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a b s t r a c t 

The development of Bingham plastic flow in tubes and channels is investigated numerically using the 

Papanastasiou regularization and finite element simulations. It is assumed that slip occurs along the wall 

following Navier’s law, according to which the slip velocity varies linearly with the wall shear stress. 

Alternative definitions of the development length are discussed and the combined effects of slip and 

yield stress at low and moderate Reynolds numbers are investigated. It is demonstrated that even for the 

Newtonian channel flow using the conventional centreline development length is not a good choice when 

slip is present. Similarly, the development length definition proposed by Ookawara et al. [J. Chem. Eng. 

Japan 33, 675-678 (20 0 0)] for viscoplastic flows results in misleading conclusions regarding the effect of 

yield stress on flow development. To avoid such inconsistencies a global development length is employed. 

In general, the global development length is monotonically increasing with the Reynolds and Bingham 

numbers. As slip is increased, the latter length initially increases exhibiting a global maximum before 

vanishing rapidly slightly above the critical point corresponding to sliding flow. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The Newtonian flow-development or entry-flow problem in

ubes of various cross sections was studied systematically (experi-

entally and numerically) in the late 1960s and in the 1970s un-

er the assumption that the fluid adheres to the wall [1-5] . How-

ver, the problem has been revisited by many investigators in the

ast few years due to its relevance in micro-/nano-fluidics and in

iomechanics and the need to further investigate non-Newtonian,

all slip, and oscillatory flow effects [5–7] . Studies concerning the

ow development of non-Newtonian flows have been reviewed by

anner [8] . More recent studies include power–law fluids [6] , Bing-

am plastic materials [9,10] , Oldroyd-B and Phan-Thien-Tanner flu-

ds [11] , and Sisco fluids [12] . 

The development or entrance length, L ∗, i.e. the length required

or steady-state laminar pipe flow to fully develop from a uniform

o the corresponding Poiseuille distribution, is the main parame-

er of interest. L ∗ is most commonly defined as the length required

or the cross-sectional maximum velocity to attain 99% of its fully

eveloped value [4] . This definition is obviously based on the as-

umption that the flow develops more slowly along the axis of

ymmetry than elsewhere. As discussed below, this is not always

he case, especially in the presence of wall slip or with yield stress

uids. In general, the dimensionless development length is defined
∗ Corresponding author. Tel.: + 35722892612; fax: + 35722895352. 
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y L ≡ L ∗/L ∗s , where L ∗s is a characteristic length, e.g. the diameter

 

∗ for a pipe or the slit gap 2 H 

∗ for a channel. Note that through-

ut this paper dimensional quantities are denoted by starred sym-

ols and thus symbols without stars correspond to dimensionless

uantities and numbers. 

As expected, the development length increases with inertia. In

act, the main concern in the Newtonian entry-flow literature was

o obtain empirical correlations relating the development length

o the Reynolds number, Re , with the emphasis given on moder-

te and high Reynolds numbers. As noted by Sinclair [5] , the use

f these correlations for low Reynolds numbers is questionable. It

eems that the expressions proposed by Durst et al. [13] , i.e., 

 = [ (0 . 619) 1 . 6 + (0 . 0567 Re ) 1 . 6 ] 1 / 1 . 16 for pipe flow (1) 

nd 

 = [ (0 . 631) 1 . 6 + (0 . 0442 Re ) 1 . 6 ] 1 / 1 . 16 for channel flow (2) 

re the most accurate. However, their predictions for zero Reynolds

umbers are still only approximate. For example, their expression

or a channel gives L = 0.631 which disagrees with the extrapolated

alue of 0.6284 computed by Ferrás et al. [7] and the converged

alue of 0.6286 reported by Kountouriotis et al. [14] . 

Apart from inertia and geometry, other factors affecting the de-

elopment length are wall slip and rheology. Wall slip can be im-

ortant even in Newtonian entry flows in microfluidic and nanoflu-

dic devices [15,16] . The effect of wall slip on the Newtonian flow

evelopment in a channel has been investigated numerically by

http://dx.doi.org/10.1016/j.jnnfm.2016.04.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jnnfm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2016.04.008&domain=pdf
mailto:georgios@ucy.ac.cy
http://dx.doi.org/10.1016/j.jnnfm.2016.04.008
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Table 1 

Characteristics of four uniform and four graded meshes with 

L mesh = 20. 

Mesh Smallest Number of Number Number of 

element size elements of nodes unknowns 

M1 0 .2 500 2211 5029 

M2 0 .1 20 0 0 8421 19,054 

M3 0 .05 80 0 0 32,841 74,104 

M4 0 .025 32,0 0 0 129,681 292,204 

GM1 0 .01 15,960 64,757 149,934 

GM2 0 .005 18,102 73,355 165,287 

GM3 0 .002 42,581 172,161 387,823 

GM4 0 .001 45,696 184,041 414,408 

Fig. 1. Development of axisymmetric Poiseuille flow with wall slip: geometry and 

boundary conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Various definitions of the development length in terms of the function 

L (r) ; r 0 is the radius of the unyielded core in fully-developed flow and r̄ 

is the radius at which the fully-developed velocity is unity ( ̄u ( ̄r ) = 1 ). 

