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A B S T R A C T

The plane Poiseuille flow of a Bingham plastic with pressure-dependent material parameters is analysed. Both
the plastic viscosity and the yield stress are assumed to vary linearly with pressure and analytical solutions are
derived for the two-dimensional pressure and the one-dimensional velocity. The effects of the plastic-viscosity
and yield-stress growth parameters on the thickness of the unyielded plug and the conditions for the occurrence
of flow are discussed.

1. Introduction

The effects of the pressure dependence of the rheological para-
meters of viscoplastic materials are of interest in the present work.
Barus [1] proposed an exponential isothermal equation of state for the
Newtonian viscosity of the form

= −η p η α p p* ( *) * exp[ * ( * *)]0 0 (1)

where p* is the pressure, η*0 is the viscosity at the reference pressure p*0 ,
and α* is the viscosity growth coefficient. Throughout this note, sym-
bols with stars denote dimensional quantities. Other equations de-
scribing the pressure-dependence of the viscosity have also been pro-
posed [2]. The following linear approximation of the Barus Eq. (1) at
low pressures and/or for low values of the viscosity growth coefficient

= + −η p η α p p* ( *) * [1 * ( * *)]0 0 (2)

has also been used by various investigators (see [3] and references
therein). A major difficulty with this equation is that it does not guar-
antee positive definiteness of the viscosity which requires the pressure
to remain positive [4].

The pressure-dependence of the yield stress of viscoplastic materials
(i.e., materials with yield stress τ*y ) is well established in the mechanics
of solid and granular materials [5]. Using a controlled stress rheometer
combined with a double helical ribbon geometry, Hermoso et al. [6]
investigated the combined effects of pressure and temperature on the
rheological behaviour of two oil-based drilling fluids and found that
this is described fairly well with the Bingham-plastic or the Her-
schel–Bulkley models. In the range of their experimental conditions, the
yield stress decreased linearly with temperature and increased linearly

with pressure. In order to model the isothermal yield stress behaviour of
the two drilling fluids, Hermoso et al. [6] employed the following linear
equation

= + −τ p τ β p p* ( *) * [1 * ( * *)]y 0 0 (3)

where τ*0 denotes the yield stress at a reference pressure p*0 and β* is the
yield-stress growth coefficient. Hermoso et al. [6] provided tables with
values of α* and β* at different temperatures. As an example, for the
B34 fluid, which was found to follow the Bingham plastic constitutive
equation, the approximate values of these two parameters at 40 °C are

= × − −α* 2.92 10 bar3 1 and = × − −β* 9.75 10 bar3 1 [6]. In the present
work, the yield stress is allowed to decrease with pressure, i.e. β* may
be negative.

Fusi et al. [7] derived solutions of plane Poiseuille and Couette
flows of a Bingham plastic and determined conditions for existence or
non- existence of a rigid plug under the assumption that in the yielded
region of the flow the velocity is one-dimensional while the pressure is
two-dimensional. They derived explicit solutions for the case where the
yield stress satisfies the linear Eq. (3) and the plastic viscosity μ* also
varies linearly and vanishes at zero relative pressure, i.e.

= −μ p α p p* ( *) * ( * *)0 (4)

where the constant α* has time units. With this assumption, the deri-
vation of an analytical solution becomes easier but the flows of a
Bingham plastic with constant rheological parameters or with constant
plastic viscosity are not special cases of the flow considered. This
shortcoming is avoided in the present work, where the following linear
expression is used instead

= + −μ p μ α p p* ( *) * [1 * ( * *)]0 0 (5)
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where μ *0 is the plastic viscosity at a reference pressure p*0 and α*≥ 0
is the corresponding growth coefficient.

2. Plane Poiseuille flow

We consider incompressible Bingham plastics with rheological
parameters varying linearly with the pressure, i.e. following Eqs. (5)
and (3), respectively. The tensorial form of the constitutive equation
can then be written as follows [8]:

⎧

⎨
⎩

= ≤

= ⎡
⎣

+ + − ⎤
⎦

>+ −

τ τ p

τ μ α p p τ τ p

D 0

D

* , * * ( *)

* 2 * [1 * ( * *)] *, * * ( *)

y

τ β p p
γ y

* [1 * ( * *)]
˙ * 0 0

0 0

(6)

where τ* is the viscous stress tensor, ≡ ∇ + ∇D v v* [ * * ( * *) ]/2T is the
rate of deformation tensor, v* is the velocity vector, and ≡γ D˙ * tr * /22

and ≡τ τ* tr * /22 are the magnitudes of D* and τ*, respectively. The
case of one material parameter being constant is recovered by zeroing
the corresponding growth parameter. When = =α β* * 0, Eq. (6) is re-
duced to the classical Bingham plastic constitutive equation with con-
stant material parameters. Setting =τ* 00 , Eq. (6) degenerates to the
Newtonian constitutive equation with pressure-dependent viscosity.

