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We study the flow of a thixotropic fluid around a cylinder. The rheology of the fluid is described by means
of a structural viscoplastic model based on the Bingham constitutive equation, regularised using the
Papanastasiou regularisation. The yield stress is assumed to vary linearly with the structural parameter,
which varies from zero (completely broken structure) to one (fully developed skeleton structure), follow-
ing a first-order rate equation which accounts for material structure break-down and build-up. The
results were obtained numerically using the Finite Element Method. Simulations were performed for a
moderate Reynolds number of 45, so that flow recirculation is observed behind the cylinder, but vortex
shedding does not occur. The effects of the Bingham number and of the thixotropy parameters are stud-
ied. The results show that the viscous character of the flow can be controlled within certain limits
through these parameters, despite the fact that the Reynolds number is fixed.
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1. Introduction

The flow past a cylinder is of high theoretical and practical
importance, and thus the Newtonian flow case has been studied
extensively. The main results are included in a review paper by
Williamson [1]. The characteristics of the flow field strongly
depend on the Reynolds number, which is defined as Re � qUD=l
where q and l are the fluid density and viscosity respectively, U
is the main stream velocity, and D is the cylinder diameter (see
Fig. 1). Up to a Reynolds number of 5, the flow is characterised
as creeping and no separation is exhibited (Fig. 1(a)). However,
in the range 5 6 Re 6 49, flow separation is observed and a sym-
metric pair of recirculation bubbles appears behind the cylinder
(Fig. 1(b)), which increase in size with the Reynolds number. A fur-
ther increase in the Reynolds number (49 6 Re 6 190) causes the
flow to become unsteady, with periodic vortex shedding behind
the cylinder (Fig. 1(b)). If the Reynolds number is further increased
then transition to turbulence begins to take place. However, in the
present study we limit ourselves to the laminar flow regime.

Viscoplastic flow past a cylinder is less studied, but there do
exist a number of published results. Most of these results concern
creeping flow, and are relatively recent, with the exception of the
early theoretical work of Adachi and Yoshioka [2]. About a
decade ago computational studies began to appear on creeping
viscoplastic flow around a cylinder. There are two basic
configurations: flow in an infinite medium [3,4] and flow between
two parallel plates [5–7]. The two configurations are equivalent
when the yielded zone which surrounds the cylinder does not
extend up to the plates. There exist also studies of creeping
viscoplastic flow around cylinders of non-circular cross section
[8,9], but this is beyond the scope of the present work. Flow at
non-zero Reynolds numbers was studied recently by Mossaz
et al. [10,11], and to the best of our knowledge these are the only
published results.

Usually, viscoplasticity is accompanied by other rheological
phenomena such as thixotropy and/or viscoelasticity. Such behav-
iour was exhibited by the materials used in the few available
experimental studies of viscoplastic flow around a cylinder
[12,13]. A recent computational study which includes the effects
of viscoplasticity, thixotropy and viscoelasticity was conducted
by Fonseca et al. [14]. That study is limited to creeping flow. The
aim of the present work is to isolate the effects of thixotropy and
yield stress in the case of non-zero Reynolds number flows which
may exhibit recirculation bubbles behind the cylinder.

The rest of the paper is organised as follows: In Section 2 the
equations which govern the flow are presented. In Section 3 the
domain, boundary conditions and finite element solution method
are described. In Section 4 the results are presented, and the paper
ends with some conclusions in Section 5.
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Fig. 1. Individual streamlines (not equally spaced) plotted for three different flow fields corresponding to different flow regimes. From left to right: (a) Re ¼ 1, no
recirculation, steady flow; (b) Re ¼ 20, flow separation and recirculation behind the cylinder, steady flow; and (c) Re ¼ 100, periodic flow, vortex shedding behind the cylinder
(the streamlines correspond to a particular snapshot of the transient flow). The results were obtained with an in-house finite volume code, different from the one used in the
rest of this paper, described in [36].
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2. Governing equations

The flow is governed by the continuity and momentum equa-
tions for incompressible, constant-density flow:

r � u ¼ 0 ð1Þ

q
@u
@t
þ u � ru

� �
¼ �rpþr � s ð2Þ

where u ¼ ðu;vÞ is the velocity vector, p is the pressure, q is the
density (a constant) and s is the deviatoric stress tensor.

In the present work, the model material under study is assumed
to have an internal structure which governs the behaviour of the
material and can change over time. The components of the mate-
rial form a structure, which is capable of withstanding loads up
to a limit without permitting flow. Flow occurs when the magni-
tude of the deviatoric stress tensor s � ð12 s : sÞ1=2 exceeds a thresh-
old value, the yield stress s0. The yield stress is assumed to depend
on the current state of the structure of the material. It is also
assumed that, when the material flows, i.e. the yield stress is
exceeded, then the structure starts to break down. This is a time-
dependent process, with the rate of breakdown being proportional
to the rate of shear, and will lead to partial or complete breakdown
of the structure. Partial breakdown of the structure reduces the
ability of the material to sustain loads, i.e. it reduces the yield
stress. The structure also has a tendency to recover with time, thus
increasing the yield stress. This tendency is independent of the
shear rate. These two mechanisms compete with each other.

