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a b s t r a c t 

We solve numerically the cessation of the pressure-driven Poiseuille flow of a Bingham plastic under the 

assumption that slip occurs along the wall following a generalized Navier-slip law involving a non-zero slip 

yield stress. In order to avoid the numerical difficulties caused by their inherent discontinuities, both the con- 

stitutive and the slip equations are regularized by means of exponential (Papanastasiou-type) regularizations. 

As with one-dimensional Poiseuille flows, in the case of Navier slip (zero slip yield stress), the fluid slips at all 

times, the velocity becomes and remains plug before complete cessation, and the theoretical stopping time 

is infinite. The cessation of the plug flow is calculated analytically. No stagnant regions appear at the corners 

when Navier slip is applied. In the case of slip with non-zero slip yield stress, the fluid may slip everywhere 

or partially at the wall only in the initial stages of cessation depending on the initial condition. Slip ceases 

at a critical time after which the flow decays exponentially and the stopping times are finite in agreement 

with theory. The combined effects of viscoplasticity and slip are investigated for wide ranges of the Bingham 

and slip numbers and results showing the evolution of the yielded and unyielded regions are presented. The 

numerical results also showed that the use of regularized equations may become problematic near complete 

cessation or when the velocity profile becomes almost plug. 

© 2015 Elsevier B.V. All rights reserved. 
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. Introduction 

We have recently solved numerically the steady-state Poiseuille

ow of Herschel–Bulkley fluids in a duct of rectangular cross section

nder the assumption that slip occurs along the wall only if the wall

hear stress, τw 

, exceeds a critical value, τ c , known as the slip yield

tress [1] . For this purpose, we employed the following slip equation

u w 

= 0 , τw 

≤ τc 

τw 

= τc + βu w 

, τw 

> τc 
(1) 

here u w 

is the slip velocity, defined as the relative velocity of the

uid with respect to that of the wall, and β is the slip parameter,

hich depends on the temperature, and on the properties of the

aterial and of the fluid/wall interface [2] . A literature review of

xperimental observations of slip yield stress with both Newtonian

nd non-Newtonian materials is provided in Ref. [3] . When the slip

ield stress vanishes, Eq. (1) is reduced to the well-known Navier slip

quation: 

w 

= βu w 

(2) 

The no-slip and the perfect-slip cases correspond to β → ∞
nd β = 0 , respectively. In most experimental studies on various
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aterials τ c appears to be much lower than the yield stress τ 0 [4–6] .

n general, the relative values of τ c and τ 0 may lead to different flow

egimes (see, e.g., Refs. [1,6] ). In the present work, τ c is taken equal

o τ 0 , as suggested by Pearson and Petrie [7] , in order reduce the

umber of the flow regimes. 

In [1] , it has been demonstrated that there are four distinct

egimes in steady-state Poiseuille flow in a rectangular duct, defined

y three critical values of the pressure gradient. Initially no slip oc-

urs, in the second regime slip occurs only in the middle of the

ider wall, in the third regime slip occurs partially at both walls,

nd eventually variable slip occurs everywhere. The two interme-

iate partial-slip regimes collapse to one in the case of a square

uct. 

In order to study the combined effects of viscoplasticity and

lip in this steady-state flow, Damianou and Georgiou [1] employed

he Herschel–Bulkley constitutive equation. In the present work, we

olve the time-dependent flow. In order to reduce the number of pa-

ameters involved we consider here the flow of a Bingham plastic in

 square duct. The Bingham constitutive equation relates the viscous

tress tensor τ to the rate-of-strain tensor ˙ γ as follows 

 

 

 

˙ γ = 0 , τ ≤ τ0 

τ = 

(
τ0 

˙ γ
+ μ

)
˙ γ, τ > τ0 

(3) 

http://dx.doi.org/10.1016/j.jnnfm.2015.11.002
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where μ is the plastic viscosity, and τ and ˙ γ are the magnitudes of

τand 

˙ γ , defined respectively by 

˙ γ ≡
√ 

1 

2 

I I ˙ γ = 

√ 

1 

2 

˙ γ : ˙ γ and τ ≡
√ 

1 

2 

I I τ = 

√ 

1 

2 

τ : τ (4)

where the symbol II stands for the second invariant of a tensor. Fi-

nally, the rate-of-strain tensor is defined by 

˙ γ ≡ ∇u + ( ∇u ) 
T 

(5)

where u is the velocity vector and the superscript T denotes the trans-

pose. 

The two-branch Eq. (3) predicts that the material behaves like a

solid in regions where the stress is below the yield stress ( τ ≤ τ 0 )

and as a fluid in regions where the yield stress is exceeded ( τ > τ 0 ).

These are called unyielded and yielded regions, respectively. It should

be noted that unyielded regions include not only regions where the

material is stagnant (dead zones) but also zones where the mate-

rial moves undeformed as a rigid body. The determination of the un-

yielded and yielded regions, where the two branches of the consti-

tutive equation apply, is a major issue in solving viscoplastic flows.

As emphasized by Huilgol [8] , this task becomes more difficult in un-

steady Bingham flow, since the position and shape of the yielded and

unyielded regions has to be determined as a function of space and

time. Using regularized versions of the constitutive equation has been

a very popular approach in tackling this problem. The main alterna-

tive approach is the use of Augmented Lagrangian Methods (ALMs),

which are based on the use of variational inequalities. The advantages

and disadvatanges of the two approaches are well known and have

been recently reviewed by Glowinski and Wachs [9] and by Balmforth

et al. [10] . 

As in [1] , instead of the two-branch Eq. (3) we employ the Pa-

panastasiou regularization [11] : 

τ = 

{
τ0 [ 1 − exp ( −m ˙ γ ) ] 

˙ γ
+ μ

}
˙ γ (6)

where m is the stress growth exponent. The above model applies ev-

erywhere in the flow field (in both yielded and practically unyielded

regions) and at the same time provides a satisfactory approximation

of the Bingham model for sufficiently large values of the parameter

m. This has been tested in numerous benchmark problems [11,12] . 