Consider now the Poiseuille flow of a material obeying Eq. (6) in a
horizontal channel of constant semi-width H* and length L*, as illu-
strated in Fig. 1. The x- and y-axes are taken in the main-flow and
transverse directions, respectively and we work only in the upper part
of the domain, due to symmetry. With the assumption that the flow is
unidirectional with =u u y* * ( *)x x and =u* 0y , the unyielded region, i.e.
the region where the first branch of the constitutive Eq. (6) applies and
the material moves as a plug, is defined by the yield surface =y σ* *,
where 0< σ*<H* (see Fig. 1).

In the yielded region where the second branch of the constitutive
equation applies, i.e. for (x*, y*)∈ [0, L*]× [σ*, H*], the pressure is
two-dimensional: =p p x y* * ( *, *). It turns out that the only non-zero
component of the stress tensor is the shear stress:

= − + − + + −τ τ β p p μ α p p
du
dy

* * [1 * ( * *)] * [1 * ( * *)]
*
*yx
x

0 0 0 0 (7)

In the unyielded region, i.e. for (x*, y*)∈ [0, L*]× [0, σ*], the
velocity is constant, i.e. =u y u* ( *) *x c where u *c is the velocity of the plug
core, and the pressure is one-dimensional: =p x y p x σ* ( *, *) * ( *, *).
Without loss of generality, we assume that

= = ∈p y p p L y p y σ* (0, *) *, * ( *, *) *, * [0, *]i 0 (8)

For steady-state flow in the absence of body forces, the integral
balance of linear momentum in the unyielded region gives [9]:

∫ + − ==τ dx σ p p* * * ( * *) 0
L

yx y σ i0

*

* * 0 (9)

Given that at the yield surface ( =y σ* *) the velocity derivative
vanishes, from Eqs. (7) and (9) we find that

∫= ⎡
⎣

+ − ⎤
⎦

σ
β
L

p p dx
τ L

p
* 1

*
*

( * *) *
* *

Δ *
L

0

*

0
0

(10)

where ≡ −p p pΔ * * *i 0 . (Recall that the pressure is one-dimensional in
the unyielded region.) The above expression is valid provided that
σ*<H* for otherwise there is no flow due to the no-slip condition at
the wall. Since the plastic-viscosity growth parameter α* affects the
pressure p*, σ* depends on both α* and β*. When =β* 0, however, the
yield point is independent of α*.

2.1. Non-dimensionalisation

The problem is dedimensionalised by scaling x* by L*, y*, h*, and σ*
by H*, −p p( * *)o by Δp*, u*x by p H μ LΔ * * /( * *)2

0 , and the stress compo-
nents by Δp*H*/L*. The dimensionless form of Eq. (10) becomes

∫⎜ ⎟= ⎛
⎝

+ ⎞
⎠

σ β pdx Bn1
0

1

(11)

where 0< σ<1, ≡Bn τ L p H* */(Δ * *)0 is the Bingham number and
β≡ β*Δp* is the dimensionless yield-stress growth coefficient.

*x

*y

*H

*σ

* *x L=0

* *( )xu x
yielded

unyielded

Fig. 1. Geometry of the flow and sketch of the velocity profile.

Fig. 2. Dimensionless pressure (a) and pressure-gradient (b) distributions in the un-
yielded core (where the pressure is one-dimensional) for various values of the plastic-
viscosity growth parameter α. These results are independent of the Bingham number and
the yield-stress growth number, which however affect the semi-width of the plug.
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It is clear that when σ=1, there is no flow, since the unyielded core
touches the wall at which no-slip applies. The critical Bingham number
at which there is no flow,

∫
=

+
Bn

β pdx
1

1
c

0
1

(12)

is obviously inversely proportional to the lowest dimensional pressure
difference above which yielding occurs ( =p τ L H BnΔ * * */( * )c c0 ).