It is customary to associate the state of the structure with a
dimensionless variable, denoted k here, which equals 1 when the
material is completely structured and 0 when the structure is com-
pletely broken. All intermediate states correspond to 0 < k < 1.
Our model material is assumed to follow a simple relationship
between the structure parameter k and the yield stress:

s0ðx; y; tÞ ¼ kðx; y; tÞsy ð3Þ

where s0ðx; y; tÞ is the current yield stress of the material at point
ðx; yÞ at time t; kðx; y; tÞ is the instantaneous value of the structure
parameter at that point, and sy is the maximum yield stress, when
the material is fully structured (k ¼ 1). According to the above equa-
tion, the thixotropic material is no longer viscoplastic when the
structure is completely broken (k ¼ 0) s0 ¼ 0). More complicated
constitutive relations can be constructed which assume that the
rest of the rheological parameters are also functions of k; indeed
several such relations have been suggested in the literature, and
the review paper by Mewis and Wagner [15] contains a list with
many of them. By using the simple Eq. (3) we isolate the effects
of thixotropy on the most important parameter, the yield stress.

At stresses higher than the yield stress, when the material
flows, it is assumed that a linear relationship is exhibited between
the stress and the rate of strain, i.e. the material is assumed to be of
the Bingham type:
s ¼ s0

_c
þ l

� �
_c ¼ ksy

_c
þ l

� �
_c ð4Þ

where l is the plastic viscosity, _c � ruþ ðruÞT is the rate-of-strain

tensor, and _c � ð12 _c : _cÞ1=2 is its magnitude. This constitutive equa-
tion applies only where the material flows, whereas in unyielded
regions (s 6 s0) there is no deformation. This is a simplified version
of the models of Tiu and Boger [16] and Houska [17,18], who
assumed a fluid of the Herschel-Bulkley type and that both the yield
stress and the plastic viscosity are linear or affine functions of k.

As already mentioned, the evolution of the structure is due to
two mechanisms: a shear-driven breakdown mechanism, and a
recovery mechanism. In the present work, this evolution is
described by the following simple equation, which was originally
proposed by Moore [19] and is a simplified version of the model
used in [20]:

Dk
Dt
¼ a ð1� kÞ|fflfflfflfflffl{zfflfflfflfflffl}

rate of recovery

� bk _c|ffl{zffl}
rate of breakdown

ð5Þ

where Dk=Dt is the rate of change of k within a particle of the mate-
rial which moves with the flow. The recovery term is proportional
to ð1� kÞ, so that recovery ceases when the structure has fully
recovered (k ¼ 1), and the constant of proportionality is the recov-
ery parameter a, with units of [time]�1. The breakdown term is pro-
portional to k, so that at complete breakdown (k ¼ 0) there is no
more breakdown, and also to the magnitude _c of the rate of strain
tensor, since breakdown is assumed to be a shear-driven mecha-
nism. The constant of proportionality is the breakdown parameter
b, which is dimensionless. In an Eulerian frame of reference, Eq.
(5) is written as

@k
@t
þ u � rk ¼ a ð1� kÞ � bk _c ð6Þ

The structure of a particle which experiences a constant strain
rate _ce will eventually reach an equilibrium where Dk=Dt ¼ 0 and
the rate of breakdown is matched by the rate of build-up. The equi-
librium value of k can be found from Eq. (5):

ke ¼
1

1þ b
a

_ce
ð7Þ

By substituting Eq. (7) into Eq. (4) we get the equilibrium value of
the magnitude of the stress as a function of the strain rate:

se ¼
sy

1þ b
a

_ce
þ l _ce ð8Þ

If we dedimensionalise the stresses by sy, and the strain rate and a
by U=D then the above equation can be written in non-dimensional
form as

~se ¼
1

1þ b
~a
~_ce

þ 1
Bn

~_ce ð9Þ



Fig. 2. Non-dimensional shear stress versus non-dimensional strain rate at
equilibrium, at various Bingham numbers, which are indicated on each curve, for
~a ¼ b.
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where the tilde (~) denotes dedimensionalised quantities, and Bn is
the Bingham number, defined by

Bn � syD
lU

ð10Þ

The function ~se (Eq. (9)) is plotted against ~_ce in Fig. 2, for the case
~a ¼ b. Since, according to Eq. (4), the magnitude of the total stress
is due to two components (the yield stress s0e and the viscous part
l _ce), the shapes of the curves shown in Fig. 2 reflect the relative bal-
ance between these two components at each value of the shear rate
_ce. In particular, at low shear rates the viscous component l _ce is
small and the total stress se is approximately equal to the yield
stress s0e, which in turn is nearly equal to sy since at low shear rates
the breakdown is nearly zero and the material is nearly fully struc-
tured (ke � 1, Eq. (7)). Thus at low rates of strain all curves in Fig. 2
converge to ~se ¼ 1. Then, if _ce is progressively increased, the struc-
ture breakdown rate also increases and thus ke is reduced below 1
and the yield stress s0e falls, according to Eq. (3). As long as s0e dom-
inates the total stress se, this causes also the total stress to fall,
which can be seen in Fig. 2 where ~se falls below 1, especially at
higher Bingham numbers where the yield stress is more dominant.
However, as _ce is increased further the viscous part l _ce of the stress
starts to become significant, and quickly becomes the dominant
stress component: se � l _ce. Thus at large values of _ce; ~se increases
again, eventually with a slope of 1=Bn, as can be seen from Eq.
(9). At some point in between the stress reaches its minimum value.
Therefore each of the curves of Fig. 2 exhibits a minimum at some

value of ~_ce. Experimental studies [21] show that real thixotropic
materials may exhibit this sort of behaviour.