The analogy between Eqs. (1) and ( 3 ) is obvious. Difficulties anal-

ogous to those encountered when using the discontinuous Bingham

model also arise when employing the discontinuous slip Eq. (1) . To-

gether with the unknown velocity and pressure fields, one has to de-

termine the regions of the wall where slip occurs and those where

the no-slip boundary condition applies. Such a task may be trivial

to deal with in the case of steady one-dimensional Poiseuille flows

but it becomes very difficult in the case of time-dependent two- and

three-dimensional flows. Even in the case of Newtonian flows, it is

not possible to obtain analytically the parts of the wall where slip

occurs. Again, both the regularization and augmented Lagrangian ap-

proaches can be used [1,13] . In the present work, we use the following

regularization of Eq. (1) : 

τw 

= τc [ 1 − exp ( −m c u w 

) ] + βu w 

(7)

where m c is a growth parameter similar to the stress growth expo-

nent m of Eq. (6) . 

Eq. (7) has been tested by Damianou et al. [14] in solving the

cessation of Poiseuille flow of a Herschel-Bulkley fluid in a round

tube, which is one dimensional. It has also been used to solve the

two-dimensional steady-state Poiseuille flow in a rectangular chan-

nel [1] , giving very satisfactory results for both Newtonian and Bing-

ham flows in those intermediate regimes where wall slip is partial, i.e.

it occurs only along a part of the wall around the symmetry plane. The
umerical results also agreed with the analytical solution of the New-

onian flow, in regimes where such a solution is available (no wall slip

r slip everywhere along the walls). 

An interesting observation in the case of the cessation of vis-

oplastic Poiseuille flow in a tube with wall slip with zero slip yield

tress (i.e. τc = 0 ) is that the velocity becomes and remains uni-

orm before complete cessation [1] . Moreover, the theoretical stop-

ing time may become infinite whereas in the absence of slip this is

nite. Damianou et al. [14] employed a power-law generalization of

he Navier condition 

w 

= βu 

s 
w 

(8)

nd showed that the stopping time is finite only when the exponent

 is less than unity; otherwise, the stopping time is infinite for any

on-zero Bingham number and the volumetric flow rate decays ex-

onentially. However, if the slip yield stress is non-zero, slip ceases at

 finite critical time and cessation is accelerated so that the stopping

imes are finite, in agreement with theoretical estimates [15,16] . 

The literature concerning solutions of the steady-state viscoplas-

ic flow in rectangular ducts has been reviewed in [1] . In particular,

oquet and Saramito [13] identified the various steady-state regimes

bserved when the yield stress and the slip yield stress vary and the

lip coefficient is fixed. Time-dependent Bingham flows in ducts of

arious cross-sections with no wall slip have been studied by Muravl-

va and Muravleva [17] who considered both start-up and cessation

ows. The calculated stopping times for the latter flows were found

o be in good agreement with the theoretical estimates. 

The objective of the present work is to investigate the effect of

all slip on the cessation flow of a Bingham plastic in a square duct.

o our knowledge, this flow has not been investigated before. More-

ver, it provides a good test for the regularizations of both the Bing-

am constitutive equation and the slip equation we employ. The rest

f the paper is organized as follows. In Section 2 , the governing equa-

ions of the flow are presented. In Section 3 , we provide analytical

olutions for the Newtonian flow in the cases of no wall slip, Navier

lip, and slip with nonzero slip yield stress. In the latter case, the

ow is amenable to analytical solution only below a first and above a

econd critical value of the pressure gradient. Below the first critical

alue, the classical no-slip time-dependent solution applies. Above

he second one, non-uniform slip occurs everywhere along the wall

nd the corresponding analytical solution is valid only until slip at

he duct corner ceases and thus slip along the wall is partial (non-

inear) thereafter. In Section 4 , we present numerical solutions of the

ewtonian flow in all the flow regimes. The numerical results coin-

ide with the analytical ones in all regimes where the latter solutions

re available. In Section 5 , results for the Bingham flow are presented

nd the no-slip, Navier-slip, and non-zero-slip-yield-stress cases are

iscussed. It is shown that when Navier slip applies, i.e. when the slip

ield stress is zero, the fluid slips at all times and the velocity be-

omes and remains flat till complete cessation. The evolution of the

at velocity is solved analytically. Interestingly, numerical difficulties

re observed in this flow regime, since the regularization becomes

roblematic when the rate of deformation is zero almost everywhere

but not very close to the wall). Finally, in Section 6 the main conclu-

ions of this work are summarized. 

. Governing equations 

We consider the transient Poiseuille flow of a Bingham plastic

n a duct of square cross-section and infinite length with −H ≤ y ≤
, −H ≤ z ≤ H, where H is the half-width of the duct. Due to sym-

etry, only the first quadrant is considered. The flow is governed by

he momentum equation, which, under the assumption of negligible

ravity, is simplified to 

∂ u x 

∂t 
= G + 

∂ τyx 

∂y 
+ 

∂ τzx 

∂z 
(9)



Y. Damianou et al. / Journal of Non-Newtonian Fluid Mechanics 233 (2016) 13–26 15 

Fig. 1. Flow curve of Newtonian Poiseuille flow in a square duct in the case of non-zero 

slip yield stress with B = 1. Three flow regimes are defined by the two critical values 

of the imposed pressure gradient ( G ∗c1 = 1 . 4808 and G ∗c2 = 2 . 6290 ). The velocity con- 

tours for three representative values of the pressure gradient in the three flow regimes 

( G ∗ = 1, 2, and 3) are also shown. 
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Fig. 2. Evolution of the velocity contours during cessation of Newtonian flow in the 

case of non-zero slip yield stress with B = 1 and G ∗ = 1 < G ∗c1 (no wall slip at all times). 

A step of 0.05 was used for the contour values. 

Fig. 3. Evolution of the velocity contours during cessation of Newtonian flow in the 

case of non-zero slip yield stress with B = 1 and G ∗c1 < G ∗ = 2 < G ∗c2 (partial slip at 

t ∗ = 0 ). A step of 0.05 was used for the contour values. 
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here ρ is the density, G is the constant pressure gradient, and τ yx 

nd τ zx are the corresponding components of the viscous stress ten-

or τ which is given by the regularized Eq. (6) . Along the walls it is

ssumed that slip occurs following the regularized slip Eq. (7) . 