In the yielded region, i.e. for (x, y)∈ [0, 1]× [σ, 1], the

dimensionless shear stress is given by

= − + + +τ Bn βp αp du
dy

(1 ) (1 )yx
x

(13)

where α≡ α*Δp* is the plastic-viscosity growth coefficient. The con-
tinuity equation is automatically satisfied and the two components of
the momentum equation read:

−
∂
∂

+
∂
∂

=
p
x

τ
y

0yx

(14)

and

−
∂
∂

+
∂
∂

=
p
y

τ
x

ɛ 0yx2
(15)

where ɛ≡H*/L* is the channel aspect ratio.
Substituting Eq. (13) into Eqs. (14) and (15) we get

⎜ ⎟

∂
∂

= ⎛
⎝

− ⎞
⎠

∂
∂

+ +
p
x

α du
dy

Bnβ
p
y

αp d u
dy

(1 )x x
2

2 (16)

and

⎜ ⎟

∂
∂

= ⎛
⎝

− ⎞
⎠

∂
∂

p
y

α du
dy

Bnβ
p
x

ɛ x2

(17)

Substituting Eq. (17) into Eq. (16) and separating variables we ob-
tain:

∂ ∂
+

=
− −

= −
p x

αp
d u dy

αdu dy Bnβ
/

1
/

1 ɛ ( / )
Λx

x

2 2

2 2 (18)

where Λ is a constant to be determined. Solving the resulting ordinary
differential equation for vx and applying the boundary conditions

= =du dy σ u/ ( ) (1) 0x x , one gets:

Fig. 3. Variation of the yield point with the yield-stress growth number β for α=0 (solid
lines, constant plastic viscosity) and α=10 (dashed lines) and various values of the
Bingham number.

Fig. 4. Effect of the plastic-viscosity and yield
stress growth parameters α and β on the pres-
sure for Bn=0.5 and ε=1: (a) α=0,
β=− 0.5; (b) α=1, β=− 0.5; (c) α=10,
β=− 0.5; (d) α=0, β=0; (e) α=1, β=0;
(f) α=10, β=0; (g) α=0, β=0.5; (h)
α=1, β=0.5; (i) α=10, β=0.5. As α is
increased, the thickness of the unyielded plug
increases if β<0 (first row), remains constant
if β=0 (middle row), and increases if β>0
(third row). The high value of ε was chosen in
order to exaggerate the differences.
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=
− +
− +

− − ≤ ≤

−

−u y
α

a σ Bnβ
a y σ Bnβ

Bnβ
α

y σ y

( ) 1
ɛ Λ

log
cosh[ɛ Λ(1 ) tanh (ɛ )]
cosh[ɛ Λ( ) tanh (ɛ )]

(1 ), 1

x 2 2

1

1

(19)

where α>0. (The case =α 0 will be considered below.) Integrating
now the ordinary differential equation for the pressure in Eq. (18)
yields

= − ≤ ≤−p x y
α

w y e σ y( , ) 1 [ ( ) 1], 1α xΛ
(20)

where w(y) is an unknown function. Substituting p and ux into Eq. (17),
we get a first order differential equation for w,

′ + − + =−w y α α y σ Bnβ w y( ) ɛ Λ tanh[ɛ Λ( ) tanh (ɛ )] ( ) 01 (21)

the solution of which is

= − + −w y C α y σ Bnβ( ) cosh[ɛ Λ( ) tanh (ɛ )]1 (22)

where C is an integration constant. Applying the conditions =p σ(0, ) 1
and =p σ(1, ) 0 we find

= + = +
−C α

Bnβ
α

α
1

cosh[tanh (ɛ )]
and Λ ln(1 )

1

Therefore, we have:
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⎧

⎨
⎩

⎡
⎣

+ − ⎤
⎦

≤ ≤

+ − ≤ <

− + − +

−

−

−
p x y
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(1 ) 1 , 1

[(1 ) 1], 0

α
x α y σ Bnβ

Bnβ

α
x

1 1 cosh[ɛ ln(1 )( ) tanh (ɛ )]
cosh[tanh (ɛ )]

1 1

1

1

(23)

As for the velocity, we find

Fig. 5. Effect of the plastic-viscosity and yield
stress growth parameters α and β on the pres-
sure for Bn=0.8 and ε=1: (a) α=0,
β=− 0.5; (b) α=1, β=− 0.5; (c) α=10,
β=− 0.5; (d) α=0, β=0; (e) α=1, β=0;
(f) α=10, β=0; (g) α=0, β=0.5 (Bn= Bnc
in this case); (h) α=1, β=0.5; (i) α=10,
β=0.5. The high value of ε was chosen in
order to exaggerate the differences.