It may be noticed that within an unyielded region _c = 0 and thus
there is only recovery (no structure breakdown), and Eq. (5)
becomes:

Dk
Dt
¼ a ð1� kÞ ð11Þ

Assuming that the structure parameter has a value k0 at time t0 ¼ 0,
this ordinary differential equation can be solved to calculate the
value of k as a function of time:

1� k
1� k0

¼ 1
eat
¼ 1

e~a~t
ð12Þ
where ~a ¼ a=ðU=DÞ and ~t ¼ t=ðD=UÞ are the nondimensional recov-
ery parameter and time, respectively. Therefore, every t ¼ 1=a time
units (or ~t ¼ 1=~a nondimensional time units), the structure recovers
by a factor of e � 2:72 (the degree of structure breakdown 1� k
becomes e times smaller). Thus 1=a can be regarded as a character-
istic time scale for structure recovery.

Eqs. (1) and (2) can be written in nondimensional form, by scal-
ing lengths by D, time by D=U, velocities by U, and stress and pres-
sure by sy. We thus obtain the following nondimensional forms:

~r � ~u ¼ 0 ð13Þ

Re
@~u
@~t
þ ~u � ~r~u

� �
¼ Bn � ~r~pþ ~r � ~s

� �
ð14Þ

where

~s ¼ k
~_c
þ 1

Bn

 !
~_c ð15Þ

It may be seen that if the Bn and Re numbers are increased together
so that the ratio Re=Bn is kept constant then the term 1=Bn in Eq.
(15) becomes less and less important. Eventually it can be seen in
Eq. (14) that the flow is influenced only by the Bn number outside
the parentheses on the right hand side, and not by the Bingham
number which is implicit in the definition of the stress from Eq.
(15). In this case the flow field is actually governed by the ratio
Re=Bn, as can be seen by dividing Eq. (14) by Bn. Therefore, the Rey-
nolds and Bingham numbers have opposite effects on the flow, so
that increasing one of them has a similar effect as decreasing the
other. To illustrate this, we jump ahead for the moment and with-
out yet discussing the numerical method we present in Fig. 3 results
for Bingham flow without thixotropy, chosen for validation pur-
poses because they match corresponding results in Ref. [10]. Mov-
ing from top to bottom, in Figs. 3(a)–(e) the Bingham number is
increased while the Reynolds number is held fixed at Re ¼ 40. In
the Newtonian case (Fig. 3(a)) the recirculation bubbles are fairly
large, but as the Bingham number is increased they reduce in size
and at Bn ¼ 1 (Fig. 3(e)) the flow has become creeping, without sep-
aration. Increasing the Bingham number also causes the formation
of unyielded zones (shown shaded) behind the cylinder, which
are initially detached from the cylinder and are thus moving with
the flow (rigid body motion) but beyond a certain Bingham number
they merge and get attached to the cylinder surface, becoming
motionless (Fig. 3(e)). One can also notice very small unyielded
regions above the cylinder (and below, in the symmetric part of
the images which is not shown) which grow as Bn is increased.
The reader who is familiar with the creeping (Re ¼ 0) viscoplastic
flow around a cylinder will notice that increasing the Bingham
number makes the flow field more similar to the creeping flow case
– see the relevant references in Section 1.

In the rest of the Fig. 3(e)–(g), the Bingham number is held fixed
while the Reynolds number is increased. As a result, the flow phe-
nomena are reversed: The unyielded regions detach from the cyl-
inder and brake apart, while the recirculation bubbles reappear
and grow.

3. Numerical method

The Bingham constitutive Eq. (4) is discontinuous, separating
the material into yielded/unyielded zones whose boundaries are
not known a priori. This complicates the numerical solution of
the flow. To avoid numerical difficulties we used the customary
Papanastasiou regularisation scheme [22]. In fact this approach
has been adopted by all the previous studies on viscoplastic flow
past a cylinder mentioned in Section 1 except for that of Roquet
and Saramito [6], who used an augmented Lagrangian approach,



Fig. 3. Selected streamlines and unyielded areas (s 6 s0, dark blue regions) shown
for various combinations of Bingham and Reynolds numbers, for Bingham flow (no
thixotropy, steady-state results). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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thus directly solving the original Bingham constitutive equation.
According to Tokpavi et al. [4] the difference between the results
produced by the two methods is rather small. Thus the constitutive
equation used here, applicable throughout the material, is the
following:

s ¼ s0ð1� e�m _cÞ
_c

þ l
� �

_c ð16Þ

where the constant m is the regularisation parameter, which should
be large enough so that the original Bingham equation is approxi-
mated adequately. We note that in the present study we follow
the usual practice of identifying the unyielded regions as those
regions where s < s0 ¼ ksy or equivalently ~s < k; see Burgos et al.
[23] for more information. We note that regularisation implies that
unyielded regions are approximated by small, but non-zero rates of
strain. The maximum rate of strain in an unyielded region can be
calculated by writing Eq. (16) in terms of tensor magnitudes and
substituting s ¼ s0 ¼ ksy. Then, after some manipulation and dedi-
mensionalisation the following equation is obtained:

~_c0 � k Bn e�M~_c0 ¼ 0 ð17Þ

where ~_c0 is the non-dimensional rate of strain at the surfaces where
s ¼ s0, assumed to be the yield surfaces; the rate of strain is smaller
than that in the interior of the unyielded regions. M is the non-
dimensional regularisation parameter M ¼ mU=D. Eq. (17) has an
analytic solution:

~_c0 ¼
1
M

Wðk � Bn �MÞ ð18Þ

where W is the Lambert W function [24,25]. Just to give an idea of
the order of ~_c0 for the range of parameters used in the present
study, we give some examples for k ¼ 1: For {Bn = 0.5, M = 1000},
~_c0 � 4:7 � 10�3; for {Bn = 0.5, M = 10,000}, ~_c0 � 6:6 � 10�4; for
{Bn = 5, M = 1000}, ~_c0 � 6:6 � 10�3; and for {Bn = 5, M = 10,000},
~_c0 � 8:7 � 10�4. The value _c0 is about the smallest rate of strain that
the regularised model can predict with relative accuracy – for smal-
ler values the error increases significantly.

The governing equations were solved numerically using a
mixed Galerkin finite element method. In the present work the
focus is on subcritical flow where vortex shedding is not present.
Therefore, the flow field is symmetric, with the plane of symmetry
being parallel to the main flow, and only half of the domain needs
to be modelled. The computational domain is shown in Fig. 4. The
cylinder, of radius Rc ¼ 0:5, is centred at point (0,0). Modelling the
flow domain up to an outer radius of Ro ¼ 80 was considered suf-
ficient for the simulation of unconfined flow, based on the observa-
tions of Mossaz et al. [10]. The boundary conditions are also
illustrated in Fig. 4. A no-slip condition (zero velocity) is applied
to the cylinder surface. The left half of the outer circumference of
the computational domain is an inlet, where fluid flows horizon-
tally into the domain with a velocity U = 1. The incoming fluid is
fully structured (ki ¼ 1). The right half of the outer circumference
of the domain is an outlet, where a zero-stress condition is applied.
Finally, the bottom of the domain is a symmetry plane and there-
fore v ¼ 0 and sxy ¼ 0.

Fig. 4 also shows the computational mesh used. The mesh con-
sists of 100 � 150 mixed finite elements, along the circumferential
and radial directions, respectively. Therefore each element spans
four grid cells, ordered in a 2� 2 fashion. This mesh is more refined
than that used by Mossaz et al. [10], who obtained reliable results
that we used for validation of our own results. Each problem is
solved as a time-dependent problem until a time of t ¼ 120, which
was observed to be sufficient to obtain the steady-state solution.



Fig. 4. Finite element mesh used, and boundary conditions. On the right, a detail of the mesh near the cylinder is shown.

Fig. 5. Individual streamlines and unyielded zones (shaded) for flow at Re ¼ 45 and
selected Bn numbers, without thixotropy. The steady state is shown.
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The initial condition is that u = v = 0 and k = 1 at t = 0. The temporal
discretisation scheme employed is the implicit Euler scheme.
The Newton-Raphson procedure is used to solve the resulting
non-linear algebraic system within each time step, and in each
Newton-Raphson step the linear system which arises is solved
using the freely available sparse frontal solver MUMPS [26,27].
Eq. (6) is solved individually within the Newton-Raphson iterative
scheme.

A complexity arises from the fact that the transport equation for
k, Eq. (6), does not contain any diffusion terms. Therefore, without
any special treatment, it is anticipated that its numerical solution
will produce a k field which contains spurious oscillations, and in
fact the reader can indeed, in some cases, observe such oscillations
in the Figures presented in the next Section. These non-physical
oscillations spoil the aesthetics of the solution, but the mean field
is unaffected. Although there do exist more elaborate discretisation
schemes which prevent the appearance of such oscillations (e.g.
[28]), in the present work for simplicity we adopted a more
‘‘crude’’ approach of allowing the oscillations, and just setting the
value of k equal to 0 or 1 whenever a negative value or a value
greater than 1 is produced, respectively.

4. Numerical results

In the present Section, the results will be presented in terms of
the non-dimensional form of the variables, but, for simplicity, til-
des will be dropped from the corresponding variable names.