To non-dimensionalize the governing equations we scale the ve-

ocity and the pressure by appropriate scales, denoted by V s and P s ,

espectively, lengths by H, and the time t by ρH 

2 / μ. Hence the flow

omain becomes 0 ≤ y ∗, z ∗ ≤ 1, where the stars denote dimension-

ess variables. In the case the volumetric flow rate is imposed, the

ean velocity V in the duct is used as the velocity scale, i.e. V s = V 

nd P s = μV/H. The non-dimensionalized forms of the momentum

nd the constitutive equations, given respectively by ( 9 ) and ( 6 ), are 

∂u 

∗
x 

∂ t ∗
= G 

∗ + 

∂τ ∗
yx 

∂ y ∗
+ 

∂τ ∗
zx 

∂ z ∗
(10) 

nd 

∗ = 

{
Bn [ 1 − exp ( −M ˙ γ ∗) ] 

˙ γ ∗ + 1 

}
˙ γ∗

(11) 

here 

n ≡ τ0 H 

μV 

and M ≡ mV 

H 

(12) 

re the Bingham number and the dimensionless stress growth num-

er, respectively. 

The dimensionless form of the regularized slip Eq. (7) is 

∗
w 

= B c [ 1 − exp ( −M c u 

∗
w 

) ] + Bu 

∗
w 

(13) 

here the slip-yield-stress number, B c , the slip number, B , and the

rowth number, M c , are defined as follows: 

 c ≡ τc H 

μV 

, B ≡ βH 

μ
, M c ≡ m c V (14) 

lip Eq. (7) and its various special cases serves as the boundary con-

ition along the walls while symmetry boundary conditions are em-

loyed along the planes of symmetry. 

When the pressure gradient is imposed, we take V s = H τ0 /μ and

 s = τ0 . It turns out that the dimensionless governing Eqs. (6) –( 8 ) still

pply, the only differences being in the definitions of the following

imensionless numbers: 

n ≡ 1 , M ≡ m τ0 

H 

, B c ≡ τc 

τ0 

, and M c ≡ m c H τ0 

μ
(15)
The definition of the slip number is the same in both non-

imensionalizations.) 

The steady-state Poiseuille flow in a duct has been studied in [1] .

n the present work, we consider the cessation of the flow, i.e. at t ∗ =
 the velocity is given by the steady-state solution and the pressure

radient G ∗ in Eq. (10) is set to zero. 

. Analytical solutions for Newtonian flow 

In the case of Newtonian flow in a rectangular duct, Eq. (9) is sim-

lified to 

∂ u x 

∂t 
= G + η

(
∂ 2 u x 

∂ y 2 
+ 

∂ 2 u x 

∂ z 2 

)
(16) 
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Fig. 4. Evolution of the velocity contours during cessation of Newtonian flow in the 

case of non-zero slip yield stress with B = 1 and G ∗ = 3 > G ∗c2 (slip occurs everywhere 

at t ∗ = 0 ). A step of 0.05 was used for the contour values. 

Fig. 5. Evolution of the maximum velocity at the duct center and the maximum slip 

velocity at the middle of the duct wall during cessation of Newtonian flow in the case 

of non-zero slip yield stress with B = 1 and G ∗c1 < G ∗ = 2 < G ∗c2 (partial slip at t ∗ = 0 ). 

 

 

 

 

 

 

Fig. 6. Evolution of the maximum velocity at the duct center, the maximum slip ve- 

locity at the middle of the duct wall, and the minimum velocity at the corner during 

cessation of Newtonian flow in the case of non-zero slip yield stress with B = 1 and 

G ∗ = 3 > G ∗c2 (slip occurs everywhere at t ∗ = 0 ). 

I  

a  

fi

u

 

a

Q  

N

 

o  

s

u  

w

λ  

a

B  

i

A  

T  

s  

[  

t  

i

Q  
where η is the viscosity. The steady-state solution serves as the initial

condition for the cessation flow. The analytical solutions presented

below have been obtained using the standard separation of variables

method [18] . 

No wall slip 

In the case of no-slip, the steady-state velocity is given by 

u x ( y, z ) = 

4 G H 

2 

η

∞ ∑ 

i =1 

∞ ∑ 

j=1 

( −1 ) 
i + j 

α2 
i, j 

αi α j 

cos ( αi y/H ) cos ( α j z/H ) (17)

where 

αi ≡ (2 i − 1) π/ 2 and α2 
i, j ≡ α2 

i + α2 
j , i, j = 1 , 2 , · · · (18)

The volumetric flow rate over the first quadrant is given by 

Q = 

4 G H 

4 

η

∞ ∑ 

i =1 

∞ ∑ 

j=1 

1 

α2 
i, j 

α2 
i 
α2 

j 

(19)
n the transient flow, the pressure gradient is suddenly set to zero

nd the steady-state solution serves as the initial condition. One then

nds that [19] 

 x ( y, z, t ) = 

4 G H 

2 

η

∞ ∑ 

i =1 

∞ ∑ 

j=1 

( −1 ) 
i + j 

α2 
i, j 

αi α j 

× cos ( αi y/H ) cos 
(
α j z/H 

)
exp (−α2 

i, j νt/ H 

2 ) (20)

nd 

(t) = 

4 G H 

4 

η

∞ ∑ 

i =1 

∞ ∑ 

j=1 

1 

α2 
i, j 

α2 
i 
α2 

j 

exp (−α2 
i, j νt/ H 

2 ) (21)

avier slip 

In the case of Navier slip (zero slip yield stress), non-uniform slip

ccurs everywhere along the walls for any non-zero value of the pres-

ure gradient. One gets 

 x ( y, z ) = 

4 G H 

2 

η

∞ ∑ 

i =1 

∞ ∑ 

j=1 

A i, j 

1 

λ2 
i, j 

cos ( λi y/H ) cos ( λ j z/H ) (22)

here 

i tan λi = B and λ2 
i, j ≡ λ2 

i + λ2 
j , i, j = 1 , 2 , · · · (23)

nd 

 ≡ β H 

η
(24)

s the slip number. Moreover, 

 i, j ≡
sin ( λi ) sin ( λ j ) 

λi λ j ( 1 + sin 

2 ( λi ) /B )( 1 + sin 

2 ( λ j ) /B ) 
(25)

hough equivalent, the present representation of the solution is sub-

tantially simpler than that used previously by Kaoullas and Georgiou

20] . It should also be noted that the slip number defined in ( 24 ) is

he inverse of the slip number used in [20] . The volumetric flow rate

s given by: 

 = 

4 G H 

4 

η

∞ ∑ 

i =1 

∞ ∑ 

j=1 

A i, j 

sin ( λi ) sin ( λ j ) 

λ2 
i, j 

λi λ j 

(26)
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Fig. 7. Evolution of the volumetric flow rate during cessation of Newtonian flow in the case of non-zero slip yield stress with B = 1 and various values of the imposed pressure 

gradient ( G ∗= 1, 2, and 3), which correspond to the three different flow regimes illustrated in Fig. 2 . The circles indicate the critical times for a cessation of slip ( t ∗c for G ∗ = 2 and t ∗c1 

and t ∗c2 for G ∗ = 3 ). The grey lines are the analytical predictions of Eq. (41) which coincide with the numerical ones. 