Fig. 6. Effect of the plastic-viscosity and yield
stress growth parameters α and β on the pres-
sure for β=− 0.5, Bn=0.5 and ε=0.2: (a)
α=0; (b) α=1; (c) α=10. The counterparts
of these results for ε=1 are those in the first
row of Fig. 3.
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By means of Eq. (11), the yield point is given by

= ⎧
⎨⎩

+ ⎡
⎣⎢ +

− ⎤
⎦⎥

⎫
⎬⎭

σ
α α

β Bn1 1
ln( 1)

1

(25)

Flow occurs provided that σ<1, i.e. when the Bingham number is
lower than the critical value

=
+ ⎡

⎣
− ⎤

⎦+

Bn
β

1

1
c

α α
1

ln( 1)
1

(26)

If now Bn is specified, then the maximum value of β at which there
is flow is

≡ −
−+

β Bn1/ 1
c

α α
1

ln( 1)
1

(27)

Recall that the Bingham number is inversely proportional to the
lowest dimensional pressure difference above which yielding occurs.
Note that β may be negative in which case the yield stress is decreasing
downstream and thus Bncmay be greater than unity. If =β 0, then

=Bn 1c and =σ Bn, i.e. σ is independent of the plastic-viscosity growth
parameter α (this is due to the fact that the pressure is scaled by the
inlet pressure Δp*). The above solution is valid provided that σ≥ 0, i.e.

≥
− +

β 1

α α
1 1

ln( 1) (28)

so that the plug is not broken. As already mentioned, β may be negative
and, more specifically, ≥ −β 1, which ensures that condition (28) is
satisfied.

Fig. 7. Variation of the critical pressure difference ≡p p τ L HΔ Δ */( * */ *)c c 0 required for the

initiation of Bingham-plastic flow with the yield-stress growth parameter β for =α 0 and
1.

Fig. 8. Velocity distributions of Bingham plastic flow for Bn=0.5, ε=0 (solid) and
ε=0.5 (dashed), and various values of the yield-stress-growth parameter ranging from
β=− 1 (lower bound) to βc (no flow): (a) α=0 (constant viscosity); (b) α=1; (c)
α=10. The circles show the positions of the yield point.
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The above analytical solution yields the classical constant-para-
meter Bingham solution by setting = =α β 0. The special solutions for

=α 0 and =β 0 are summarized below.

2.2. Constant plastic viscosity (α=0)

In the case of constant plastic viscosity, Eq. (18) becomes

∂
∂

=
− −

= −
p
x

d u dy
αdu dy Bnβ

/
1 ɛ ( / )

Λx

x

2 2

2 2 (29)

It is easily shown that

=
⎧
⎨
⎩

− + − − ≤ ≤

− − ≤ <
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Bn β y σ y σ y

Bn β σ y σ
( )

(1 ɛ )(1 2 )(1 ), 1

(1 ɛ )(1 ) , 0
x

1
2

2 2 2

1
2

2 2 2 2
(30)

and

= ⎧
⎨⎩

− + − ≤ ≤
− ≤ <

p x y Bnβ y σ x σ y
x y σ

( , ) ɛ ( ) 1 , 1
1 , 0

2

(31)

where

= +σ β Bn(1 /2) (32)

The critical Bingham number above which there is no flow is:

=
+

Bn
β

1
1 /2c

(33)

where > −β 2. Setting β=0 gives the solution of a Bingham plastic
with constant rheological parameters and setting Bn=0 yields σ=0
and the Newtonian solution. For βc we find

= ⎛
⎝

− ⎞
⎠

β
Bn

2 1 1c (34)

2.3. Constant yield stress (β=0)

In the case of a Bingham plastic with constant yield stress (β=0),
the solution is simplified as follows:

=
+

⎧

⎨
⎩

+ −
+ −

≤ ≤

+ − ≤ <
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α α
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α y σ
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ln(cosh[ɛ ln(1 )(1 )]), 0
x 2

(35)

and

=
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⎨
⎪

⎩⎪
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−

−
p x y α

α α y σ σ y

α
α y σ

( , )

1 [(1 ) cosh{ɛ ln(1 )( )} 1], 1

1 [(1 ) 1], 0

x

x

1

1

(36)

where σ=Bn. Setting = =σ Bn 0 yields the solution of a Newtonian
fluid with a pressure-dependent velocity [3].