The equations that govern the flow involve many parameters:
the Reynolds number Re, the Bingham number Bn, and the thixot-
ropy parameters a and b. Hence, in order to get the complete pic-
ture, one has to assign different values to each of these parameters
and repeat the simulations. This produces a prohibitively large
number of numerical experiments that have to be performed. For
practical reasons therefore we confined our study to the regime
where the flow is symmetric, which requires that the Reynolds
number is small enough. Numerous studies agree that, for Newto-
nian flow, the onset of periodic vortex shedding occurs at a critical
Reynolds number of Re � 47 (see [1,29,30] and references therein).
It was therefore decided to fix the Reynolds number at a value of
Re ¼ 45 which is close to, but smaller than, this critical Reynolds
number in order to have a relatively high Reynolds number but
at the same time excluding the possibility of vortex shedding irre-
spective of the values of the other parameters (Bn;a; b). This is
because the effect of the Bingham number is to increase the vis-
cous character of the flow, thus increasing the critical Reynolds
number beyond the value of 47; thixotropy on the other hand
recovers some of the inertial character of the flow, but it cannot
make the flow more inertial than in the Newtonian case, that is
it cannot reduce the critical Reynolds number below 47.
So, in the following the Reynolds number is fixed at Re ¼ 45,
while two values are assigned to the Bingham number: a low value
of Bn ¼ 0:5, and a medium value of Bn ¼ 5. As will be shown later
in this Section, with these two choices of Bingham number the
results span both steady-state regimes: Recirculating flow and
creeping flow, respectively. Then the effect of the thixotropy
parameter a is investigated by holding b fixed at b ¼ 0:05 and vary-
ing a in the set a 2 f0:01;0:05; 0:10g. Also, the effect of b is inves-
tigated by holding a fixed at a ¼ 0:05 and varying b in the set
b 2 f0:01;0:05;0:10g. From these results, one can also obtain a feel
about the effect of Re on the flow, because, as discussed in Section
2, the flow characteristics are approximately governed by the ratio
Re=Bn. Increasing Bn, increasing a, or reducing b would make the
flow more ‘‘viscous’’ – that is, it would increase the magnitude of
the viscous stresses, thus increasing their significance relative
to momentum (inertial) fluxes – causing an effect similar to
decreasing the Reynolds number; and the opposite action on these
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parameters would make the flow more ‘‘inertial’’, causing an effect
similar to increasing the Reynolds number. A difference is that,
whereas the effect of Re and Bn on the viscous character of the flow
is independent of time, the effect of a and b is not, because it takes
time for structural changes to occur and viscous stresses to
increase or decrease due to thixotropy.

The effect of thixotropy will be studied in comparison with the
base cases of Re ¼ 45 and Bn 2 f0:5;5g without thixotropy, which
are plotted in Fig. 5. In this and subsequent figures, only half of
the physical domain is shown, and we will follow the convention
of referring only to the flow features that are visible in the figures.
Thus, for example, we will refer to one recirculation bubble,
although there is another identical bubble in the symmetric part
of the physical domain. With this convention in mind, we make
the following observations from Fig. 5: Newtonian flow exhibits
a very large recirculation bubble, which is anticipated since the
flow is close to the onset of vortex shedding. At a Bingham number
of 0.5 the recirculation bubble has decreased in size, and a pair of
unyielded zones appears behind the cylinder, detached from its
surface, and moving at small but non-zero velocities with the flow.
Actually, there are two more unyielded zones, which are very small
and are difficult to see: one touching the back of the cylinder at the
symmetry plane, and one above the cylinder and slightly upstream
of it. At a Bingham number of 5, the recirculation bubble has disap-
peared, and the unyielded zones behind the cylinder have merged
into a single zone which is in contact with the cylinder and is
therefore motionless, and whose size is rather small. The unyielded
zone above the cylinder can be seen to have grown considerably in
size. In general, the flow field shown in Fig. 5(c) looks a lot more
like the flow field of creeping viscoplastic flow, which is described
in references such as [3–7]. Thus although the Reynolds number is
fixed at Re ¼ 45, the choice of two Bingham numbers Bn ¼ 0:5 and
Bn ¼ 5 allows the investigation of two different flow regimes.

Before proceeding to the presentation of the thixotropic results,
it is useful to discuss the choice of the regularisation parameter m.
Figs. 6 and 7 provide a comparison of the results with two different
values of this parameter, m ¼ 1000 and m ¼ 10;000, both close to,
and far from, the cylinder. Figs. 6(a) and 7(a) show that, concerning
the yield lines, estimated using s ¼ 1, both values of m produce
essentially the same results near the cylinder, the main difference
being that the results with m ¼ 10;000 are not smooth. This obser-
vation, that the predicted yield lines lose their smoothness when m
is large, has been noted also in other studies (e.g. [31,32]). On the
other hand, Fig. 6(b) shows that, for Bn ¼ 0:5, the different m
parameters produce very different yield surfaces far from the cyl-
inder: the yield surface produced with m ¼ 10;000 is located much
Fig. 6. For the Re ¼ 45;Bn ¼ 0:5 case without thixotropy, the top row shows yield lines (a
and m = 10,000, while the bottom row shows contours of nondimensional stress s comp
farther away from the cylinder than that produced with m ¼ 1000.
Fig. 6(d) sheds some light into this: it can be seen that between the
two yield surfaces (that computed with m ¼ 1000 and that com-
puted with m ¼ 10;000) the stress field changes by less than one
percent. Therefore, if changing m ¼ 1000 to m ¼ 10;000 causes a
one percent change in the stress field, then this change in the loca-
tion of the yield line is expected. The problem lies in the very grad-
ual variation of the stress field near the yield stress, which is a
problematic situation for predicting the yield surfaces with regu-
larisation methods, as pointed out by Frigaard and Nouar [33].
Close to the cylinder (Fig. 6(c)) the variation of stress is much more
rapid and the problem is not manifested. In the Bn ¼ 5 case the
stress varies relatively rapidly both close to the cylinder (Fig. 7)
and far from it (Fig. 7(d)), so the results with m ¼ 1000 and
m ¼ 10;000 are similar even far from the cylinder (Fig. 7(b)).
Another test is performed by comparing the stress magnitude dis-
tributions along the cylinder surface in Fig. 8, and also the drag
coefficients obtained with the different values of m in Table 1.
The drag coefficient is defined as

CD �
FD

1
2 qU2D

ð19Þ

where FD is the total horizontal force on the cylinder (due to both
pressure and shear stress). The force FD equals twice the value com-
puted for half the cylinder in our half-domain. Table 1 shows that,
for Bn ¼ 0:5, using m ¼ 10; 000 instead of m ¼ 1000 results in a rel-
ative difference of 2.77% for the drag coefficient, which is small but
not negligible. For Bn ¼ 5 the relative difference is much smaller,
0.45%. These observations agree with those of previous studies such
as [34,23], where it was suggested that lower values of m can be
used with higher values of Bn. See however [35] for a counterexam-
ple. In the present study it was decided to use a value of m = 1000,
because the focus is close to the cylinder, and m = 1000 produces
smoother results.

