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a b s t r a c t 

The flow development of a Herschel–Bulkley fluid in a horizontal channel is considered assuming that 

slip occurs only on the upper wall due to slip heterogeneities. Hence, the velocity profile is allowed to 

be asymmetric as was the case in recent experiments on softy glassy suspensions [13]. A power-law slip 

equation is employed, which generalizes the Navier-slip law. The one-dimensional fully-developed solu- 

tions are derived and the different flow regimes are identified. The two-dimensional development flow is 

solved numerically using finite elements along with the Papanastasiou regularization for the constitutive 

equation. Due to the asymmetry and the viscoplastic character of the flow, the classical definition of the 

development length is not applicable. The global and upper-wall development lengths are thus consid- 

ered and the combined effects of slip and the Bingham number are investigated. Numerical results are 

presented for two values of the power-law exponent, i.e. n = 1 (Bingham plastic) and n = 1/2 (Herchel–

Bulkley fluid). It is demonstrated that the global development length increases with the Bingham number 

and that flow development is slower near the no-slip wall. The global development length increases with 

slip exhibiting two plateaus and an intermediate rapid increase zone and doubles in the limit of infinite 

slip. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Many materials of industrial interest, such as polymeric solu-

tions, suspensions, and gels, are viscoplastic, i.e. they exhibit yield

stress. These materials behave as fluids when the exerted stress

exceeds the yield stress and as solids otherwise. A popular vis-

coplastic constitutive equation which also describes shear-thinning

or shear thickening is the Herschel–Bulkley model, which involves

three material parameters, i.e. the yield stress τ 0 , the consistency

index k , and the power-law exponent, n [1] . The tensorial form of

this model is as follows: ⎧ ⎨ 

⎩ 

˙ γ = 0 , τ ≤ τ0 

τ = 

(
τ0 

˙ γ
+ k ̇ γn −1 

)
˙ γ, τ > τ0 

(1)

where τ is the viscous stress tensor, ˙ γ ≡ ∇u + (∇u ) T is the rate

of strain tensor, u is the velocity vector, ∇u is the velocity gradi-

ent tensor, and the superscript T denotes its transpose. The mag-

nitudes of ˙ γ and τ , denoted respectively by ˙ γ and τ , are defined

by ˙ γ ≡
√ 

˙ γ : ˙ γ/ 2 and τ ≡
√ 

τ : τ/ 2 . The Herschel–Bulkley model is

reduced to the power-law model when the yield stress is zero and

to the Bingham-plastic model when n = 1. 
∗ Corresponding author. 
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In flows of ideal yield-stress fluids, the flow domain consists of

he so-called unyielded ( τ ≤τ0 ) and yielded regions ( τ > τ 0 ) where

he two branches of the constitutive equation apply. The former

egions include zones where the material moves undeformed as a

igid body and dead zones where it is stagnant. Determining the

nterfaces between yielded and unyielded regions is a key compu-

ational challenge with viscoplastic fluid flows, especially in two-

nd three-dimensional flows [2] . Two are the main approaches to

ackle this problem: (a) Augmented Lagrangian Methods (ALMs);

nd (b) Regularization methods. ALMs are based on the variational

ormulation of the Navier–Stokes equations and employ optimiza-

ion algorithms to determine the flow solution [2] . They are exact

n the sense that they respect the discontinuous form of the con-

titutive equation. However, ALMs are generally slower and more

ifficult to implement than regularization methods [2] . 

In regularization methods, the constitutive equation is modified

y introducing an additional parameter in order to combine the

wo branches of Eq. (1) into one smooth function, so that the re-

ulting regularized equation applies everywhere in the flow field in

oth yielded and (practically) unyielded regions. The most popular

egularization in the literature is that proposed by Papanastasiou

3] for a Bingham plastic and subsequently by Ellwood et al. [4] for

 Herschel–Bulkley fluid: 

= 

{
τ0 [ 1 − exp ( −m ̇

 γ) ] 

˙ γ
+ k ̇ γn −1 

}
˙ γ (2)

http://dx.doi.org/10.1016/j.jnnfm.2017.08.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jnnfm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2017.08.008&domain=pdf
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http://dx.doi.org/10.1016/j.jnnfm.2017.08.008


P. Panaseti, G.C. Georgiou / Journal of Non-Newtonian Fluid Mechanics 248 (2017) 8–22 9 

Fig. 1. Different flow regimes in the case of one-dimensional plane viscoplastic Poiseuille flow when slip occurs only along the upper wall. 

Fig. 2. Geometry and boundary conditions of the flow development of a Bingham plastic in a horizontal channel with slip along the upper wall. 
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here m is the stress growth exponent, which has dimensions

f time. For sufficiently large values of m the Papanastasiou

odel provides a satisfactory approximation of the Bingham-

lastic model. The regularized approach is easier to implement

han ALMs but eliminates the yield surfaces replacing unyielded

egions with regions of very high viscosity. The interface of

ielded/“unyielded” regions can approximately be tracked down a 

osteriori by using the von Mises criterion τ = τ0 [1,5] . The advan-

ages and disadvantages of ALMs and regularization methods are

iscussed in the recent articles of Balmforth et al. [2] and Saramito

nd Wachs [6] . 