Development length Definition 

Classical or centerline development length [4] L c ≡ L (0) 

Wall development length [14] L w ≡ L (1) 

Viscoplastic development length as defined by 

Ookawara et al. [9] 

L 95 ≡ L (0 . 95 r 0 ) 

Accelerating region development length (present 

work) 

L m ≡ max L 
0 ≤r≤r̄ 

Global development length (present work) L g ≡ max L 
0 ≤r≤1 
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Ferrás et al. [7] by means of finite volume simulations. They em-

ployed the Navier-slip equation [17] : 

τ ∗
w 

= β∗u 

∗
w 

(3)

where τ ∗
w 

is the wall shear stress, β∗ is the slip coefficient, and u ∗w 

is the slip velocity. The latter is defined as the relative velocity of

the fluid with respect to that of the wall. In general, the slip co-

efficient β∗ incorporates the effects of temperature, normal stress

and pressure, and the characteristics of the fluid/wall interface [18] .

The no-slip boundary condition is recovered from Eq. (3) when

β∗ → ∞ . In the other extreme, i.e., when β∗ = 0 , the fluid slips

perfectly. 

Ferrás et al. [7] showed that the development length L initially

increases and then decreases with wall slip (i.e. as β∗ is reduced)

exhibiting a maximum and that slip suppresses the velocity over-

shoots observed close to the wall near the entrance. They also ex-

tended the empirical expression of Durst et al. [13] for the devel-

opment length in a channel including the slip parameter. Koun-

touriotis et al. [14] reproduced the results for the planar flow and

solved the axisymmetric entry flow problem by means of finite

elements. They also pointed out that, in addition to the classical

centreline development length, a wall development length is also

relevant in the presence of finite wall slip. They defined the wall

development length , L w 

, as the length required for the slip veloc-

ity to attain 101% of its fully developed value. In what follows, we

will conveniently be using the symbol L c for the classical devel-

opment length. Kountouriotis et al. [14] showed that L c is greater

than L w 

only in the axisymmetric flow. In the case of the chan-

nel flow, the wall development length is greater than the classical

development length, which means that the flow development near

the wall is slower. This effect becomes more pronounced at higher

Reynolds numbers. Therefore, in the presence of wall slip, consid-

ering the classical definition of the development length is not al-

ways a safe criterion for assuring flow development across the pipe

cross-section. As discussed below, this might also be the case if the

fluid is not Newtonian. 

In the present work, we are interested in viscoplastic materials,

i.e. in materials with a yield-stress, which form a very large class

including materials of industrial importance, such as suspensions,
astes, foodstuff, pharmaceutical products, biofluids, etc [19,20] .

ield stress fluids behave like solids when they are not sufficiently

tressed and flow like fluids when the yield stress, τ ∗
0 , is exceeded.

iscoplastic behavior is thus described by two-branch constitutive

quations, the simplest of which is the Bingham-plastic equation

21] : 
 

 

 

˙ γ ∗ = 0 , τ ∗ ≤ τ ∗
0 

τ∗ = 

(
τ ∗

0 

˙ γ ∗ + μ∗
)

˙ γ ∗, τ ∗ > τ ∗
0 

(4)

here τ∗ is the stress tensor, μ∗ is the plastic viscosity, and ˙ γ∗
is

he rate-of-strain tensor. The latter is defined by 

˙ 
∗ ≡ ∇ 

∗u 

∗ + ( ∇ 

∗u 

∗) T (5)

here u 

∗ is the velocity vector and the superscript T denotes the

ranspose. The magnitudes of ˙ γ∗
and τ∗, denoted by ˙ γ ∗ and τ ∗, are

efined by ˙ γ ∗ ≡
√ 

˙ γ∗
: ˙ γ∗

/ 2 and τ ∗ ≡
√ 

τ∗ : τ∗/ 2 , respectively. The

ingham model is reduced to the Newtonian model when the yield

tress is zero. Other common viscoplastic constitutive models used

n the literature include the Herschel-Bulkley and Casson models

22] . 

In flows of an ideal yield-stress fluid, i.e. of a fluid obeying

 constitutive equation with two distinct branches, the flow do-

ain consists of the so-called unyielded ( τ ∗ ≤ τ ∗
0 ) and yielded re-

ions ( τ ∗ > τ ∗
0 

) where the two branches of the constitutive equa-

ion apply. Unyielded regions include zones where the material

oves undeformed as a rigid body and dead zones where it is

tagnant. Determining these regions is a key computational chal-

enge with viscoplastic fluid flows, especially in two- and three-

imensional flows [23] . This issue is resolved by using the Aug-

ented Lagrangian Methods (ALMs) which are based on the vari-

tional formulation of the Navier-Stokes equations and employ op-

imization algorithms to determine the flow solution [23] . These

ethods are exact in the sense that they respect the discontinu-

us form of the constitutive equation. However, they are generally

lower and more difficult to implement than regularization meth-

ds [23] , which are discussed below. 