Fig. 8. Unyielded areas (shaded) and velocity contours in cessation of Bingham flow 

in a square duct ( α = 1) with no slip at the wall for λ = 0.2. 
Fig. 9. Evolution of the velocity in cessation of Bingham flow in a square duct ( α = 1) 

with no slip at the wall for λ = 0.2. 
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Fig. 10. Unyielded areas (shaded) and velocity contours in cessation of Bingham flow 

in a square duct with no slip at the wall for λ = 0.2 obtained with a 40 × 40-element 

mesh. 

 

 

 

 

 

 

 

 

Fig. 11. Unyielded areas (shaded) and velocity contours in cessation of Bingham flow 

in a square duct with no slip at the wall for λ = 0.4. 
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The velocity and the volumetric flow rate in the case of cessation

are 

u x ( y, z, t ) = 

4 G H 

2 

η

∞ ∑ 

i =1 

∞ ∑ 

j=1 

A i, j 

1 

λ2 
i, j 

cos ( λi y/H ) cos 
(
λ j z/H 

)

× exp (−λ2 
i, j νt/ H 

2 ) (27)

and 

Q(t) = 

4 G H 

4 

η

∞ ∑ 

i =1 

∞ ∑ 

j=1 

A i, j 

sin ( λi ) sin 

(
λ j 

)
λ2 

i, j 
λi λ j 

exp (−λ2 
i, j νt/ H 

2 ) (28)

Slip with non-zero slip yield stress 

In the case of non-zero slip yield stress, there is no wall slip below

the critical pressure gradient G c 1 at which the wall shear stress at the

middle of the duct wall is equal to τ c . From Eq. (17) we find that the

steady-state wall shear stress along the wall y = H is 

τw 

( z ) = 4 GH 

∞ ∑ 

i =1 

∞ ∑ 

j=1 

( −1 ) 
j+1 

cos ( α j z/H ) 

α2 
i, j 

α j 

(29)

For G = G c1 we have τw 

(0) = τc . Hence 

G c1 = 

τc 

4 H 

∑ ∞ 

i =1 

∑ ∞ 

j=1 
(−1) 

j+1 

α2 
i, j 

α j 

(30)
t  
he second critical value of the pressure gradient, G c 2 , above which

on-uniform slip occurs everywhere is found to be given by: 

 c2 = 

τc 

4 H 

∑ ∞ 

i =1 

∑ ∞ 

j=1 
A i, j λi sin λi cos λ j 

λ2 
i, j 

(31)

he two critical values of the pressure gradient define three flow

egimes as follows: (i) for G ≤ G c 1 , no slip occurs and the velocity and

olumetric flow rates are given by the no-slip solution, i.e. by Eqs. (17)

nd ( 19 ); (ii) for G c 1 < G ≤ G c 2 , slip occurs in the middle of the edges

ut not near the corners and the problem is not amenable to analyti-

al solution; (iii) for G > G c 2 , non-uniform slip occurs everywhere and

he velocity and the volumetric flow rate are given respectively by 

 x ( y, z ) = 

4 G H 

2 

η

∞ ∑ 

i =1 

∞ ∑ 

j=1 

A i, j 

1 

λ2 
i, j 

cos ( λi y/H ) cos 
(
λ j z/H 

)
− τc H 

ηB 

(32)

nd 

 = 

4 G H 

4 

η

∞ ∑ 

i =1 

∞ ∑ 

j=1 

A i, j 

sin ( λi ) sin 

(
λ j 

)
λ2 

i, j 
λi λ j 

− 4 τc H 

3 

ηB 

(33)

here A i, j and λi have already been defined in the Navier-slip

ase. 

The form of the time-dependent solution changes depending on

he regime of the steady-state. If G ≤ G , then the time-dependent
c 1 
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Fig. 12. Evolution of the velocity in cessation of Bingham flow in a square duct ( α = 1) 

with no slip at the wall for λ = 0.4. 

s  

h

u

a

Q

T  

i  

b  

e

∑

N

 

o  

Fig. 13. Unyielded areas (shaded) and velocity contours in cessation of Bingham flow 

in a square duct with no slip at the wall for Bn = 1. 

τ  

o

G

a

G

u

=

Q

olution is given simply by Eqs. (20) and ( 21 ). If G > G c 2 , we

ave 

 x ( y, z, t ) = 

4 G H 

2 

η

∞ ∑ 

i =1 

∞ ∑ 

j=1 

A i, j 

1 

λ2 
i, j 

cos ( λi y/H ) 

× cos ( λ j z/H ) exp (−λ2 
i, j νt/ H 

2 ) − τc H 

ηB 

(34) 

nd 

(t) = 

4 G H 

4 

η

∞ ∑ 

i =1 

∞ ∑ 

j=1 

A i, j 

sin ( λi ) sin 

(
λ j 

)
λ2 

i, j 
λi λ j 

exp (−λ2 
i, j νt/ H 

2 ) − τc H 

3 

ηB 

(35) 

he above solution holds only till a critical time, t c , at which the veloc-

ty at the duct corners becomes zero. After this time, the flow cannot

e solved analytically. This critical time can be found by solving the

quation 

∞ 

 

i =1 

∞ ∑ 

j=1 

A i, j 

1 

λ2 
i, j 

cos λi cos λ j exp (−λ2 
i. j νt c / H 

2 ) = 

τc 

4 HBG 

(36) 

on-dimensionalization 

For the flow with non-zero slip yield stress, we use a different set

f scales, i.e. we scale the velocity by H τ c / η, the pressure gradient by
c / H, y and z by H , and time by H 