Wall slip is important in many industrial applications, such as

he extrusion of complex fluids, ink jet processes, oil migration

n porous media, and in microfluidics. Viscoplastic materials are

nown to exhibit wall slip [7–9] . While wall slip with polymer

elts is observed at large rates of strains, with pasty materials it

ppears within a range of rather small strains [10] . Based on the

nalysis of apparent slip flows of Herschel–Bulkley fluids in vari-

us geometries, Kalyon [11] proposed a power-law slip equation,

elating the wall shear stress, τw 

, to the slip (or sliding) velocity,

 w 

, defined as the relative velocity of the fluid with respect to that

f the wall, 

w 

= βu 

s 
w 

(3) 

here s is the exponent, and β is the slip coefficient. The lat-

er coefficient incorporates the effects of temperature, the nor-

al stress, the molecular parameters, and the properties of the

uid/wall interface [10] . The no-slip and full-slip limiting cases

re recovered when β → ∞ and β = 0 , respectively. Experimen-

al values of the exponent s have been reviewed by Panaseti et al.

14] . The value s = 1 has been reported in different experimental

tudies for stresses above the yield stress (see [14] and references

herein). Setting s = 1 in Eq. (3) leads to the classical Navier-slip
ondition [12] 

w 

= βu w 

(4) 

n which case the slip coefficient is related to the slip length b , by

eans of β ≡μ/ b , where μ denotes the viscosity. 

The present work is motivated by the recent findings of

ayssade et al. [13] , who imaged the motion of well characterized

ofty glassy suspensions in microchannels whose walls impose dif-

erent slip velocities. Their experiments showed that as the chan-

el height decreases the flow ceases to be symmetric and slip het-

rogeneities effects become important. Interestingly, some of the

xperimental velocity profiles reported by Vayssade et al. are char-

cterized by overshoots similar to those encountered in entry flows

13] . We thus revisit here the classical flow development problem

f a Bingham plastic in a horizontal channel assuming, however,

hat power-law slip occurs along the upper wall only. The one-

imensional fully-developed flow with asymmetric slip along the

wo walls has been analyzed by Panaseti et al. [14] . The theoretical

esults compare well with the (fully-developed) experimental data

f Vayssade et al. [13] . 

For the sake of simplicity, the special case where there is no

lip along the lower wall is studied here. As illustrated in Fig. 1 ,

hree regimes are observed for the one-dimensional steady-state

oiseuille flow, as the pressure gradient G is increased. Below a

ertain critical value G 1 (Regime I) the lower wall shear stress

s below the yield stress and thus there is no flow. In Regime II

bove G 1 and below a second critical pressure gradient G 2 , the

uid yields only near the lower plate and the fluid adjacent to the

pper wall slides as an unyielded plug. Finally, above G 2 at which

he upper-wall shear stress also exceeds τ0 (Regime III), the fluid

ields near both the walls and the velocity profile is asymmetric

ith a plug core. In the special case when there is no slip along
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Fig. 3. Fully-developed velocity profiles for different values of the slip number in plane Poiseuille flow with no-slip along the lower wall and slip along the upper one: 

(a) Bn = 0 (Newtonian flow) and s = 1 (Navier slip); (b) Bn = 0 (Newtonian flow) and s = 1/2; (c) Bn = 1, n = 1 (Bingham flow) and s = 1 (Navier slip); (d) Bn = 1, n = 1/2 

(Herschel–Bulkley flow) and s = 1 (Navier slip). 
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the upper wall, the classical symmetric Poiseuille solution is re-

covered and Regime II is not relevant. 

The flow development problem is obviously two-dimensional:

the fluid enters a tube or a channel at a uniform velocity and de-

celerates near the wall(s) and accelerates in the central region. In

other words, the axial velocity tends from a flat profile at the in-

let to the fully-developed profile downstream. The development

length is usually defined as the length required for the maximum

velocity to attain 99% of its fully-developed value scaled either by

the pipe diameter or the channel width [15] . This definition im-

plies that the maximum velocity in the central acceleration region

develops more slowly than its counterparts at any other vertical

distance from the axis or plane of symmetry. This may not be the

case in all geometries and for all fluids, especially viscoplastic ones

which are characterized by a maximum flat velocity. It is also clear

that such a definition is not applicable in the case of asymmet-

ric Poiseuille flow which is of interest here. In a recent study of

the effect of wall slip on the development of planar and axisym-

metric Newtonian Poiseuille flows, Kountouriotis et al. [16] pointed
ut that in addition to the standard definition of the development

ength, L , as the length required for the maximum velocity to at-

ain 99% of its fully-developed value, the wall development length

 w 

is also relevant in the presence of slip. This is defined as the

ength required for the slip velocity to decrease to 1.01% of its

ully-developed value. The numerical simulations of Kountourio-

is et al. [16] showed that both L and L w 

increase with slip pass-

ng through a maximum and vanish at a critical value of the slip

arameter corresponding to the full slip case. They also revealed

hat, in contrast to the axisymmetric flow, the planar flow devel-

ps more slowly at the wall than at the midplane, i.e. L w 

> L . 