The focus in the present paper is on the steady-state results, but
since the problems were solved as transient, we start with a few
results concerning the evolution of the flow in time. Figs. 9 and
10 show snapshots of the flow fields at times t = 1, 5 and 15, for
Bn ¼ 0:5 and Bn ¼ 5, respectively. Initially, at t = 0, the viscoplastic
material is everywhere unyielded, since the zero initial velocity
implies also zero rate-of-strain. Setting the fluid to motion sud-
denly at t = 0 creates large rates-of-strain around the cylinder, as
can be seen in Fig. 17 (to be discussed later) which shows that
the drag coefficient is very large – in fact, as t = 0 is approached,
the drag coefficient increases way beyond the maximum range
pproximated by s ¼ 1) computed with different regularisation parameters, m = 1000
uted with m = 10000.



Fig. 7. For the Re ¼ 45;Bn ¼ 5 case without thixotropy, the top row shows yield lines approximated by s ¼ 1 computed with different regularisation parameters, m = 1000
and m = 10,000, while the bottom row shows contours of nondimensional stress s computed with m = 10000.

Fig. 8. Non-dimensional stress distributions over the cylinder surface for Bn ¼ 0:5 (left) and Bn ¼ 5 (right), without thixotropy. h is the angle measured clockwise in degrees,
starting from the upstream edge of the cylinder (h ¼ 0�).

Table 1
Values of drag coefficient computed with different values of regularisation parameter
m, for Bingham flow without thixotropy.

Bn = 0.5 Bn = 5

m = 1000 1.7789 4.7947
m = 10,000 1.8296 4.8162
Difference (%) 2.77 0.45
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CD = 6 of the y-axes of the Figures. This creates a yielded zone
around the cylinder, but as time progresses some unyielded zones
form again within this yielded zone, and grow up to a maximum
size. For Bn = 0.5 (Fig. 9), as time progresses a recirculation zone
grows behind the cylinder, and at t = 5 it seems to have already
reached its maximum size. For Bn = 5 (Fig. 10) the low-shear region
that develops behind the cylinder results in an unyielded zone
instead of a recirculation zone. Structure breakdown starts on the
cylinder surface, especially at the upstream part where the rate
of shear is highest. Comparison against Figs. 11(c) and (d), and
13(c) and (d) (which correspond to t = 120) shows that at t = 25
the steady state has been nearly reached.

Next we discuss the steady-state results. Fig. 11 shows the
effect of varying the thixotropy parameter a, with Bn ¼ 0:5 and b
fixed at b ¼ 0:05. As expected, increasing the value of a causes
the flow to become more viscous, with a corresponding reduction
in the length of the recirculation bubble. Increasing a from 0.01
(Fig. 11(a)) to 0.05 (Fig. 11(c)) leads to an increase in the size of
the unyielded zones, and their movement closer to the cylinder.
A further increase of a to 0.10 (Fig. 11(e)) moves the unyielded
zones yet closer to the cylinder, but rather reduces the size of
the largest zone. These effects are analogous to increasing the Bing-
ham number, or decreasing the Reynolds number, as can be seen
from Fig. 3. Concerning the state of the structure, it can be seen
in Fig. 11 that, as one would expect, it is mostly broken down in
the thin boundary layer on the cylinder surface upstream of the
separation point, and in the following thicker shear layer between
the recirculation bubble and the main flow, where k can reach val-
ues as low as 0.1 (Fig. 11(b)). It is interesting to observe that inside
the recirculation bubble the structure is broken when a is small
(Fig. 11(b)) but it is nearly fully developed when a is relatively
large (Fig. 11(f)). This can be attributed to the faster structure
recovery in combination with the lowering of the shear rates in
the recirculation zone due to the more viscous character (higher
stresses) when a is large.

The opposite effects are caused by increasing the value of b, as
Fig. 12 shows. It is worth noting that within the selected range of
values, the parameter b appears to have a stronger influence on
the k field compared to the parameter a, except within the recircu-
lation bubble. As will be discussed below, structure breakdown is
the dominant mechanism near the cylinder, because it is there that
boundary layers and high shear rates develop leading to high
breakdown, whereas the rate of structure recovery is too slow to
produce significant changes during the time that it takes for a fluid
particle to flow over the cylinder. The particle is then carried away



Fig. 9. Snapshots of the temporal evolution of the flow field at times t = 1, 5 and 25 for Re = 45, Bn = 0.5, a ¼ b = 0.05. The left figures show selected streamlines and unyielded
zones (shaded), and the right figures show contours of k.