An alternative approach is to use the so-called regularization

ethods in which the constitutive equation is actually modified by

ntroducing an additional parameter in order to combine the two

ranches of Eq. (4) into one smooth function, so that the result-

ng regularized equation applies everywhere in the flow field in

oth yielded and (practically) unyielded regions. The most popular

egularization in the literature is that proposed by Papanastasiou

24] : 

∗ = 

{
τ ∗

0 [ 1 − exp ( −m 

∗ ˙ γ ∗) ] 
˙ γ ∗ + μ∗

}
˙ γ∗

(6)

here m 

∗ is the stress growth exponent, which has dimen-

ions of time. For sufficiently large values of m 

∗ the Papanasta-

iou model provides a satisfactory approximation of the Bingham-

lastic model. The regularized approach is easier to implement but
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Fig. 2. Definitions of various development lengths. (a) The development length as a 

function of the radial distance for Re = 0, Bn = 2, and B = 20. (b) The fully-developed 

velocity profile. The vertical line corresponds to the yield point and the symbols 

denote the radial positions at which the various development lengths, L c , L 95 , L m , L g 
and L w , are calculated. 

e  

o  

c  

M  

A  

B

 

c  

s  

s  

t  

u  

t  

e  

W  

d  

a  

b

 

w  

d  

s  

Fig. 3. The development length as a function of the transversal coordinate in the 

case of creeping ( Re = 0) Newtonian flow with no wall slip: (a) Axisymmetric flow; 

(b) Planar flow. The classical development length L c coincides with the global de- 

velopment length, L g , only in the axisymmetric flow. 
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liminates yield surfaces replacing unyielded regions with regions

f very high viscosity. The interface of yielded /“unyielded” regions

an approximately be tracked down a posteriori by using the von

ises criterion τ ∗ = τ ∗
0 

[20] . The advantages and disadvantages of

LMs and regularization methods have been recently reviewed by

almforth et al. [23] . 

Wilson and Taylor [25] noted that in the case of an ideal dis-

ontinuous yield-stress fluid the entry flow is kinematically impos-

ible and argued that to permit the flow development of a yield

tress fluid, the usual ideal (discontinuous) models must be relaxed

o permit some deformation of the unyielded material. Hence, reg-

larizing the constitutive equation seems to be appropriate. In

heir analysis of the channel entry problem, Wilson and Taylor

mployed the biviscosity model [25] . Subsequently, Al Khatib and

ilson [26] calculated the approach to parallel flow by means of

ecaying eigenfunctions and showed that as the biviscosity model

pproaches the ideal Bingham model the approach to parallel flow

ecomes infinitely delayed. 

Early works on viscoplastic flow development were concerned

ith high Reynolds number flows, i.e., they ignored the diffusion-

ominated case [10] . These were also based on the use of the clas-

ical centerline development length L c . It was thus incorrectly pre-
icted that the development length vanishes in creeping flow. The

se of L c also lead to the wrong conclusion that the flow develops

aster as the Bingham number is increased. For example, Vradis et

l. [27] used an iterative finite difference technique on a staggered

rid to solve Bingham plastic flow development in a pipe and re-

orted that the velocity profiles develop faster with higher values

f the yield stress, which “is to be expected given the increase of

he core radius.” Similarly, Dombrowski et al. [28] studied the en-

ry flow of a Bingham plastic in a pipe for values of the yield stress

uch that the relative plug radius is in the range from 0.5 to 0.9

nd reported that the classical development length is much shorter

han that of a Newtonian fluid. 

Ookawara et al. [9] were the first to observe that the flow near

he centerline develops much faster than near the yield point. They

hus proposed an alternative definition for the development length

s the axial distance required for the velocity to reach 99% of the

alculated maximum value at a radial location corresponding to

5% of the plug radius. We will introduce the symbol L 95 for that

evelopment length. Ookawara et al. [9] justified their choice by
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Fig. 4. Global, centerline, and wall (dashed) development lengths in Newtonian 

flow as functions of the slip number: (a) Axisymmetric flow; (b) Planar flow. The 

classical development length L c coincides with the global development length L g 
only in the axisymmetric flow. In the planar flow L g coincides with L w (which is 

always greater than L c ) only when slip is moderate or strong. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Development of creeping Newtonian flow ( Bn = 0) with no wall slip: (a) Ve- 

locity profiles at various axial distances; (b) Development length as a function of 

the radial distance. The classical, L c , and the global development length, L g , coin- 

cide in this case. 
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the inability to have a very fine mesh and thus a smooth veloc-

ity profile around the yield point due to numerical resources lim-

itations and by the fact that the pressure gradient becomes con-

stant beyond L 95 . They also proposed a correlation according to

which L 95 is independent of the Bingham number at low Reynolds

numbers. 

Poole and Chhabra [10] pointed out that this result is unrealistic

at low Reynolds numbers and carried out a systematic numerical

investigation of the axisymmetric entry flow problem of a Bingham

plastic for Bingham numbers in the range from 0 to 10. Their simu-

lations, carried out with a commercial finite volume software using

both the biviscosity and Papanastasiou models, showed that L 95 is

a weak non-monotonic function of the Bingham number exhibit-

ing a minimum at low Reynolds numbers and is independent of

the Bingham number at higher Reynolds numbers collapsing with

the Newtonian (centerline) development length. Poole and Chhabra

[10] did not pursue computations at higher Bingham numbers be-

cause convergence became increasingly difficult. 

The objective of the present work is to study the development

of viscoplastic flow in both pipes and channels at low and mod-

erate Reynolds numbers in the presence of Navier slip and to test
he dependence of the flow development on the Bingham num-

er using alternative definitions of the development length. In ad-

ition to the development lengths already introduced, i.e. L c , L w 

nd L 95 , we also consider the global development length, L g , as

he maximum development length across the tube or the channel.

he inclusion of slip is important given that viscoplastic materials

re in general keen to slip (see [29] and references therein). Our

nite element simulations for the no-slip case show that unlike

 95 the global development length increases monotonically with

he Bingham number. Moreover, for a given Bingham number, L g 
ncreases with slip only initially passing from a global maximum

eyond which it decreases rapidly to vanish at the full-slip limit

hich corresponds to sliding flow. 