In a subsequent work, Philippou et al. [17] studied numerically

he development of Bingham plastic flow in tubes and channels

sing the Papanastasiou regularization and finite element simula-

ions. They considered alternative definitions of the development

ength noting that this is a function of the transversal coordinate.

heir results demonstrated that the classical development length,

 c , and the development length, L 95 , proposed by Ookawara et al.

18] for Bingham flow are not good choices for measuring vis-
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Fig. 4. Flow regimes and representative velocity profiles in plane Bingham-plastic flow with no-slip along the lower wall and Navier slip ( s = 1) along the upper one. The 

velocity profiles have been obtained for Bn = 1 and various slip numbers. 
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m  
oplastic flow development (with or without slip). L 95 is defined as

he axial distance required for the velocity to reach 99% of the cal-

ulated maximum value at a radial location corresponding to 95%

f the plug radius [18] . To avoid the inconsistencies resulting from

he use of L c and L 95 , Philippou et al. [17] employed the global

evelopment length which in the case of a channel of width H is

efined as follows 

 g ≡ max L (y ) 
0 ≤y ≤H 

(5) 

 ( y ) is the (smallest) length required for the two-dimensional

xial velocity u ( x, y ) to become equal to 0 . 99 ū (y ) or 1 . 01 ū (y )

hen ū (y ) > ū m 

or ū (y ) < ū m 

, respectively, where ū (y ) is the fully-

eveloped velocity profile and ū m 

is the mean velocity. 

The present work can be viewed as an extension of [17] to the

ase of viscoplastic flow in a channel with slip only along one

all (asymmetric flow). The governing equations are presented in

ection 2 , where the analytical solutions corresponding to fully-

eveloped flow for the case of a power-law slip equation are also

erived and the various flow regimes are identified. In Section 3 ,

he numerical method is briefly presented and the numerical re-

ults are discussed. Finally, the conclusions are summarized in

ection 4 . 

. Governing equations 

The governing equations are de-dimensionalized scaling lengths

y the gap height H of the channel, the velocity vector by the uni-

orm inlet velocity U , and the pressure and the stress tensor com-

onents by kU 

n / H 

n . By denoting the de-dimensionalized variables

ith stars, the continuity and momentum equations for steady, in-

ompressible flow with zero gravity can be written as follows: 

 

∗ · u 

∗ = 0 (6) 

nd 

e u 

∗ · ∇ 

∗u 

∗ = −∇ 

∗ p ∗ + ∇ 

∗ · τ∗ (7) 

here 

e ≡ ρU 

2 −n H 

n 

(8) 

k 
s the Reynolds number, ρ being the constant density of the mate-

ial. 

The Pananastasiou regularization [3] is employed here for the

erschel–Bulkley model. The dimensionless form of the regular-

zed constitutive equation may be written as follows: 

∗ = 

[ 

Bn 

1 − exp 

(
−M ̇

 γ∗)
˙ γ∗ + 

˙ γ∗n −1 

] 

˙ γ∗
(9) 

here 

n ≡ τ0 H 

n 

k U 

n 
(10) 

s the Bingham number and 

 ≡ mU 

H 

(11) 

s the dimensionless growth exponent, which has to be sufficiently

igh so that the flow of the ideal discontinuous Herschel–Bulkley

uid is approximated satisfactorily [3–5] . 

The geometry and the boundary conditions of the flow are illus-

rated in Fig. 2 . At the inlet plane, the velocity component in the

irection of the flow is uniform ( u ∗x = 1 ) and the transversal one

anishes. At the lower wall, there is no slip and no penetration and

hus both velocity components are zero. At the upper wall the ver-

ical velocity is again zero and slip is assumed to occur following

 power-law slip equation, 

τ∗
w 

= Bu 

∗s 
w 

(12) 

here 

 ≡ βH 

n 

k U 

n −s 
(13) 

s the (dimensionless) slip number. Note that B is the inverse of the

lip number defined by Panaseti et al. [14] . Finally, the exit plane is

aken sufficiently far downstream so that the flow can be assumed

ully developed. 