2 / ν . The non-dimensionalized values

f the critical pressure gradients are 

 

∗
c1 = 

1 

4 

∑ ∞ 

i =1 

∑ ∞ 

j=1 
(−1) 

j+1 

α2 
i, j 

α j 

(37) 

nd 

 

∗
c2 = 

1 

4 

∑ ∞ 

i =1 

∑ ∞ 

j=1 
A i, j λi sin λi cos λ j 

λ2 
i, j 

(38) 

The velocity and volumetric flow rate can be written as follows: 

 

∗
x ( y 

∗, z ∗, t ∗) 

 

⎧ ⎪ ⎨ 

⎪ ⎩ 

4 G 

∗ ∞ ∑ 

i =1 

∞ ∑ 

j=1 

( −1 ) 
i + j 

α2 
i, j 

αi α j 
cos ( αi y 

∗) cos 
(
α j z 

∗) exp (−α2 
i, j 

t ∗) , G 

∗ ≤ G 

∗
c1 

4 G 

∗ ∞ ∑ 

i =1 

∞ ∑ 

j=1 

A i, j 
1 

λ2 
i, j 

cos ( λi y 
∗) cos ( λ j z 

∗) exp (−λ2 
i, j 

t ∗) − 1 
B 
, G 

∗ ≥ G 

∗
c2 

(39) 

and 

 

∗( t ∗) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

4 G 

∗ ∞ ∑ 

i =1 

∞ ∑ 

j=1 

1 
α2 

i, j 
α2 

i 
α2 

j 

exp (−α2 
i, j 

t ∗) G 

∗ ≤ G 

∗
c1 

4 G 

∗ ∞ ∑ 

i =1 

∞ ∑ 

j=1 

A i, j 
sin ( λi ) sin ( λ j ) 

λ2 
i, j 

λi λ j 
exp (−λ2 

i, j 
t ∗) − 1 

B 
, G 

∗ ≥ G 

∗
c2 

(40) 
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Fig. 14. Unyielded areas (shaded) and velocity contours in cessation of Bingham flow 

in a square duct with no slip at the wall for Bn = 10. 
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In the above two expressions, the solution for G 

∗ ≤ G 

∗
c1 

holds at all

times, while the solution for G 

∗ > G 

∗
c2 

holds only till the critical time

 

∗
c at which slip at the duct corner ceases. The time t ∗c is the root of
Fig. 15. Evolution of the volumetric flow rates in cessation of Bingham flow 
he following equation: 

∞ 

 

i =1 

∞ ∑ 

j=1 

A i, j 

1 

λ2 
i, j 

cos λi cos λ j exp (−λ2 
i, j t 

∗
c ) = 

1 

4 B G 

∗ (41)

. Numerical results on cessation of Newtonian flow 

In this section, we present numerical results for the Newtonian

ow when the slip yield stress is non-zero. Hence, all variables are

on-dimensionalized with the scales of Section 3 . The finite element

ethod with biquadratic elements for the velocity has been imple-

ented and an 100 × 100-element mesh has been employed for solv-

ng the flow in the first quadrant (thus taking the symmetries of the

roblem into account). For all the transient Newtonian simulations in

his section, the fully-implicit Euler method with a constant timestep

t ∗ = 0 . 0 0 01 has been used. 

The steady-state flow curve, i.e. the plot of the volumetric flow

ate versus the imposed pressure gradient, for B = 1 is shown in

ig. 1 . Three flow regimes are defined by the two critical values

 

∗
c1 

= 1 . 4808 and G 

∗
c2 

= 2 . 6290 : (a) for G 

∗ ≤ G 

∗
c1 

, there is no slip along

he duct walls; (b) for G 

∗
c1 < G 

∗ ≤ G 

∗
c2 slip is partial, i.e. it occurs in the

iddle of each edge and not close the corners; and (c) for G 

∗ > G 

∗
c2 

lip occurs everywhere along the boundary. The velocity contours for

hree representative values of the pressure gradient, i.e. G 

∗= 1, 2, and

, corresponding to the three regimes are also illustrated in Fig. 1. 

The evolution of the velocity contours in the case of cessation for

he three selected values of the pressure gradient ( G 

∗= 1, 2, and 3) is

llustrated in Figs. 2–4 . When G 

∗= 1 ( Fig. 2 ), there is no wall slip at

ll times. When G 

∗= 2 ( Fig. 3 ), partial slip is observed only initially.

s the velocity is reduced under the influence of viscosity, wall slip

ventually ceases at a critical time t ∗c = 0 . 1037 after which the ve-

ocity vanishes in a fashion similar to that of the no-slip case. In this

ork it is assumed that slip at a given wall point ceases when the ve-

ocity becomes less than the 10 −4 tolerance used in our simulations.

ig. 5 shows the evolution of the maximum velocity value at the duct

enter, u ∗max , and that of the maximum slip velocity at the middle of

he duct edges, u ∗w, max . It is clear that the former decays fast initially

nd then goes exponentially to zero, whereas the latter decays fast

nd becomes zero at a finite time, t ∗c . 
When G 

∗ = 3 ( Fig. 4 ), slip occurs everywhere along the walls ini-

ially till the critical time t ∗c1 = 0 . 0674 at which the slip velocity at

he corners becomes zero. In this initial regime the numerical so-

ution coincides with the analytical one and the computed value of

 

∗
c1 is indeed the root of Eq. (40) . After that time, slip at the wall is
in a square duct with no slip at the wall for various Bingham numbers. 
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Fig. 16. Theoretical upper bound for the stopping time in cessation of Poiseuille flow in a square duct. The circles correspond to the numerical stopping times. 

Fig. 17. Cessation of Bingham flow in a square duct with no wall slip for Bn = 10: (a) 

Unyielded areas (shaded) and velocity contours; (b) Evolution of the volumetric flow 

rate ( Q ) and the maximum velocity at the duct center ( u max ). 
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artial till the critical time t ∗
c2 

= 0 . 3503 at which slip ceases. In

ig. 6 , we plotted the evolution of the maximum velocity ( u ∗max ), the

aximum slip velocity at the middle of the edges ( u ∗w, max ), and the

inimum slip velocity at the corners ( u ∗
w, min 

). Obviously, u ∗
w, min 

and

 

∗
w, max vanish at t ∗c1 and t ∗c2 , respectively. 