The rest of the paper is organized as follows. In Section 2 , the

overning equations for the axisymmetric flow are presented. In

ection 3 , the numerical method is briefly described and the nu-

erical results are discussed. Finally, the main conclusions of this

ork are summarized in Section 4 . 
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Fig. 6. Development of creeping Bingham flow ( Bn = 2) with no wall slip: (a) Ve- 

locity profiles at various axial distances; (b) Development length as a function of 

the radial distance. The vertical line corresponds to the yield point and the symbols 

denote the radial positions at which the various development lengths, L c , L 95 , L m , 

and L g , are calculated. 
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Fig. 7. Development of creeping Bingham flow ( Bn = 10) with no wall slip: (a) Ve- 

locity profiles at various axial distances; (b) Development length as a function of 

the radial distance. The vertical line corresponds to the yield point and the symbols 

denote the radial positions at which the various development lengths, L c , L 95 , L m , 

and L g , are calculated. 
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. Governing equations 

Given that the equations for the two geometries of interest are

nalogous, only the equations for the axisymmetric entry flow are

resented here. We consider the steady-state, laminar, incompress-

ble Bingham-plastic flow development in a horizontal pipe of di-

meter D 

∗ = 2 R ∗. The continuity equation and momentum equa-

ion are as follows 

 

∗ · u 

∗ = 0 (7) 

nd 

∗u 

∗ · ∇ 

∗u 

∗ = −∇ 

∗ p ∗ + ∇ 

∗ · τ∗ (8) 

here p ∗ is the pressure and ρ∗ is the density, which is assumed

o be constant. For the stress tensor τ∗, the Papanastasiou model

 6 ) is employed instead of the ideal Bingham-plastic model ( 4 ). 

A schematic of the computational domain along with the

oundary conditions of the flow is shown in Fig. 1 . At the inlet

lane, the axial velocity is uniform, u ∗z = U 

∗, and the radial veloc-
ty component is set to zero, u ∗r = 0 . The standard symmetry con-

itions for zero radial velocity and shear stress along the axis of

ymmetry are assumed. Along the pipe wall, the radial velocity is

et to zero (no penetration) and the axial velocity obeys Navier’s

lip condition ( 3 ). The exit plane is taken sufficiently far down-

tream so that the flow can be taken as fully developed, i.e., both

he normal stress component and the radial velocity component

anish, −p ∗ + τ ∗
zz = 0 and u ∗r = 0 . 

In the case of a non-yield-stress fluid, there is no bound on

he permissible values of β∗. When β∗ = 0 , full slip is achieved

n fully-developed Poiseuille flow. In the case of yield-stress flu-

ds there exists a lower bound on the value of β∗, which depends

n the yield stress. The fully-developed velocity in axisymmetric

oiseuille flow of a Bingham plastic is given by: 

 

∗
z ( r 

∗) = u 

∗
w 

+ 

G 

∗

4 μ∗

{
( R 

∗ − r ∗0 ) 
2 , 0 ≤ r ∗ ≤ r ∗0 [

( R 

∗ − r ∗0 ) 
2 − ( r ∗ − r ∗0 ) 

2 
]
, r ∗0 ≤ r ∗ ≤ R 

∗

(9) 
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Fig. 8. Development of creeping Bingham flow ( Bn = 50) with no wall slip: (a) Ve- 

locity profiles at various axial distances; (b) Development length as a function of 

the radial distance. The vertical line corresponds to the yield point and the symbols 

denote the radial positions at which the various development lengths, L c , L 95 , L m , 

and L g , are calculated. 

 

 

 

 

 

 

 

 

 

Fig. 9. Velocity contours (starting from 0.1 with a 0.2 step) in creeping axisymmet- 

ric flow with no wall slip ( B = ∞ ) and Bn = 0 (Newtonian), 5 and 50. 
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where G 

∗ ≡ (−d p ∗/d z ∗) is the imposed pressure gradient, u ∗w 

is the

slip velocity, given by 

u 

∗
w 

= 

R 

∗G 

∗

2 β∗ (10)

and r ∗0 is the yield point: 

r ∗0 = 

2 τ ∗
0 

G 

∗ < R 

∗ (11)

It should be noted that when the pressure gradient is below

2 τ ∗
0 
/ R ∗, the axial velocity is uniform (sliding). 

Scaling lengths by the pipe radius R ∗, the velocity vector by the

inlet velocity U 

∗ and the pressure and the stress tensor compo-

nents by μ∗U 

∗/ R ∗, the governing equations are dedimensionalized

as follows: 

∇ · u = 0 (12)

and 

1 

Re u · ∇u = −∇p + ∇ · τ, (13)

2 
here symbols without stars denote dimensionless variables and

e ≡ 2 ρ∗U 

∗R 

∗

μ∗ (14)

s the Reynolds number, based on the diameter, as in most other

ow development studies [7,13] . 

Similarly, the dimensionless form of the Papanastasiou-

egularized constitutive equation is 

= 

[
Bn 

1 − exp (−M ˙ γ ) 

2 ̇ γ
+ 1 

]
˙ γ (15)

here 

n ≡ 2 τ ∗
0 R 

∗

μ∗U 

∗ (16)

s the Bingham number (based on the diameter) and 

 ≡ m 

∗U 

∗

R 

∗ (17)

s the dimensionless growth exponent. 

