the radial

direction. Therefore, the present analysis is the first computational
work to our knowledge, where viscoplastic filament stretching is stu-
died fully in two dimensions. Here a viscoplastic fluid is confined be-
tween two coaxial disks and it is “pinned” in their edges. The origin of
the coordinate system is at the center of the lower disk. Stretching
begins at =t 0 by pulling the upper disk. As time passes, the filament
forms a “neck” the width of which constantly decreases until the fila-
ment breaks. This constant stretching causes the stresses in the material
to dynamically vary continuously changing the yield surfaces. A similar
problem for a Newtonian or viscoelastic filament including deformable
bubbles has been studied by Foteinopoulou et al. [22,23] and Pa-
paioannou et al. [41]. The boundary conditions are the usual no-slip
and no-penetration conditions on the disks, symmetry is exploited as
seen in Fig. (1) and the force balances along the material/air interface.
The formulation is completed by specifying the initial conditions. To
this end, the material is stationary and the shape of the free surface is
cylindrical.

In this problem, the mesh construction is very crucial for the suc-
cessful convergence of the algorithm. This necessity mainly arises near
conditions of filament pinch-off, where a neck has been clearly formed.
In the necking region, the deformation of the mesh is very high.
Therefore, care should be taken in order to keep a reasonably good
distribution and shape of the elements in the highly deformed region, so
that there is not much computational error involved and remeshing
steps are avoided. For the current computations, the mesh consists of
230 elements in the z-direction and 30 elements in the r-direction,
properly distributed initially. For the PAL method, the parameters used
are =r r( , ) (1, 10 )p

4 . Our results for the full axisymmetric model are
compared to those of the lubrication model [3]. More specifically, for a
given set of parameters, it is interesting to explore the evolution of the
shape of the filament and the solid and liquid regions. This is done in
Fig. 20 for the set of =U Bn Bo Re( , , , ) (5, 5, 1, 0)o , which is identical
to the one used in [3].

The transient nature of the problem adds a significant computa-
tional burden, since a consistent numerical scheme should be used for
the time integration. To this end, a predictor–corrector algorithm is
constructed in order to ensure the stability of the entire scheme.
Depending on the discrepancy between the prediction and the following
correction, the time-step is adjusted accordingly, since near “pinch-off”
different time scales vary differently and a very small time-step is
needed for convergence. The integration begins with an extremely
small time-step = −tΔ 10min

9, which increases up to = −tΔ 10max
4,

whereas further increasing it results in convergence difficulties of the
NR scheme. When the necking region becomes very thin, the time-step
is automatically decreased to ≈ −tΔ 10max

6. In general, the required
small time-steps result in approximately ∼15,000 time-steps per run.
Of course, this depends on the time-scales and the pinch-off time.
Typically, the implicit time-integration step, which requires a Newton-
Raphson cycle converges in 5 iterations for the PAL method, when the
max time-step is achieved, with several time-steps requiring up to 8-10
iterations. Therefore, the real time for the complete solution was typi-
cally 2 days. As for the Papanastasiou method, the solution of the same
problem was attempted both using =N 103 and =N 104, which are
relatively large values of the exponent. The solution was possible only
when =N 103, with approximately the same number of time steps re-
quired and 5 iterations per Newton–Raphson cycle, while when =N 104

was used, the scheme diverged after t≃ 0.27. The dependence of the
residual norm on elapsed iterations is shown in Fig. 21 for a specific
time-step.

Comparing our results to those of Balmforth et al. [3], it can be seen
that the PAL method produces qualitatively similar results both for the
instantaneous shape of the filament and the yielded/unyielded regions.
For early times, there is an initial global yielding of the filament, except
for two regions near the axis of symmetry and where the filament is
“pinned” to the disks. This is not observed in [3]. Generally, an an-
ticipated difference between the predictions of the present work and

Fig. 21. Reduction of the residual norm as a function of NR iterations for =t 1 of Fig. 20.