.1. Fully-developed solutions 

The de-dimensionalization introduced above is based on the

ean velocity, which implies that there is flow, i.e. Regime I of
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Fig. 5. Velocity contours in flow development of creeping ( Re = 0) planar Newto- 

nian Poiseuille flow with no-slip along the lower wall and Navier slip ( s = 1) along 

the upper one for various slip numbers. 
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Fig. 1 is not relevant. The no-slip case, which corresponds to a

symmetric velocity profile with respect to the mid-plane of the

channel, is recovered for B → ∞ . The two yield points, y ∗
1 

and y ∗
2 
,

are thus symmetric, i.e. y ∗2 = 1 − y ∗1 , and the flow is in Regime III

(there is no Regime II). Keeping the Bingham number constant and

decreasing the slip number, enhances slip at the upper wall and

the velocity becomes asymmetric: the two yield points move to-

wards the upper wall so that the width of the plug core ( y ∗2 − y ∗1 )
increases while its velocity is reduced. This trend continues up to a

critical slip number, B c , at which the upper yield point reaches the

wall (the dimensionless upper wall shear stress is equal to Bn ) sig-

naling the transition from Regime III to Regime II. Deriving the an-

alytical solution is straightforward [14] . However, this is presented

here for convenience and in order to account for the present scal-

ings used and to identify the different flow regimes. The general
imensionless solution for B c ≤ B < ∞ is given by 

 

∗
x ( y 

∗) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

1 

A I I I 

[
y ∗

1 /n +1 

1 − (y ∗1 − y ∗) 1 /n +1 
]
, 0 ≤ y ∗ ≤ y ∗1 

y ∗
1 /n +1 

1 

A I I I 

, y ∗1 ≤ y ∗ ≤ y ∗2

u 

∗
w 

+ 

1 

A I I I 

[
(1 − y ∗2 ) 

1 /n +1 −(y ∗ − y ∗2 ) 
1 /n + 1 ]

, y ∗2 ≤ y ∗ ≤ 1 

(14)

here 

 

∗
w 

= 

1 

A I I I 

[
y ∗1 

1 /n +1 − (1 − y ∗2 ) 
1 /n +1 

]
(15)

nd 

 I I I = y ∗1 /n +1 
1 

(
1 − 2 n 

1 + 2 n 

y ∗1 

)
− n 

1 + 2 n 

( 1 − y ∗2 ) 
1 /n +2 (16)

The positions of the two yield points can be found by solving

he following system of equations: 

(2 − y ∗1 − y ∗2 ) Bn − (y ∗2 − y ∗1 ) Bu 

∗s 
w 

= 0 (17)

nd 

(1 + 1 /n ) n (y ∗2 − y ∗1 ) − 2 Bn A 

n 
I I I = 0 (18)

.1.1. No-slip case 

In the no-slip case ( u ∗w 

= 0 ), Eq. (15) yields y ∗
2 

= 1 − y ∗
1 
, which

ndicates that the flow is symmetric with respect to the mid-plane

f the channel. Substituting into Eq. (16) gives 

 I I I = y ∗1 /n +1 
1 

(
1 − 2 n 

1 + 2 n 

y ∗1 

)
(19)

nd Eq. (18) becomes: 

(1 + 1 /n ) n (1 − 2 y ∗1 ) − 2 Bn y ∗n +1 
1 

(
1 − 2 n 

1 + 2 n 

y ∗1 

)n 

= 0 (20)

.1.2. Critical value of the slip number 

The critical value B c of the slip number can be found by setting

 

∗
2 = 1 . Denoting the corresponding critical values of y ∗1 and u ∗w 

by

 

∗
1 c 

and u ∗wc , respectively, we get from Eq. (17) 

 c u 

∗s 
wc = Bn (21)

hich simply says that the (dimensionless) upper-wall shear stress

s equal to Bn . The critical slip velocity is given by 

 

∗
wc = 

1 

1 − n 
1+2 n 

y ∗
1 c 

(22)

nd, therefore, 

 c = 

(
1 − n 

1 + 2 n 

y ∗1 c 

)s 

Bn (23)

inally, from Eq. (18) one gets 

(1 + 1 /n ) n (1 − y ∗1 c ) − 2 Bn A 

n 
I I I c = 0 (24)

r 

(1 + 1 /n ) n (1 − y ∗1 c ) − 2 Bn y ∗n +1 
1 c /u 

∗n 
wc = 0 (25)

hich is used to calculate y ∗
1 c 

. It should be noted that the value of

 

∗
1 c is independent of the slip equation parameters. For example, in

he Bingham plastic case ( n = 1), y ∗
1 c 

is a root of 

n y ∗3 
1 c − 3 Bn y ∗2 

1 c − 3 y ∗1 c + 3 = 0 (26)

hile the value of B c can then be calculated from Eq. (23) for any

alue of s . 
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Fig. 6. Development of the velocity in creeping ( Re = 0) planar Newtonian Poiseuille flow with no-slip along the lower wall and Navier slip ( s = 1) along the upper one: (a) 