The numerical volumetric flow rates for all the cases we consid-

red here ( G 

∗ = 1, 2, and 3) are plotted in Fig. 7 along with their

nalytical counterparts for G 

∗ = 1 and 3. The agreement with the

nalytical results is excellent. Even though the analytical solution for

 

∗= 3 holds only up to t ∗
c1 

, we have chosen to plot it outside the full-

lip regime in order to make the comparison easier. Once slip ceases

 t ∗ ≥ 0when G 

∗ = 1, t ∗ ≥ t ∗c when G 

∗ = 2, and t ∗ ≥ t ∗c2 when G 

∗ = 3) the

olumetric flow rate decays exponentially at the same rate. When slip

ccurs everywhere along the wall (e.g. for G 

∗ = 3 and t ∗ < t ∗
c1 

) the de-

ay of the volumetric flow rate is slower. It is interesting to note that

n the case of partial slip (e.g. for G 

∗ = 2 and t ∗ < t ∗c or for G 

∗ = 3 and

ust before t ∗
c2 

) the decay is slightly faster than after the cessation of

all slip. The bending of the curve is due to the constant term that

ppears in the expression of the volumetric flow rate in Eq. (40) . 

. Numerical results on cessation of Bingham plastic flow 

The finite element method with biquadratic basis functions for

he velocity was used for solving the nonlinear governing equation

nd the convergence tolerance was set to 10 −4 . In order to determine

ccurately the yielded and unyielded regions with a regularization

ethod, one needs to employ fine meshes and a rather high value of

he regularization parameter. This was also emphasized in our pre-

ious work on the steady-state flow [1] . The “unyielded” areas have

een determined as the areas where τ∗ ≤ Bn (von Mises criterion).

nless otherwise indicated, we used a 100 × 100-element mesh with

 = 10 6 to obtain the results of this section. Using such a high value

f M is necessary in order to accurately determine the unyielded re-

ions but also to obtain good estimates of the stopping times. 

In general, time-dependent Bingham flows require smaller time-

teps than their Newtonian counterparts. In the beginning of the ces-

ation flow, we found it necessary to reduce the time step down to

.001 times its nominal value �t ∗ and gradually increase it up to its

ominal value at t ∗ = �t ∗. Another observation we made was that

oarser meshes require even smaller time steps in order to avoid di-

ergence. Unless otherwise indicated, for the Bingham plastic simula-

ions we used �t ∗ = 0 . 0 0 0 01 , a rather low value, which was partially

ictated by the use of a fine mesh and the huge value for M . The con-

ergence of the results has been checked by means of comparisons to
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Fig. 18. Cessation of Bingham flow in a square duct with wall slip for Bn = 10 and 

B = 100: (a) Unyielded areas (shaded) and velocity contours; (b) Evolution of the vol- 

umetric flow rate ( Q ), the maximum velocity at the duct center ( u max ), the maximum 

slip velocity at the middle of the duct wall ( u w,max ), and the minimum slip velocity at 

the duct corner ( u w,min ). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19. Cessation of Bingham flow in a square duct with wall slip for Bn = 10 and 

B = 20: (a) Unyielded areas (shaded) and velocity contours; (b) Evolution of the vol- 

umetric flow rate ( Q ), the maximum velocity at the duct center ( u max ), the maximum 

slip velocity at the middle of the duct wall ( u w,max ), and the minimum slip velocity at 

the duct corner ( u w,min ). 
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solutions obtained with smaller and/or bigger time steps in several

cases. For simplicity, the stars denoting dimensionless variables will

be dropped hereafter. 

5.1. No wall slip 

We first obtained results with the initial condition corresponding

to a given fixed pressure gradient which is suddenly set to zero. More

specifically, results have been obtained for different values of the pa-

rameter 

λ ≡ 1 

G 

(42)

In Fig. 8 , we show the evolution of the velocity and of the

yielded/unyielded regions for λ = 0.2. We can observe how the plug

core and the stagnant corner regions increase in size and eventually

merge causing the flow to stop. Due to the no-slip boundary condition

the merging curve always lies inside the duct. This has also been ob-

served by Muravleva and Muravleva [17] who noted that the stagnant
egions just before cessation surround the entire boundary contour.

ig. 9 shows the 3D graph of the velocity (note that the y -axis scales

re reduced considerably just before cessation). To demonstrate the

mportance of mesh refinement, we show in Fig. 10 the results ob-

ained with a 40 × 40-element mesh. While the velocity is essentially

he same, the calculated unyielded regions are not smooth. 

Figs. 11 and 12 show the evolution of the solution when λ = 0.4.

iven that increasing λ is equivalent to reducing the imposed pres-

ure gradient, the flow ceases much faster in this case. 

Results have also been obtained when the volumetric rate is

mposed initially ( Q = 1) and the corresponding pressure gradient

which depends on the Bingham number) is suddenly set to zero. The

esults for Bn = 1 and 10 are presented in Figs. 13 and 14 , respectively.

ne observes that the merging curve of the unyielded regions moves

owards the walls as the Bingham number is increased, in agreement

ith the calculations of Muravleva and Muravleva [17] . Obviously,

he stopping time is reduced as the Bingham number is increased.

his is more clearly seen in Fig. 15 where we plot the evolution of the
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Fig. 20. Cessation of Bingham flow in a square duct with wall slip for Bn = B = 10: (a) 

Unyielded areas (shaded) and velocity contours; (b) Evolution of the volumetric flow 

rate ( Q ), the maximum velocity at the duct center ( u max ), the maximum slip velocity at 

the middle of the duct wall ( u w,max ), and the minimum slip velocity at the duct corner 

( u w,min ). 
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Fig. 21. Cessation of Bingham flow in a square duct with wall slip for Bn = 10 and 

B = 8: (a) Unyielded areas (shaded) and velocity contours; (b) Evolution of the volu- 

metric flow rate ( Q ), the maximum velocity at the duct center ( u max ), the maximum 

slip velocity at the middle of the duct wall ( u w,max ), and the minimum slip velocity at 

the duct corner ( u w,min ). 
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olumetric flow rates for Bn = 0, 0.1, 1, and 10. The numerical stop-

ing times, i.e. the times at which Q becomes 10 −3 were found to be

qual to 0.674, 0.267 and 0.0483 for Bn = 0.1, 1, and 10, respectively. 