The dimensionless form of the slip equation is 

w 

= 

1 

2 

B u w 

(18)

here 

 ≡ 2 β∗R 

∗

μ∗ (19)

s the slip number (based on the diameter, as in Ref. [7] ). 

The dimensionless fully-developed velocity profile is then 

 z (r) = u w 

+ 

G 

4 

{
(1 − r 0 ) 

2 , 0 ≤ r ≤ r 0 
(1 − r 0 ) 

2 − (r − r 0 ) 
2 , r 0 ≤ r ≤ 1 

(20)

here u w 

= G/B , r 0 = Bn/G < 1 , and the dimensionless pressure

radient G is the root of the following equation, which is obtained

y demanding that the dimensionless volumetric flow rate is equal

o π : 

4(1 − u w 

) G 

3 = ( G − Bn ) 
2 
(
3 G 

2 + 2 BnG + B n 

2 
)

(21)

It should be noted that for a given slip number, there is an up-

er bound for the Bingham number, which cannot be exceeded.

his limiting value corresponds to the pressure gradient at which
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Fig. 10. Various development lengths ( L c , L 95 , L m and L g ) as functions of the Bing- 

ham number in creeping flow with no wall slip ( B = ∞ ): (a) Axisymmetric flow; (b) 

Planar flow; The horizontal lines correspond to the classical (centerline) Newtonian 

development lengths ( L = 0.6023 and 0.6285, respectively). 
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Fig. 11. Development of creeping axisymmetric flow for Bn = 2 and no slip at the 

wall ( B = ∞ ). (a) Velocity profiles at various axial distances; (b) The development 

length as a function of the radial distance. The vertical line corresponds to the yield 

point and the symbols denote the radial positions at which the various develop- 

ment lengths, L c , L 95 , L m , and L g , are calculated. 
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l  
he fluid yields. From the above equation it is easily deduced that

hen Bn is equal to B n crit = B , both r 0 and u w 

become 1 [30] . Sim-

larly, for a given Bingham number the slip number should not be

elow Bn . 

. Numerical results and discussion 

The system of the governing equations and the boundary con-

itions presented in Section 2 was solved numerically using the fi-

ite element method ( u-v-p formulation) with standard biquadratic

asis functions for the two velocity components and bilinear ones

or the pressure field [14] . The Galerkin forms of the continuity

nd the momentum equations were used. The resulting nonlinear

ystem of the discretized equations was solved using the Newton-

aphson iterative scheme and a standard frontal subroutine with a

onvergence tolerance equal to 10 −4 . 

Results have been obtained for Bingham numbers ranging from

 (Newtonian flow) to 100, slip numbers in the range [ Bn , ∞ ),

nd Reynolds numbers up to 200. The convergence of the numer-

cal results has been studied using both uniform and non-uniform
eshes of different refinement and lengths. Table 1 shows the

haracteristics of four uniform (M1-M4) and four graded (GM1-

M4) meshes of length L mesh = 20 used in the present work.

raded meshes were more refined near the entry plane and near

he wall; hence, the smallest element the size of which is provided

n Table 1 was located at the upper left corner of the domain.

s the Bingham and Reynolds numbers are increased, more re-

ned and longer meshes are needed [10] . Given that we are mainly

nterested in low and moderate Reynolds number flows, using a

esh of length L mesh = 20 was found to be adequate for most of

he results of this section. Results for 10 < Re ≤ 200 were obtained

sing a much longer mesh with L mesh = 120. Finally, the rather high

alue of M = 10 5 for the regularization parameter has been used

or most Bingham-plastic flow results of this section. The maxi-

um value M max of the growth parameter M at which the finite

lement code converges depends not only on the flow parameters,

uch as the Bingham, Reynolds and slip numbers, but also on the

ength of the computational domain and the mesh refinement. As
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Fig. 12. Development of creeping axisymmetric flow for Bn = 2 and B = 20. (a) Ve- 

locity profiles at various axial distances; (b) The development length as a function 

of the radial distance. The vertical line corresponds to the yield point and the sym- 

bols denote the radial positions at which the various development lengths, L c , L 95 , 

L m , L g and L w , are calculated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Development of creeping axisymmetric flow for Bn = 2 and B = 4. (a) Ve- 

locity profiles at various axial distances; (b) The development length as a function 

of the radial distance. The vertical line corresponds to the yield point and the sym- 

bols denote the radial positions at which the various development lengths, L c , L 95 , 

L m , L g and L w , are calculated. 
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an example, we take here the results for Bn = 2 and Re = 0 and 50,

obtained with four uniform meshes M1-M4 with respective ele-

ment sizes 0.2, 0.1, 0.05 and 0.25. In the case of creeping flow with

no slip, the maximum value of the growth parameter was found

to be M max = 10 6 with M1-M3 while M max = 610 5 with M4; in the

case of slip with B = 20, M max = 10 6 with M1, M2, and M4, while

M max = 24,0 0 0 with the rather coarse mesh M2. M max is further

reduced at higher values of the Reynolds number. When Re = 100

and no-slip is applied, the values of M max with meshes M1-M4

were found to be 710 5 , 310 5 , 12,0 0 0 and 25,0 0 0, respectively, while

with B = 20, the maximum values are M max = 10 6 for M1 and M2

and M max = 30 0 0 for M3 and M4. The latter value, which is the low-

est one used in the present work, is still quite acceptable given

that calculating yielded and unyielded regions is not of interest

here [20,31] . It should also be noted that most of the results of this

work have been obtained with graded and not uniform meshes, i.e.