B = ∞ (no-slip); (b) B = 100; (c) B = 10; (d) B = 1; (e) B = 0.1; (f) B = 0.01. Profiles at x ∗ = 0, 0.02, 0.05, 0.1, 0.2, 0.4, 0.8 and ∞ (fully-developed flow). 
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Fig. 7. Development length functions in creeping ( Re = 0) planar Newtonian Poiseuille flow with no-slip along the lower wall and Navier slip ( s = 1) along the upper one for 

the slip numbers of Fig 6: (a) B = ∞ (no slip); (b) B = 10; (c) B = 5; (d) B = 2; (e) B = 1; (f) B = 0.01. 
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Fig. 8. Development length functions in creeping ( Re = 0) planar Newtonian Poiseuille flow with no-slip along the lower wall and power-law slip ( s = 1/2) along the upper 

one for the slip numbers of Fig 6: (a) B = ∞ (no slip); (b) B = 100; (c) B = 10; (d) B = 1; (e) B = 0.1; (f) B = 0.01. 
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Fig. 9. Global (solid) and wall (dashed) development lengths in creeping ( Re = 0) 

planar Newtonian Poiseuille flow with no-slip along the lower wall and slip along 

the upper one versus the slip number B . (a) s = 1 (Navier slip); (b) s = 1/2. 
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Fig. 10. Global development lengths in creeping ( Re = 0) planar Newtonian 

Poiseuille flow with no-slip along the lower wall and slip along the upper one with 

s = 1 (Navier slip) and s = 1/2. 
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2.1.3. Solution in Regime II 

If the slip number is reduced below B c , the yield point keeps

moving towards the upper wall and the width of the plug core is

thus reduced while its velocity increases. Finally, in the limit B = 0

(full slip), the velocity profile corresponds to the no-slip solution

in a channel of double width (2 H) , i.e. to the no-slip solution cor-

responding to the modified Bingham number 

Bn 

′ = 

τ0 (2 H) 
n 

k U 

n 
= 2 

n Bn (27)

Hence, when 0 < B ≤ B c , the flow corresponds to Regime II and the

dimensionless velocity is given b y 

 

∗
x ( y 

∗) 

 

{ [
y ∗

1 /n +1 

1 −( y ∗1 − y ∗) 1 /n +1 
]
/ 

[ 
y ∗

1 /n +1 

1 

(
1 − n 

1 + 2 n 

y ∗1 

)] 
, 0 ≤ y ∗ ≤ y ∗1

u 

∗
w 

, y ∗1 < y ∗ ≤ 1

(28)
here 

 

∗
w 

= 

1 

1 − n 
1+2 n 

y ∗
1 

(29)

nd y ∗
1 

is the root of 

(1 + 1 /n ) n (1 − y ∗1 ) − ( Bn + Bu 

∗s 
w 

) y ∗n +1 
1 /u 

∗n 
w 

= 0 (30)

ubstituting Eq. (21) into the above equation yields Eq. (25) for y ∗
1 c 

.

or n = 1 (Bingham plastic) and s = 1 (Navier slip) Eq. (30) is sim-

lified to 

n y ∗3 
1 − 3(Bn + B ) y ∗2 

1 − 6 y ∗1 + 6 = 0 (31)

Before discussing the Herschel–Bulkley solutions, it is instruc-

ive to consider the Newtonian case in which the velocity is a

arabola. For any value of the slip exponent s , the velocity can be

ritten in the form 

 

∗
x = y ∗[ 6 − 2 u 

∗
w 

+ 3(u 

∗
w 

− 2) y ∗] (32)

here the slip velocity u ∗w 

is a root of 

 u 

∗
w 

( 3 − 2 u 

∗
w 

) = Bu 

∗s 
w 

(33)

or example, with s = 1 (Navier slip) 

 

∗
w 

= 

6 

B + 4 

(34)

nd with s = 1/2 

 

∗
w 

= 

3 

2 

− B 

2 

32 

( √ 

1 + 

96 

B 

2 
− 1 

) 

(35)

hen B = ∞ (no slip with u ∗w 

= 0 ) and B = 0 (full slip with u ∗w 

=
 / 2 ) the standard no-slip Poiseuille solutions in channels of dimen-

ionless widths 1 and 2, respectively, are recovered, i.e. 

 

∗
x = 6 y ∗(1 − y ∗) and u 

∗
x = 

3 

2 

y ∗(2 − y ∗) 

Figs. 3 a and b show the velocity profiles for s = 1 and s = 1/2,

espectively, with B = ∞ , 10, 1 and 0. It is easily verified that all

urves intersect at the point (2/3,4/3), independently of the value

f s . Fig. 3 c and d show similar velocity profiles for Herschel–

ulkley fluids with Bn = 1 and n = 1 (Bingham plastic) and n = 1/2

n the Navier-slip case ( s = 1). As the slip number is reduced the

olution passes from Regime III (two yield points) to Regime II

elow the critical slip number, which is B c = 0.7800 for n = 1 and

.8610 for n = 1/2. 
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Fig. 11. Velocity contours in flow development of creeping ( Re = 0) planar Bingham- 

plastic ( n = 1) Poiseuille flow with no-slip along the lower wall and Navier slip 