Fig. 10. Snapshots of the temporal evolution of the flow field at times t = 1, 5 and 25 for Re = 45, Bn = 5, a ¼ b = 0.05. The left figures show selected streamlines and unyielded
zones (shaded), and the right figures show contours of k.
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and the effect of structure recovery becomes more manifest
downstream, away from the cylinder. An exception to this is the
fluid inside the recirculation zone, which is trapped in there and
so the effect of recovery accumulates there. This makes the state
of the structure inside the recirculation zone sensitive to the value
of a, as can be seen in Fig. 11.



Fig. 11. Effect of the recovery parameter a for Re ¼ 45;Bn ¼ 0:5; b ¼ 0:05, at t = 120 (steady state). The left figures show streamlines and unyielded zones (shaded), and the
right figures show contours of k.

Fig. 12. Effect of the breakdown parameter b for Re ¼ 45;Bn ¼ 0:5;a ¼ 0:05, at t = 120 (steady state). The left figures show streamlines and unyielded zones (shaded), and the
right figures show contours of k.
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Figs. 13 and 14 show the corresponding results for Bn = 5. In this
case there are no separation bubbles, and a single large unyielded
zone appears attached to the back of the cylinder. The effect of a on
the size of this zone is difficult to describe, whereas increasing b
clearly makes this zone larger. In general it could be argued that
the size of this zone is determined by two opposing mechanisms:
(a) Increasing the viscous character of the flow by increasing a or
Bn, or decreasing b or Re, reduces the velocity gradients in the flow



Fig. 13. Effect of the recovery parameter a for Re ¼ 45;Bn ¼ 5; b ¼ 0:05, at t = 120 (steady state). The left figures show streamlines and unyielded zones (shaded), and the right
figures show contours of k.

Fig. 14. Effect of the breakdown parameter b for Re ¼ 45;Bn ¼ 5;a ¼ 0:05, at t = 120 (steady state). The left figures show streamlines and unyielded zones (shaded), and the
right figures show contours of k.
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field and causes more fluid to become unyielded, thus increasing
the size of the unyielded zones, especially when these zones are
detached from the back of the cylinder. (b) On the other hand,
there appears to exist another mechanism which concerns
specifically the unyielded zones that are attached to the back of
the cylinder: these zones fill the space that would normally form
a recirculation bubble in Newtonian flow. In such a bubble the
rates of strain are low, and so when the material is viscoplastic



Fig. 16. Effect of the breakdown parameter b for Re ¼ 45;Bn ¼ 5;a ¼ 0:05 on the
structure of the material, at t = 120 (steady state). Black lines mark the yield
surfaces. t10, defined by Eq. (20), equals 46.
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the recirculation bubbles may become unyielded zones. Increasing
the viscous character in the Newtonian case moves the separation
point further downstream and reduces the size of the recirculation
bubble. In the viscoplastic case it shrinks the size of these unyiel-
ded zones. The balance between these two mechanisms deter-
mines the actual size. Comparison of the present results against
those of the creeping flow studies mentioned in Section 1, shows
that the size of the unyielded zone behind the cylinder becomes
minimum when Re = 0.

The unyielded zone that is attached to the back of the cylinder
in the Bn ¼ 5 cases deserves some more attention. It consists of
material which is motionless compared to the cylinder, due to
the no-slip condition. Therefore this zone acts as a solid extension
to the cylinder, and the flow past it should more appropriately be
considered to be a boundary layer – an extension of the boundary
layer over the cylinder – rather than a shear layer. In this boundary
layer, due to the high shear rates, the structure breaks down with
values of k as low as k 6 0:1 (Figs. 13(b) and 14(f)). If one moves
from the boundary layer into the adjacent unyielded zone, the
value of k jumps discontinuously from a low value (e.g. k ¼ 0:1)
to k ¼ 1. The fact that the transport equation of k, Eq. (6), has no
diffusion terms allows the existence of such discontinuities across
the characteristic lines (streamlines) of the flow field. It is not dif-
ficult to explain why k ¼ 1 throughout this unyielded zone. Since
the velocity is zero, no fluid enters or leaves the zone. The fluid
contained in the zone is therefore trapped in there, and the struc-
ture continually recovers (since there is no breakdown, as the rate
of strain is zero in an unyielded zone) until the steady-state value
k ¼ 1 is reached (the fact that in Fig. 13 there appears a region
where k � 0:95 inside the unyielded zone suggests that the
steady-state has not been completely reached).

The situation is different with unyielded zones such as that
above and slightly upstream of the cylinder for Bn ¼ 5, or the zones
behind the cylinder for Bn ¼ 0:5, which do not leave a mark on the
k field. The difference is that such zones are detached from the cyl-
inder, and the velocity is not zero on their boundaries. Therefore,
fluid flows in and out of the zones. As a fluid particle enters such
a zone, it ‘‘solidifies’’ and moves together with its neighbouring
particles as a solid body, during which time its structure recovers
at the same rate as for any unyielded zone, determined only by a
(Eq. (12)). However, contrary to zones which are attached to the
cylinder, after a finite time the particle exits the zone, it yields,
and structure breakdown commences again. There is not enough
time for the structure to fully recover as the particle travels across
these unyielded zones, and therefore k < 1 in such zones.