with meshes GM3 and GM4. Results concerning the convergence of

the development length with mesh refinement and length are fur-

ther discussed in the end of the section. 
We have already encountered three different definitions for the

evelopment length: the classical or centerline development length

 c , the wall development length L w 

, which is defined only if finite

all slip occurs, and L 95 for viscoplastic flows [9] . As noted in [14] ,

he wall development length has a meaning only in the presence of

nite slip and below the critical value of the slip number at which

% of the fully-developed slip velocity is equal to the convergence

olerance used in the numerical calculations. In Newtonian flow,

he critical values of B are 792 and 594 for the axisymmetric and

lanar flows, respectively [14] . As discussed below, lower bounds

or the slip number can be determined numerically as the values

orresponding to full slip, i.e. to zero development length. 

Obviously the development length is a function of the transver-

al coordinate, e.g., L = L ( r ). If ū (r) is the fully-developed veloc-

ty profile, then L (r) is the length required by u (r, z) to become

qual to 0 . 99 ̄u (r) or 1 . 01 ̄u (r) when ū (r) > 1 or ū (r) < 1 , respec-

ively. We hereby define as the global development length L g the

aximum value of L in the flow domain, L g ≡ max L 
0 ≤r≤1 

. During flow
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Fig. 14. Development of creeping axisymmetric flow for Bn = 2 and B = 2.5. (a) Ve- 

locity profiles at various axial distances; (b) The development length as a function 

of the radial distance. The vertical line corresponds to the yield point and the sym- 

bols denote the radial positions at which the various development lengths, L c , L 95 , 

L m , L g and L w , are calculated. 
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Fig. 15. Velocity contours (with a 0.1 step) in creeping axisymmetric Bingham flow 

with Bn = 2 and B = ∞ (no slip), 10 (moderate slip) and 2.5 (very strong slip). 

 

t  

o  

t  

m  

A  

b  

i  

l  

b  

fl  

t  

d  

l  

s  

m  

L  

r  

i

 

i  

B  

t  

t  

p  

L  

o  

t  

c  

t  

g  

i  

m  

a

i  

t  

o  

o  

s  

m  

i  

i  

t  
evelopment the fluid around the axis of symmetry accelerates in

rder to reach the fully-developed velocity; outside this region, the

uid decelerates in order to reach the fully-developed slip velocity.

bviously, the development length is zero at a critical value r̄ of the

adius at which the dimensionless fully-developed velocity is unity.

e will be using the symbol L m 

for the maximum value of the L in

he region where the fluid accelerates, i.e. L m 

≡ max L 
0 ≤r≤r̄ 

. The defi-

itions of all five development lengths considered in this work are

abulated in Table 2 . They are also illustrated in Fig. 2 , where we

bserve that L m 

, i.e. the local maximum value of L in the acceler-

ting region is not at the axis (or plane) of symmetry and does not

ecessarily coincide with the global development length L g . 

In Fig. 3 , the Newtonian development lengths for creeping flow

 Re = 0) with no-slip in both tubes and channels are plotted as a

unction of the transversal coordinate ( r and y , respectively). We

bserve that the global development length coincides with the

lassical development length ( L c = L g ) only in the axisymmetric

ow, which develops slower at the axis of symmetry. In the pla-

ar entry flow, L c < L g which indicates that the flow develops more

lowly in the decelerating region than in the accelerating one. 
Fig. 4 illustrates the effect of slip in the case of creeping New-

onian flow. In the axisymmetric flow ( Fig. 4 a) the maximum value

f the development length is always at the axis of symmetry and

hus L g = L c for all the values of the slip number. The wall develop-

ent length L w 

is always much lower than the other two lengths.

ll lengths vanish at roughly the same slip number, B c ≈ 0 . 082 ,

elow which slip is very strong and the fully-developed velocity

s practically flat. It should be noted that the wall development

ength is not defined above a certain critical value of the slip num-

er ( ∼ 792 ) at which slip is negligible. The results for the planar

ow ( Fig. 4 b) differ from their axisymmetric counterparts in that

he wall development length is always greater than the classical

evelopment length. In fact, L w 

coincides with L g for slip numbers

ower than about 10, that is for moderate to very strong slip. When

lip is weak, L w 

lies between the classical and the global develop-

ent lengths. As already noted by Kountouriotis et al. [14] , L w 

and

 c vanish at different critical slip numbers, i.e. ∼0.06 and ∼0.124,

espectively. The maximum critical number at which L w 

is defined

s ∼594. 

Let us now move to the development of creeping ( Re = 0) ax-

symmetric viscoplastic flow. The development of the flow for

n = 0, 2, 10 and 50 is illustrated in Figs. 5–8 , respectively, where

he velocity profiles at different distances from the inlet are plot-

ed. The function L ( r ) is also plotted in each case with marks at the

oints where the development lengths of interest are computed.