( s = 1) along the upper one for Bn = 1 and various slip numbers. 
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Fig. 4 illustrates the two flow regimes on the ( Bn,B ) plane in

he case of a Bingham plastic ( n = 1). These are separated by the

urve B c = (1 − y ∗1 c / 3) Bn , which is slightly below the straight line

 = Bn . Four representative velocity profiles, obtained taking Bn = 1

nd Navier slip ( s = 1), are also shown. Two of them are in Regime

II. The first profile corresponds to no-slip at both walls ( B → ∞ )

nd it is thus symmetric. As slip at the upper wall is enhanced

e.g. for B = 5), symmetry is destroyed and the two yield points

ove upwards and the maximum velocity decreases. The upper

ield point moves faster than the lower one reaching the wall

hen B = B c = 0.7800. The velocity profile for this critical case is

lso shown in Fig. 4 . Below this number, i.e. in Regime II, the yield

oint continues moving upwards as slip is increased, but the max-

mum velocity is now increasing. In the limit of B = 0 (full slip),

he maximum velocity is lower than that for B → ∞ , since it corre-

ponds to the no-slip flow for a modified Bingham number equal

o Bn ′ = 2 n Bn = 2 Bn . 
. Numerical results and discussion 

The system of the governing equations and the boundary con-

itions presented in Section 2 was solved numerically using the fi-

ite element method ( u-v-p formulation) with standard biquadratic

asis functions for the two velocity components and bilinear ones

or the pressure field. The Galerkin forms of the continuity and the

omentum equations were used. The resulting nonlinear system

f the discretized equations was solved with a Newton-Raphson it-

rative scheme with a convergence tolerance equal to 10 −4 . The in-

ouse finite-element code developed and tested in the past thirty

ears (most recently in [17] ) was used. Results have been obtained

or Bingham numbers ranging from 0 (Newtonian flow) to 10, for

ower-law exponents from 1 (Bingham plastic) down to 1/2, for

lip numbers from 0 (full-slip) to ∞ (no-slip), and for Reynolds

umbers from 0 (creeping flow) to 10. Based on our previous stud-

es [17] , the rather high value of M = 10 0,0 0 0 has been used in all

iscoplastic simulations. For the low Reynolds number considered

ere, we took L mesh = 20 for Re ≤ 1 and L mesh = 50 for 1 < Re ≤ 10.

ome convergence difficulties have been observed in the weak-slip

egime (i.e. for finite high values of the slip number B ) when the

alue of n was less than unity. These are due to the fact that the

lip velocity is of the order of the convergence tolerance and to

he increased nonlinearity of the problem. The convergence of the

esults has also been investigated using meshes of different re-

nement. The results presented here have been obtained with a

on-uniform mesh consisting of 368 × 80 = 29,440 elements with

18,657 velocity nodes ( L mesh = 20). The total number of nodal un-

nowns with this mesh is 267,203. This was graded with the el-

ment size increasing far from the walls and the inlet plane. The

ize of the smallest element at the corner of the inlet plane with

he lower wall was 0.005. 

.1. Newtonian flow 

The Newtonian flow was investigated first. The effect of Navier

lip ( s = 1) on the axial velocity contours in the case of creeping

ow ( Re = 0) is illustrated in Fig. 5 for various values of the slip

umber ranging from B = ∞ (no-slip) to B = 0.01 (very strong slip).

hen B = ∞ the velocity contours are symmetric about the mid-

lane of the channel. As slip is introduced at the upper wall the

ow becomes more and more asymmetric; in the limit of full slip

 B = 0) the flow corresponds to flow in a channel of double width

ith no slip at either wall and the upper wall serves simply as the

ymmetry plane of the latter flow. The flow development for the

ame slip numbers is also illustrated in Fig. 6 , where the velocity

rofiles at different distances from the inlet are plotted. Note that

hile the velocity overshoot near the lower wall is unaffected, that

ear the upper wall appears only when slip is rather weak (i.e. for

 = ∞ and 100). 

In Fig. 7 , the plots of the development length function L ( y ) for

ll the slip numbers considered in Figs. 5 and 6 are shown. For

igh values of B there are two decelerating zones adjacent to the

alls and one intermediate accelerating zone defined by the two

oints at which the fully-developed velocity is equal to the mean

elocity and thus L ( y ) vanishes. Below a critical slip number ( ∼2)

lip is so strong that the fluid at the wall actually accelerates and

hus the upper deceleration zone disappears. For B = ∞ (no-slip at

he upper wall), L ( y ) is of course symmetric. As already pointed out

n [17] , the global development length L g does not occur in the ac-

elerating zone at the plane of symmetry but in the two symmetric

ecelerating zones near the walls ( L g = 0.6585, whereas the clas-

ical center-plane development length is L c = 0.6285). In the no-

lip case the upper-wall development length, defined by L w 

≡ L (1),

s not relevant. As slip along the upper wall is enhanced so does

he asymmetry and the flow develops faster near the upper wall
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Fig. 12. Development of the velocity in creeping ( Re = 0) planar Bingham-plastic ( n = 1) Poiseuille flow with no-slip along the lower wall and Navier slip ( s = 1) along the 

upper one with Bn = 1: (a) B = ∞ (no-slip); (b) B = 100; (c) B = 10; (d) B = 1; (e) B = 0.1; (f) B = 0.01. Profiles at x ∗= 0, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6 and ∞ (fully-developed flow). 
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Fig. 13. Development length functions in creeping ( Re = 0) planar Bingham-plastic ( n = 1) Poiseuille flow with no-slip along the lower wall and Navier slip ( s = 1) along the 

upper one for Bn = 1 and the slip numbers of Fig 10: (a) B = ∞ (no slip); (b) B = 100; (c) B = 10; (d) B = 1; (e) B = 0.1; (f) B = 0.01. 
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Fig. 14. Global (solid) and wall (dashed) development lengths in creeping ( Re = 0) planar Bingham-plastic Poiseuille flow with no-slip along the lower wall and Navier slip 