3. Pressure distributions and velocity profiles

As already mentioned, in the plug the pressure is one-dimensional,
i.e. =p p x( ). From Eq. (23) it is deduced that the pressure distribution
in the unyielded region is independent of the Bingham number and the
yield-stress growth number, which however affect the semi-width σ of
the unyielded core. The effect of the viscosity growth parameter is il-
lustrated in Fig. 2, where both the pressure p and its derivative |px| are
plotted for various values of α. As α is increased the required pressure
gradient grows higher at the inlet plane where the viscosity attains its
maximum value and reduces more rapidly upstream and more slowly
downstream.

The effect of the various parameters on the yield point is illustrated
in Fig. 3, where σ is plotted versus β for α=0 (solid lines) and α=10

(dashed lines) and various values of the Bingham number. We observe
that when β>0 the yield point moves towards the midplane as α is
increased and that this trend is reversed when β<0. It is also clear that
for a given value of the yield-stress growth number β, the yield point
increases as the Bingham number is increased up to the corresponding
critical Bingham number Bnc and that the range of admissible Bingham
numbers is wider when β is negative, i.e. when the yield stress decreases
with pressure. The critical Bingham number increases with α when
β>0 and decreases when β<0. On the other hand, for a given
Bingham number there is a critical value of β at which =σ 1 and there
is no flow.

In the yielded region, the pressure is two-dimensional. The effects of
the growth parameters α and β on the pressure contours as well as on
the semi-width of the plug are illustrated in Fig. 4 for Bn=0.5 and
ε=1. The latter value was intentionally taken to be high, in order to
make the changes in the solution more visible. It can be seen that,
depending on whether β<0 (first row), =β 0 (second row), or β>0
(third row), σ increases, remains constant, or decreases with α, re-
spectively. Irrespective of the values of α and Bn, σ increases with the
yield-stress growth parameter β. Figure 5 shows similar results for a
higher Bingham number, i.e. Bn=0.8. The main difference from the
results for Bn=0.5 in Fig. 4 is that σ is higher in all cases. In particular,
when α=0 and β=0.5 (Fig. 5g) there is no flow, i.e. σ=1; from
Eq. (33), = + =Bn β1/(1 /2) 0.8c . The effect of ε is illustrated in Fig. 5,
which shows the counterparts of Fig. 4a–c (first row) when ε is smaller
(ε=0.2 instead of ε=1). The bending of the pressure contours in the
yielded region is not so pronounced despite the fact that the value of ε is
still high.

Calculating the critical pressure difference required to start the flow
is of importance in engineering applications. Switching to new non-
dimensionalization scales one finds from Eq. (26) that

− + + − =p β α p
β
α

Δ [1 /ln(1 Δ )] 1 0c c (37)

where the bars denote the new dimensionless variables, the pressure is
now scaled by τ L H* */ *0 , ≡α α τ L H* * */ *0 and ≡β β τ L H* * */ *0 . When

=α 0 it is easily found that

=
−

p
β

Δ 1
1 /2c (38)

The effect of the new dimensionless viscosity and yield-stress
growth numbers, α and β , on the critical pressure difference is illu-
strated in Fig. 7. As expected, pΔ c increases with both parameters, with
the dependence on β being stronger. The effect of α is enhanced as β is
increased.

Finally, Fig. 8 shows representative velocity profiles of a Bingham
plastic with Bn=0.5, ε=0 (solid) and ε=0.5 (dashed), and various
values of β for three values of the plastic-viscosity parameter, i.e. α=0
(constant viscosity), 1, and 10, which actually correspond to the middle
row of Fig. 3. The velocity profiles for ε=0 have been obtained using
the first term of the Taylor-series expansion of ux(y) in Eq. (24) in terms
of ε:

= + ⎧
⎨⎩

+ − − ≤ ≤
− ≤ <

+u y α
α

y σ y σ y
σ y σ

O( ) ln(1 )
2

(1 )(1 ), 1
(1 ) , 0

(ɛ )x 2
2

(39)

Note that the velocity is reduced as α is increased. Since the
Bingham number is specified, there is an upper bound for the ad-
missible values of β which corresponds to the value at which =σ 1 (no
flow). From Eqs. (27) and (34) we find that =β 2,c 2.589 and 3.154 for
α=0, 1, and 10, respectively. The velocity profiles of Fig. 8 correspond
to different values of β in the range − β( 1, )c . As β is increased the ve-
locity is reduced and the yield point tends to and eventually reaches the
wall when =β βc.
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