 ( r ) exhibits two maxima which are always in the yielded region

f the fully-developed velocity. Therefore, using L c and L 95 leads

o a considerable underestimation of the development length. This

an also be seen by examining more carefully the development of

he axial velocity in the yielded regime in Figs. 6 a, 7 a and 8 a. In

eneral, L 95 and L c are much lower than L m 

and L g and the veloc-

ty overshoots diminish with increasing Bingham number, in agree-

ent with the earlier observations of Vradis et al. [27] and Poole

nd Chhabra [10] . Looking more carefully, we see that while L g 
ncreases monotonically, L c decreases monotonically, and L 95 ini-

ially decreases and then increases with the Bingham number. In

ther words, at higher Bingham numbers the axial velocity devel-

ps much faster near the axis of symmetry (i.e. in the region corre-

ponding to the unyielded regime of the fully-developed flow) and

ore slowly near the wall (note that the scales of the verticals axes

n Figs. 5–8 aa are not the same). This phenomenon is also observed

n Fig. 9 , where the velocity contours computed for Bn = 0 (New-

onian flow), 5 and 50 are plotted. Hence, the development length
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Fig. 16. Classical ( L c ), wall ( L w ) and global ( L g ) development lengths as functions of 

the slip number for creeping axisymmetric flow with Bn = 2: (a) axisymmetric flow; 

(b) planar flow. L m (circles) and L 95 (diamonds) are also plotted. The vertical line at 

B = Bn = 2 corresponds to sliding flow at which the theoretical development length 

is exactly zero. However, due to its definition, L g vanishes at a slightly higher slip 

number ( B ≈ 2 . 4 in the axisymmetric flow and B ≈ 2 . 3 in the planar flow). Other 

development lengths vanish at a higher value of the slip number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Global (solid) and classical (dashed) development lengths in axisymmetric 

flow for Bn = 0 (Newtonian), 2 and 20: (a) versus the standard Reynolds number; 

(b) versus the modified Reynolds number. 
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should be defined carefully in order to assure flow development in

the entire cross section of the tube. As the Bingham number is in-

creased, the unyielded region of the fully-developed flow increases

and so does the accelerating region of the flow. However, as it can

be seen in Fig. 9 , the magnitude of that acceleration is reduced,

as the plug velocity approaches unity. Hence, the velocity contours

are squeezed near the wall, while the central concavity of the con-

tours observed near the entrance becomes more pronounced. 

The various development lengths are plotted versus the Bing-

ham number in Fig. 10 for both the axisymmetric and planar flows

(recall that L w 

is not defined in the case of no- or weak slip). We

observe that the classical development length decreases monoton-

ically and that L 95 exhibits a minimum in both cases. Our results

for the axisymmetric flow are in good agreement with the five

values reported by Poole and Chhabra [10] for Bingham numbers

in the range between 1 and 10. However, both L m 

and L g are in-

creasing functions of the Bingham number, with the exception of

a mild nonmonotonicity of L in the planar case for Bn around
95 
nity. Therefore, L c and L 95 are not safe indicators of flow devel-

pment. The fact that L g in the planar case is much higher than

he other development lengths for low Bingham numbers is ex-

ected, since L g does not coincide with L c . All other development

engths for Bn < 0.1 are practically indistinguishable from the New-

onian result for L c . A similar result has been reported by Poole and

hhabra [10] for L 95 in the axisymmetric case. 

In order to investigate the effect of slip we fixed the Bingham

umber to Bn = 2 and obtained results for different values of the

lip number B . Figs. 11–14 show the evolution of the velocity in

he case of creeping flow ( Re = 0) for B = ∞ (no-slip), 20, 4, and

.5 (recall that the lowest admissible value for the slip number

s B = Bn = 2). As with the no-slip case, the two maxima of L ( r )

re in the yielded region of the fully-developed axial velocity. We

ote that the classical development length L c decreases with slip

nd eventually becomes zero. When slip is strong, i.e., at low val-

es of the slip number the flow is practically developed in the un-

ielded regime but flow still needs to develop near the wall. With

ncreasing slip the velocity tends to become plug, which is the case

hen the slip number is equal to the Bingham number. In such
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Fig. 18. Global development length as a function of the slip number for Bn = 2 

and various Reynolds numbers. The vertical line at B = Bn = 2 corresponds to sliding 

flow at which the theoretical development length is exactly zero. However, due to 

its definition, L g vanishes at a slightly higher slip number, B ≈ 2 . 4 . 
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Fig. 19. Global development lengths for creeping, axisymmetric Bingham flow flow 

with Bn = 2 calculated with uniform meshes M3 (dashed) and M4 (solid): (a) B = ∞ 

(no slip); (b) B = 20. The vertical lines indicate the position of the yield point 

( r 0 = 0.18758 and 0.26280, respectively). 
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 case the development length is zero. Note that slip suppresses

he velocity overshoots. We also see that the wall and global de-

elopment lengths are similar. Fig. 15 shows the velocity contours

omputed for Bn = 2 and three different values of the slip num-

er: B = ∞ (no-slip), 10, and 2.5. As the slip number is reduced,

he flow field approaches more the sliding flow, which in theory is

chieved when B = Bn = 2. Hence the contours become sparser and

heir central concavity near the entrance weakens with slip. 