( s = 1) along the upper one versus the slip number B : (a) Bn = 0 (Newtonian); (b) Bn = 1; (c) Bn = 5; (d) Bn = 10. 
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where slip occurs and near the lower wall more slowly so that the

global development length increases (note that the y -axis is not

the same). Hence, L g occurs in the lower decelerating zone and L w 

is much less than L g . As B is reduced, L g keeps increasing, while

L w 

is further reduced till the upper decelerating zone disappears,

in which case the fluid at the upper wall actually accelerates and

consequently there is only one decelerating region near the lower

wall. Thus, below a certain slip number both L g and L w 

increase as

B is reduced. The global development length increases asymptoti-

cally to twice its counterpart for the no-slip flow, i.e. L g = 1.3168. 

In order to investigate the effect of the slip exponent s , cal-

culations similar to those of Figs. 5–7 have been carried out tak-

ing s = 1/2. It turns out that the velocity contours are not affected

significantly, but, given that the fully-developed slip velocities for

s = 1/2 are lower, there are some noticeable differences between

the velocity profiles, especially when slip is weak, i.e. for high or

moderate values of the slip number. Interestingly, the slip expo-

nent has a striking effect on the development length. (It should be

noted that the dimensionless slip number depends on s .) As shown

in Fig. 8 , with s = 1/2 the flow development for high values of B
weak slip) is slower in the zone near the upper wall rather than

n the zone near the lower (no-slip) wall. 

The dependence of the two development lengths on the slip

umber B for s = 1 and 1/2 is illustrated in Fig. 9 . L g increases

ith slip exhibiting two plateaus in the weak- and strong-slip lim-

ts and a sharp change in the range (0.5, 5) of the slip number.

he wall development length L w 

exhibits a sharp non-monotonic

ehavior in the latter range due to the suppression and the dis-

ppearance of the decelerating region near the upper wall and

anishes at the critical slip number B = 2 at which u ∗w 

= 1 , inde-

endently of the slip exponent s (see Eq. (33) ). With s = 1, L w 

is

lways less than L g , while with s = 1/2 the two lengths coincide

hen slip is weak. As pointed out in Ref. [16] , the wall develop-

ent length can be defined only if the magnitude of the slip ve-

ocity exceeds a critical value. By demanding that 1% of the critical

lip velocity must be equal to the tolerance used in the numerical

imulations, then this critical slip velocity is equal to 0.01. From

q. (33) , the corresponding critical value of the slip number is

hen B crit = 5 . 96 × 10 2 s . We thus find that B crit = 596 for s = 1 and

 crit = 59 . 6 for s = 1/2. Therefore, the plots of L w 

beyond these crit-
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Fig. 15. Global development lengths in creeping ( Re = 0) planar Bingham-plastic 

Poiseuille flow with no-slip along the lower wall and Navier slip ( s = 1) along the 

upper one versus the slip number B for different Bingham numbers. 

Fig. 16. Global development lengths in creeping ( Re = 0) planar Herschel–Bulkley 

Poiseuille flow with no-slip along the lower wall and Navier slip ( s = 1) along the 

upper one versus the slip number B for Bn = 1 and n = 1 (Bingham plastic) and 

n = 1/2. 
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cal values in Fig. 9 (i.e. in the weak-slip regime) should be viewed

ith caution. Note also that the wiggle in the curve of L g is simply

ue to the fact as slip is increased the flow development is initially

lower in the upper deceleration zone which eventually disappears

nd thus the value of L g is suddenly calculated in the lower decel-

ration zone. The global development lengths for s = 1 and s = 1/2

re compared in Fig. 10 . As expected, the two lengths differ only

or moderate values of the slip number and practically coincide in

oth the weak- and strong-slip regimes, where the effect of the

lip exponent is insignificant. It should be noted that the develop-

ent length corresponding to full slip ( B = 0) is twice the develop-

ent length for the no-slip case (infinite B ), since it corresponds

o the no-slip flow in a channel of a gap width equal to 2. 