It should be noted that using a very refined mesh may lead to con-

ergence difficulties in the final stages of cessation, i.e. when the ve-

ocity is close to zero and thus flat. In such a case the magnitude of

he rate-of-strain tensor is almost zero and thus the use of the regu-

arized constitutive equation becomes problematic. It seems that the

ain advantage of using a very fine mesh is the possibility of draw-

ng more accurate and smoother yielded regions for times very close

o complete cessation. But if convergence becomes difficult then the

nly other option is to reduce M , which again leads to inaccurate un-

ielded regions. 

The upper bound of Glowinski [15] for the cessation of Poiseuille

ow of a Bingham fluid is given by 

 f ≤
1 

α2 
1 , 1 

ln 

[
1 + 

α2 
1 , 1 

2 Bn 

‖ 

u x (y, z, 0) ‖ 

]
(43) 
here u x ( y, z , 0) is the initial velocity, i.e. the steady-state solution for

 given Bn and 

 

u x (y, z, 0) ‖ 

≡
[∫ 1 

0 

∫ 1 

0 

u 

2 
x (y, z, 0) d yd z 

]1 / 2 

(44) 

ince α2 
1 , 1 

= π2 / 2 , one gets 

 f ≤
2 

π2 
ln 

[
1 + 

π2 

4 Bn 

‖ 

u x (y, z, 0) ‖ 

]
(45) 

The above upper bound is plotted as function of the Bingham

umber in Fig. 16 , where the numerical stopping times for Bn = 0.1, 1,

nd 10 are also shown. These compare very well with the theory. The

ependence of the stopping time upper bound on the density and the

lastic viscosity, noted by Muravleva and Muravleva [17] , is included

n the time scaling we used ( ρH 

2 / μ) and in the definition of the Bing-

am number. Therefore, it is not necessary to investigate separately

he effects of these two material parameters. 
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Fig. 22. Evolution of the volumetric flow rate in cessation of Bingham flow in a square duct for Bn = 10 and various slip numbers. The predictions of Eq. (50) once the velocity 

becomes plug, plotted with dashed lines, are indistinguishable from their numerical counterparts. 
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5.2. Navier slip 

In order to visualize the combined effects of slip and viscoplas-

ticity during cessation, we consider once again the evolution of the

maximum velocity at the duct center ( u max ), the maximum slip ve-

locity at the middle of the wall ( u w , max ), and the minimum slip ve-

locity at the duct corner ( u w , min ). Obviously, in the absence of slip,

u w, max = u w, min = 0 . Moreover, if the growing inner unyielded core

reaches the wall, then u w, max = u max and if u w, min = u max , then the

velocity is plug. 

When the Navier-slip boundary condition is applied, the slip num-

ber B in Newtonian flow can take any value from zero (full slip)

to infinity (no-slip). In Bingham plastic flow, however, full-slip (i.e.

plug flow) is attained at a finite value of B , which turns out to be

B crit = Bn/ 
√ 

2 for a square duct [1] . The evolution of the above quan-

tities along with the unyielded regions and velocity contours for

Bn = 10 and various slip numbers in the range ( B crit , ∞ ) is illustrated in

Figs. 17–21 . Fig. 17 shows results for the no-slip case ( B = ∞ ). The

maximum and minimum slip velocities are of course zero and, as ex-

pected, u max is always higher than Q ; the two curves intersect only

when the flow ceases, i.e., when both quantities vanish. 

The results of Fig. 18 for B = 100 correspond to weak slip. It is ob-

served that the fluid decelerates faster at the duct center and much

slower at the duct corner. In fact, u w , min appears to remain constant

initially. Eventually, all the curves in Fig. 18 b merge at a finite time,

and the velocity becomes flat before it becomes zero. Our numeri-

cal experiments showed that the regularization method we used en-

counters severe difficulties once the velocity is almost plug, given

that the magnitude of the rate-of-strain tensor is zero. The small “un-

yielded islands” of Fig. 18 a at t = 0.044 are numerical artifacts due

to this phenomenon. As one can deduce from Fig. 18 b, the velocity

at this time is almost plug and the fluid is essentially unyielded in

the entire domain. The results of Fig. 19 for B = 20 correspond to

stronger slip. As the fluid decelerates, the central plug region grows

and reaches the wall. As a result, the curves of u w , max and u max merge.

The minimum slip velocity u w , min initially decays slowly and then

remains practically constant till the velocity becomes plug. Once it

touches the wall, the plug zone continues growing towards the corner

and the yielded region attains the shape of a right equilateral triangle

while the velocity contours are straight lines. Similar observations are

made in Figs. 20 and 21 , where slip is much stronger and the velocity

is plug except near the duct corners. 
a  
As mentioned above, when the velocity becomes almost plug the

egularization method starts failing. However, the flow can easily be

olved analytically. In the final stage of cessation the velocity is flat

nd thus equal to the slip velocity u w 

( t ). Obviously the wall shear

tress is everywhere the same, i.e. 

w 

( t ) ≡ B u w 

( t ) (46)

n this sliding regime one can assume that the shear stresses τyx and

zx vary linearly with y and z , respectively. Hence, 

yx = −τw 

( t ) y and τzx = −τw 

( t ) z (47)

rom the momentum equation we get 

d u w 

dt 
= 

∂ τyx 

∂y 
+ 

∂ τzx 

∂z 
= −2 τw 

( t ) (48)

ombining ( 45 ) and ( 47 ) leads to 

d u w 

dt 
= −2 B u w 

( t ) (49)

he solution of which is 

 w 

( t ) = u w 0 exp [ −2 B ( t − t 0 ) ] , t ≥ t 0 (50)

here t 0 denotes the critical time at which the velocity becomes uni-

orm and u w 0 = u w 

( t 0 ) . It is clear that the flow decays exponentially,

.e. it ceases at infinite time, unlike its no-slip counterpart. The same

esult was obtained by Damianou et al. [14] for the axisymmetric

oiseuille flow. It was also shown that in the case of a power-law-type

lip equation with a power exponent s , the stopping time is finite only

s s < 1. Hence, if 

w 

≡ Bu 

s 
w 

(51)

note that the definition of B is different) one finds that for s � = 1 

 w 

( t ) = 

[
u 

1 −s 
w 0 − 2 ( 1 − s ) B ( t − t 0 ) 