Figs. 15 and 16 give a more distant view of the k field. In these
Figures one can observe the evolution of the structure within the
Fig. 15. Effect of the breakdown parameter a for Re ¼ 45;Bn ¼ 5;b ¼ 0:05 on the
structure of the material, at t = 120 (steady state). Black lines mark the yield
surfaces. t10 is defined by Eq. (20).
unyielded zone surrounding the cylinder, where the breakdown
is zero and the build-up is determined by Eq. (12). This equation
can be solved to calculate the time t10 needed for the degree of
breakdown 1� k to decrease by a factor of 10:

t10 ¼
lnð10Þ

a
� 2:3

a
ð20Þ

For a = 0.01 one gets t10 � 230, while for a = 0.10 one gets t10 � 23.
Since time is scaled by D=U, this means that in the former case the
material must move 230 diameters downstream of the cylinder into
the unyielded zone for the structure to recover by a factor of 10,
while in the latter case the same recovery has occurred only 23
diameters downstream. Thus in Fig. 15(a) the structure has recov-
ered very slightly 15 diameters downstream of the cylinder,
whereas in Fig. 15(b) the structure recovery is much faster.
Fig. 16 shows that the k field is very sensitive to the choice of the
breakdown parameter b. Most of the structure breakdown occurs
near the cylinder, within the boundary layers and shear layers,
and then the broken material is convected downstream, where
structure recovery is the dominant mechanism. The larger the value
of b, the more breakdown will occur near the cylinder, which
reflects heavily on the state of the material downstream of the
cylinder.

Finally, we examine the evolution of the drag coefficient in time
in Fig. 17. At the start of each simulation, when the cylinder is sud-
denly set to motion relative to the surrounding fluid, the drag force
is very high, but it quickly approaches its steady-state value. As
expected, Newtonian flow exhibits the smallest drag, while Bing-
ham flow, without thixotropy, at Bn = 5 exhibits the largest drag.
The introduction of thixotropy causes the drag to lie between the
extreme values of Newtonian flow and Bingham flow. With the
present choices of thixotropy parameters, the thixotropic drag
coefficients lie closer to the coefficients for Bingham flow rather
than for Newtonian flow. Increasing the value of a or decreasing
the value of b makes the flow more viscous (increases the viscous
stresses) and increases the drag coefficient. However, in the range
of a values examined, the effect of a appears to be quite small. This
is explained by the fact that the time scales 1=a of structure recov-
ery are large compared to the time it takes for fluid particles to tra-
vel over the cylinder surface (t10 � 23–230), so that recovery does
not have enough time to alter significantly the properties of the
flow as the particles flow over the cylinder. In other words, a has
a small effect on the boundary layer over the cylinder. On the other
hand, the effect of b is more important, because the structure
breakdown is stronger where the rates of strain are higher, and
in the boundary layer these rates of strain are very high, making
the breakdown term important.



Fig. 17. Effect of the thixotropy parameters a (left) and b (right) on the time history of the drag coefficient, for various cases. Moving from bottom to top in each graph, the
order in which the various curves are encountered is the same as the order of their descriptions.
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5. Conclusions

The thixotropic flow around a cylinder has been investigated
using a simple thixotropy model. This helps to isolate and study
the effects of thixotropy alone, uncoupled from other material
properties that may exist in real situations, such as shear-thinning
or elasticity. The Reynolds number was fixed at Re = 45, but by
varying the Bingham number, and to a lesser extent the thixotropy
parameters, the viscous character of the flow (i.e. the relative
importance of the viscous terms over the inertial terms in the
momentum equations) was increased or decreased, obtaining flow
patterns that belong to either of two distinct flow regimes: flow
with separation, which exhibits a pair of recirculation zones
behind the cylinder, and flow without separation. In the present
study, the viscous character of the flow cannot be less than that
for Newtonian flow at Re = 45, and so flow patterns that belong
to a third regime, that with periodic vortex shedding, have not
been obtained.

As expected, structure breakdown is much stronger in the
boundary layer and in any shear layers, if present. Thus it is mostly
the breakdown term which has an effect on the drag force on the
cylinder, as it is directly related to the high rates of strain observed
in the boundary layer. The recovery term has a smaller impact, for
dimensionless recovery parameters ~a ¼ aD=U up to 0.10 which
were studied here, because the time scales of recovery 1=~a are
large compared to the time it takes for the fluid to flow past the
cylinder, except inside recirculation bubbles. On the other hand,
within unyielded zones there is no structure breakdown, and
recovery is the only thixotropy mechanism. Within unyielded
zones that are attached to the cylinder this eventually leads to
the attainment of fully developed structure (k ¼ 1) at steady-state,
while k can vary discontinuously across the zone boundary. The
situation is different for unyielded zones which exchange material
with the surrounding fluid, as the fluid entering carries along its
previous k state, and there is not enough time for the structure
to fully recover until the material exits the zone again and struc-
ture breakdown resumes. Thus, at steady-state within these zones
k < 1.

The study of thixotropic flow past a cylinder has clearly not
been exhausted with the present study, because it focused on a
particular range of values for Bn;Re;a, and b. The large number
of parameters makes it impossible to examine the effect of each
throughout the range of its possible values in a single study. Thus,
possible future investigations could include increasing the values
of Bn;a and b, and varying also the Re number, since Eqs. (14)
and (15) show that decreasing Bn has a similar, but not identical,
effect as increasing Re.
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