.2. Viscoplastic flow 

In this subsection, numerical results for Bingham plastics ( n = 1)

nd Herschel–Bulkley fluids ( n = 1/2) are discussed. We then con-

idered the Bingham plastic case ( n = 1) with Bn = 1 for Re = 0

creeping flow). Fig. 11 shows the axial velocity contours for var-

ous values of the slip number B . Fig. 12 shows how the velocity

omponent in the flow direction develops downstream attaining

he fully developed profile. When B = ∞ (no slip), the velocity pro-

les are symmetric exhibiting a central unyielded region. As slip

s increased, asymmetry is enhanced, the velocity overshoot near

he upper wall is suppressed, and the unyielded region moves to-

ards the upper wall and increases in size. If slip becomes even

tronger then Regime II is eventually reached, i.e. the unyielded

egion reaches the upper wall. The velocity overshoot near the no-

lip wall persists in all cases, while its counterpart near the slip

all appears only when slip is weak (i.e. for high values of B ). 

The development length functions for various values of the slip

umber are shown in Fig. 13 . These plots may be more compli-

ated than their Newtonian counterparts in Fig. 8 but the main

eatures remain the same: (a) L g occurs near the no-slip wall, i.e.

he flow develops more slowly in the decelerating zone adjacent

o the no-slip wall than in the accelerating zone; (b) The fluid ad-

acent to the upper wall decelerates only when slip is weak, i.e.

bove a critical slip number. 

Similar results have been obtained for higher values of the

ingham number. In Fig. 14 , the global and wall development

engths for creeping flow ( Re = 0) and Bn = 0 (Newtonian), 1, 5 and

0 are plotted versus the slip number. We observe that L g increases

ith slip and with the Bingham number, whereas L w 

exhibits a

on-monotonic behavior. When slip is strong, L w 

decreases rapidly

ith Bn . For moderate slip numbers, however, the dependence of

 w 

on the Bingham number is variable. It is clear that using L w 

ay lead to erroneous results regarding flow development. The

lobal development lengths for Bn = 0, 1, 5, and 10 are compared in

ig. 15 . Based on L g , flow development is slower as viscoplasticity

nd slip are increased. Again, the wiggles in the curves for Bn = 5

nd 10 indicate transition of L g to a different deceleration or accel-

ration zone. As mentioned above, in Newtonian flow ( Bn = 0) the

evelopment length for full slip ( B = 0) is two times the develop-

ent length for the no-slip case (infinite B ), since it corresponds

o the flow development in a channel with no slip and with a gap

idth equal to 2. This is not the case for Bingham flow; the devel-

pment length in the full-slip case is two times the no-slip devel-

pment length corresponding to 2 Bn and not to Bn . 

Simulations have also been carried out for Herschel–Bulkley

ow with Bn = 1, n = 1/2 and s = 1 (Navier slip). The global devel-

pment lengths for n = 1 and n = 1/2 are compared in Fig. 16 . As

xpected, shear thinning results in bigger development lengths. Fi-

ally, the effect of the Reynolds number is illustrated in Fig. 17 ,

here the global development length for Bn = 1 and Re = 0, 1, and

0 is plotted versus the slip number. For the moderate numbers
mployed here, the global development length increases with in-

rtia. The relative increase of L g is much higher when slip is weak,

oderate in the strong-slip regime, and becomes smaller in the

ntermediate slip regime when the upper deceleration zone disap-

ears. 

An interesting issue not addressed in the present work is the

ccurate determination of yielded and unyielded regions in vis-

oplastic flow development. Our calculations with “reasonable”

eshes showed that this may not be possible for moderate or

igher Bingham numbers. More acceptable results, in the sense

hat the entry unyielded region which moves horizontally as a

olid body at unit velocity is separated from the unyielded re-

ion of the fully-developed flow which moves at a higher veloc-

ty, may be obtained for rather low Bingham numbers. At higher

ingham numbers these two regions appear to merge, which is

bviously inadmissible. Hence, the flow development problem is

 challenging test for any numerical method proposed for solving

iscoplastic flows. To our knowledge, only recently Dimakopoulos
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Fig. 17. Global development lengths in planar Herschel–Bulkley Poiseuille flow with 

no-slip along the lower wall and Navier slip ( s = 1) along the upper one versus the 

slip number B for different Reynolds numbers, Bn = 1 and n = 1/2. 
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et al. [19] made some preliminary calculations of yielded/unyielded

regions in viscoplastic flow development and compared the predic-

tions of the Augmented Lagrangian Method (ALM) and the regular-

ization method. 

4. Conclusions 

The entry flow of a Herschel–Bulkley fluid in a horizontal chan-

nel with slip along the upper wall has been investigated numeri-

cally using finite elements and the Papanastasiou regularization for

the constitutive equation. The different flow regimes for the one-

dimensional fully-developed flow were identified and the corre-

sponding solutions have been presented. The global development

length is considered so that both the acceleration and decelera-

tion zones are included. Representative numerical solutions for the

two-dimensional flow development have been presented and the

effects of the Bingham and slip numbers on the development of

the velocity and on the development length have been discussed
or various values of the power-law exponent of the slip equa-

ion. The global development length increases with the Bingham

umber and inertia and decreases with the power-law exponent.

n general, the global development length increases with slip ex-

ibiting two plateaus for low and strong slip and a sharp increase

n the moderate slip regime. 
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