]1 / (1 −s ) 
, t ≥ t 0 (52)

Hence, the stopping time is finite only if s < 1, in which case 

 s = t 0 + 

u 

1 −s 
w 0 

2 ( 1 − s ) B 

(53)

The evolution of the volumetric flow rate is shown in Fig. 22 for

ifferent slip numbers. Once the flow becomes plug, Q decays expo-

entially following Eq. (49) . The predictions of the latter equation

re also plotted in Fig. 22 and coincide with the numerical solutions.
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Fig. 23. Evolution of the volumetric flow rate in cessation of Bingham flow in a square 

duct for Bn = 10: (a) No wall slip; (b) Navier slip with B = 20. 
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Fig. 24. Cessation of Bingham flow in a square duct with wall slip for Bn = B c = 10 and 

B = 0.1: (a) Unyielded areas (shaded) and velocity contours; (b) Evolution of the vol- 

umetric flow rate ( Q ), the maximum velocity at the duct center ( u max ), the maximum 

slip velocity at the middle of the duct wall ( u w,max ), and the minimum slip velocity at 

the duct corner ( u w,min ). 
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he computed values of the critical times for B = 100, 20 and 8

ere t 0 = 0.0459, 0.0334 and 0.0073 with u w0 = 0.0621, 0.3553 and

.8905, respectively. 

Fig. 23 summarizes the main differences between the no-slip 

nd Navier-slip cases. Application of the no-slip boundary condition

eads to finite stopping times. A stagnant unyielded region appears at

he corner which grows and merges with the central unyielded plug

egion (which also grows). In the presence of Navier slip, the fluid

ear the duct corners is always yielded; hence, no stagnant unyielded

egions are observed. The central plug region grows, reaches the

alls and then expands towards the corner to cover the entire flow

omain at a certain critical time before cessation; beyond that time

he plug velocity decays exponentially, i.e. the theoretical stopping

ime is infinite. 

.3. Slip with non-zero slip yield stress 

As already mentioned, in this work we consider only the possi-

ility of Bn = B c . The initially applied pressure gradient is such that

he initial volumetric flow rate is unity. As expected, the cessation
olutions for non-zero slip yield stress combine features of both the

avier-slip and no-slip solutions. 

Obviously, when the imposed pressure gradient is G ≤ G c 1 , the no-

lip boundary condition applies everywhere at all times and the re-

ults of Section 5.1 apply. If G > G c 2 , then slip occurs everywhere only

nitially till a critical time t c at which slip at the duct corners ceases.

ence initially there is no stagnant region near the corners as is the

ase when Navier slip is applied. For t > t c , stagnant corner regions

evelop and grow to merge with the inner plug region, in a fashion

imilar to that of the no-slip case. The merging curve, however, does

ot have to lie inside the duct, since slip allows the possibility for the

ore plug region to reach the wall and expand towards the corners.

his behavior of the solution is illustrated in Fig. 24 where results for

f Bn = B c = 10 and B = 0.1 are shown. Since the core plug expends

o the wall the maximum slip velocity coincides with the maximum

elocity. The evolution of the volumetric flow rate along with rep-

esentative snapshots of the yield/unyielded regions is illustrated in

ig. 25 . Finally, if G < G < G , when cessation starts there is already
c 1 c 2 
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Fig. 25. Evolution of the volumetric flow rate in cessation of Bingham flow in a square 

duct for Bn = B c = 10 and B = 0.1. 
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a stagnant region near the corners and the evolution of the flow is

similar to that of Fig. 24 after the critical time t c . 

6. Conclusions 

We have solved numerically the cessation of Bingham-plastic

Poiseuille flow in a square duct with wall slip and non-zero slip yield

stress using regularized versions of both the constitutive and the slip

equations. The analytical solutions for the Newtonian flow have also

been provided for the no-slip, the Navier-slip, and the non-zero slip

yield stress cases. These served as good tests for the numerical code

and the regularized slip equation. 

The combined effects of viscoplasticity and slip on the flow have

been investigated and the evolution of the unyielded regions has

been studied. In the case of no-slip, the unyielded plug core and the

corner stagnant zones grow during cessation and merge inside the

duct causing the flow to stop at a finite time. The numerical stop-

ping times are in excellent agreement with the theoretical estimates

of Glowinski [15] . It has been demonstrated that when Navier slip is

applied there are no stagnant regions near the duct corners. The plug

core grows during cessation reaching the wall and continues growing

towards the corners and the shrinking yielded corner region acquires

the shape of an equilateral orthogonal triangle. Eventually the veloc-

ity becomes flat at a finite time before complete cessation. A simple

analytical expression describes the decay of the flat velocity. This is

exponential and thus the theoretical stopping time is infinite. Finally,

when the slip yield stress is non-zero, the cessation of the flow de-

pends on the value of the pressure gradient corresponding to the ini-

tial condition. When G ≤ G c 1 , the no-slip time-dependent solution

applies. When the initial condition corresponds to a pressure gradi-

ent in the intermediate regime ( G c 1 < G < G c 2 ), there occurs partial

wall slip and there are stagnant regions at the corners initially. These

grow and merge with the expanding plug core in a fashion similar to

that of the no-slip case. When G ≥ G c 2 , slip occurs everywhere ini-

tially; as a result, there are no stagnant regions near the duct corners.
hese appear only when slip at the duct corners ceases at the critical

ime t c . After this critical time, the flow evolves as in the intermediate

egime. 

The regularized models generally provide satisfactory approxima-

ions of the ideal discontinuous equations provided that the regular-

zation parameters are sufficiently high. Their performance, however,

ecomes problematic not only when the velocity is close to zero but

lso when it is almost flat. The latter phenomenon is encountered

ith Bingham fluids when Navier slip is applied, i.e. when the slip

ield stress is zero; the velocity becomes plug at a finite critical time

efore complete cessation and then decays exponentially. 

A straightforward extension of the present work is the solution

f the Herschel–Bulkley flow in a duct of rectangular cross section

ith wall slip, allowing the possibility of the slip yield stress being

ifferent from the yield stress, as in Ref. [13] . The study of the start-

p flow in order to verify the jerk wave hypothesis for the motion of

he yield surfaces, as suggested by Huilgol [21] , is also of interest. 
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