Fig. 22. Evolution of the mid-filament and minimum radius with time and comparison to
the minimum radius computed by Balmforth et al. [3].
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those of the slender approximation is the variation of the yield surface
(or any other variable) along the radial direction. Those variations
cannot be predicted in the 1-dimensional approach, however, they seem
to be relatively small and the phenomenon is described similarly be-
tween the two approaches. For larger times, the yielded region shrinks
around the neck. This does not happen symmetrically, because gravity
pulls the material towards the bottom of the filament. Regarding the
gravitational effects, another difference between our results and those
of [3] is that, in the latter, gravity seems to cause larger sagging in the
filament. Finally near pinch-off, the shape of the filament obtains this
sharp conical arrangement near the neck, which is characteristic of
viscoplastic fluids as shown for Carbopol and kaolin suspensions in [3].
The results for the Papanastasiou approximation are very close to those
by the PAL method.

Another important quantity in this problem is the change of the
minimum radius at the neck of the filament, which occurs at different
axial locations and is compared to the radius at its middle, Fig. 22.
Although not very clear, the effect of gravity can be appreciated by the
fact that the mid-filament radius is different from the minimum radius,
though not as visibly as in the case of the 1-D approximation. The time
required for the minimum filament to reach a very small value namely
about ∼ −r 10min

3 is predicted as t≃ 1.2 using the present method and
t≃ 1.15 in the slender body approximation case. These values are quite
close.

The distribution of the stress components at =t 0.5 is given in
Fig. 23. As expected, the magnitudes of the normal stresses are much
larger than the shear stresses. The shear stresses have a larger magni-
tude near the free surface and are antisymmetric with respect to the
neck region, while they are nearly zero at the neck. The primary normal
τzz stress is dominant, justifying, to some extent, the slender filament
approximation. It has its maximum value at the necking region where
the stretching is mainly felt and decreases towards the stagnation
points. Furthermore, the importance of the other normal stresses is also
clear and they follow the same pattern as τzz, i.e., they attain their
maximum absolute value around the necking region and tend to de-
crease near the disks.

8. Conclusions

Flows of Viscoplastic fluids are tremendously important in many
applications and, thus, accelerated algorithms that provide accurate
solutions in a reasonable time frame are required. In the present work,
the algorithm presented by Dimakopoulos et al. [15] is modified, by
penalizing the equation, which updates the Lagrangian multipliers and
the validity of the results obtained is tested in five problems. The de-
pendence of the results on the penalty parameter is a central subject of

discussion throughout this work. We call this method the Penalized AL
(PAL) method and we show that it can predict with high accuracy the
yield surfaces that are produced. More specifically, its higher accuracy
and overall faster convergence are more profound when the problem is
solved for higher Bingham numbers, where larger unyielded regions
arise, with respect to the PR method. The PAL scheme needs only a few
iterations for the Newton-Raphson scheme to converge and the number
of required iterations does not significantly change when the penalty
parameter is increased. Regarding the NR algorithm employed, the
initial guess that is used in each iteration has a large impact on the final
convergence. Therefore, we have utilized the techniques of zero or first
order continuation in order to obtain a “good” initial approximation of
the solution when the Bingham number varied with a fixed step. Then,
the PAL method has been found to be more robust, because larger
continuation steps could be used than with the PR method, leading to
an overall speedup of the simulation. The PAL method comes with
several limitations in its current form. Although it can achieve more
accurate solutions compared to PR without suffering from non-con-
vergence problems, the solution achieved is inherently less accurate
than the one with the AL method as implemented in ALG2. Of course,
one could perform continuation in the penalty parameter, bringing its
predictions closer to those of AL.

In the future, we would like to apply this methodology in 3-
Dimensional problems and observe how PAL compares to the AL and PR
methods. The scalability of the method and its performance with
iterative linear solvers is of a great importance. Finally, this method can
be improved by finding a consistent way to update the PAL parameters,
i.e. (r, rp) in each NR iteration so that they can attain values as close as
possible to the optimal ones.
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