In Fig. 16 , we plotted the various development lengths versus

he slip number for both the axisymmetric and planar flows when

n = 2 and Re = 0. Recall that no-slip corresponds to B = ∞ and

hat sliding flow corresponds to B = Bn = 2. In the latter case the

heoretical development length is obviously zero. Due to its defini-

ion, the global development length L g vanishes at a slightly higher

lip number, i.e. B ≈ 2 . 4 for the axisymmetric and B ≈ 2 . 3 for the

lanar case. This is also the case for L w 

, while L c , L 95 and L m 

van-

sh at a higher value ( ∼2.9). We observe that the classical develop-

ent length L c is always much lower than the other development

engths and vanishes at a higher value of the slip number. More-

ver, it is the only one that increases monotonically with the slip

umber, while all the others exhibit a maximum. For both the ax-

symmetric and planar geometries, the values of L 95 are roughly

etween L c and L g . Again L c and L 95 are not safe indicators for vis-

oplastic flow development. 

To investigate the effect of inertia on the flow development of

he axisymmetric Bingham flow in the absence of slip, we obtained

esults for three different Bingham numbers, Bn = 0, 2, and 10, and

eynolds numbers ranging from 0 up to 200. The global and the

enterline development lengths are plotted versus the Reynolds

umber in Fig. 17 a. As already noted the difference between L g and

 c is zero in Newtonian flow ( Bn = 0) and increases with the Bing-

am number. This difference increases initially with the Reynolds

umber and then tends to reduce at higher Reynolds numbers

see the results for Bn = 2). What may be striking is that the in-

rease of the global development length with the Bingham number

s observed only at low Reynolds numbers and that for Re above

0 (where the curves cross) the opposite effect is observed. This

hange in the effect of the Bingham number is not observed if

nstead of using the standard definition of the Reynolds number

n Eq. (14) one employs the following modified Reynolds number,

hich is based on the momentum correction coefficient method
uggested by Ito (see [9] and references therein): 

 e mod = ζRe (22) 

here 

= 

3(5 + 6 r 0 − 11 r 2 0 )(r 4 0 − 4 r 0 + 3) 

5 (3 + 2 r 0 + r 2 
0 
) 

2 
(23) 

 0 = Bn/G is the radius of the unyielded region in fully-developed

ow, and G is the root of Eq. (21) . It is clear that in Newtonian flow

 r 0 = 0) Re mod is identical to Re . The values of ζ for Bn = 2 and 20

re found to be 0.6 6 636 ( r 0 = 0.18758) and 0.09612 ( r 0 = 0.60222),

espectively. Replotting L g and L c versus the modified Reynolds

umber ( Fig. 17 b) reveals that the development length is an in-

reasing function of the Bingham number in the range of Reynolds

umbers considered here. Moreover, at higher Reynolds numbers

ll curves tend to collapse to the Newtonian data, as it was also

ointed out by Poole and Chhabra [10] . The latter authors reported

hat below a critical Reynolds number (of about 40 for a Bingham

umber equal to 10) L departs from the Newtonian correlation in
95 
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Fig. 20. Global development lengths for creeping, axisymmetric Newtonian flow 

with Re = 100 calculated with uniform meshes of different length L mesh : (a) B = ∞ 

(no slip); (b) B = 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21. Global development lengths for creeping, axisymmetric Bingham flow with 

Bn = 2 and Re = 100 calculated with uniform meshes of different length L mesh : (a) 

B = ∞ (no slip); (b) B = 20. The vertical lines indicate the position of the yield point 

( r 0 = 0.18758 and 0.26280, respectively). 
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a non-monotonic fashion. However, the results of Fig. 17 b demon-

strate that L g is a monotonically increasing function of the Bing-

ham number in the range of momentum-corrected Reynolds num-

bers examined here. 

The effect of inertia in the presence of slip is illustrated in Fig.

18 , where the global development lengths for the axisymmetric

flow with Bn = 2 and Re = 0, 1, and 10 are plotted. We observe that

L g increases with inertia and that this increase becomes less pro-

nounced at low values of the slip number, i.e. when slip is strong.

This was also true for all other development lengths considered in

this work. 

Finally, the convergence of the development length L ( r ) with

mesh refinement when Bn = 2, Re = 0 and B = ∞ (no slip) and

20, is illustrated in Fig. 19 , where results obtained with uniform

meshes M3 and M4 are shown. (We have chosen uniform instead

of graded meshes so that the differences are visible.) The con-

vergence with the length of the computational domain, L mesh , for

Re = 100 is illustrated in Figs. 20 and 21 , where results for the

Newtonian ( Bn = 0) and a Bingham-plastic case ( Bn = 2) are respec-

tively shown. Interestingly, the effect of L mesh appears to be more

important in the Bingham flow even though the values of L g in
ig. 21 for B = ∞ and 20 are lower than their Newtonian coun-

erparts in Fig. 20 . Moreover, the most pronounced differences are

bserved in the unyielded region of the fully-developed flow. Nev-

rtheless, the length L mesh = 120 was found to be adequate for all

esults presented here. 

. Conclusions 

We have investigated the laminar flow development of yield

tress fluids of the Bingham- plastics type in pipes and chan-

els with wall slip by means of finite element simulations using

he regularized Papanastasiou constitutive equation and consid-

ring alternative definitions of the development length. We have

hown that the classical development length L c and the develop-

ent length proposed by Ookawara et al. [9] for Bingham flow (i.e.,

 95 ) are not good choices for measuring viscoplastic flow develop-

ent (with or without slip). The global development length, L g , is

onotonically increasing with the Bingham number, whereas L 95 

xhibits a minimum. The global development length increases ini-

ially with slip exhibiting a maximum and then decreases rapidly
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anishing when the value of the slip number is slightly above

he Bingham number. Moreover, the velocity overshoots are sup-

ressed by both slip and yield stress. 
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