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In this work, the combined effects of compressibility and slip in Poiseuille flows of Herschel–Bulkley flu-
ids are investigated. The density is assumed to obey a linear equation of state, and wall slip is assumed to
follow Navier’s slip condition with zero slip yield stress. The flow is considered to be weakly compressible
so that the transverse velocity component is zero and the pressure is a function of the axial coordinate.
Approximate semi-analytical solutions of the steady, creeping, plane and axisymmetric Poiseuille flows
are derived and the effects of compressibility, slip, and the Bingham number are discussed. In the case
of incompressible flow, it is shown that the velocity may become plug at a finite critical value of the slip
parameter which is inversely proportional to the yield stress. In compressible flow with slip, the velocity
tends to become plug upstream, which justifies the use of one-dimensional models for viscoplastic flows
in long tubes. The case of pressure-dependent slip is also investigated and discussed.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Slip at the wall occurs in many flows of complex fluids, such as
suspensions, emulsions, polymer melts and solutions, miscellar
solutions, and foams, leading to very interesting phenomena and
instabilities. The implications of slip have been reviewed by vari-
ous researchers [1,2]. In order to better understand and simulate
slip effects, it is necessary to have realistic slip velocity models.
In a recent review, Hatzikiriakos [2] classified slip models into sta-
tic (weak slip) and dynamic ones and pointed out that the former
are not valid in transient flows, since slip relaxation effects might
become important, leading to delayed slip and other phenomena.

The experimental data show that the slip velocity is in general a
function of the wall shear stress, the wall normal stress (which in-
cludes pressure), the temperature, the molecular weight and its dis-
tribution, and the fluid/wall interface, e.g. the interaction between
the fluid and the solid surface and surface roughness (see Ref. [1]
and references therein). Neto et al. [3] reviewed experimental stud-
ies of wall slip of Newtonian liquids and discussed the effects of sur-
face roughness, wettability, and the presence of gaseous layers.
More recently, Sochi [4] reviewed slip at fluid–solid interfaces from
different perspectives, such as slip factors, mechanisms, and mea-
surement, and discussed, in particular, slip with non-Newtonian
behavior, i.e. yield stress, viscoelasticity, and time dependency.

In the present work we focus on the effects of wall shear stress
and pressure on the steady-state slip velocity. Therefore, we dis-
cuss only static slip models and refer the reader to the review of
ll rights reserved.
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Hatzikiriakos [2] for dynamic slip models. Navier [5] was the first
to propose a slip model relating linearly the slip velocity uw, i.e.
the fluid velocity relative to the adjacent wall, to the wall shear
stress, sw:

uw ¼ asw ð1Þ

a being the slip coefficient. The slip coefficient varies in general
with temperature, normal stress, and pressure, molecular parame-
ters, and the characteristics of the fluid/wall interface. Obviously,
for a = 0, we have no slip, while for a ?1 we get perfect slip.
The slip coefficient is also defined by

a � b
g

ð2Þ

where g is the viscosity and b is the extrapolation length, i.e. the
characteristic length equal to the distance that the velocity profile
at the wall must be extrapolated to reach zero. More complex,
non-linear slip equations have also been proposed. A power-law
expression,

uw ¼ asm
w ð3Þ

where m is the power-law exponent, has been widely employed by
several investigators (see, e.g., [6,7]).

Experimental data on several fluid systems, such as linear poly-
mers (mainly polyethylenes) [8,9], highly entangled polymers [10],
pastes [11], and colloidal suspensions [12], indicate that slip occurs
only when the stress exceeds a critical value sc, which is similar to
a Coulomb friction term and can be viewed as a ‘‘wall shear’’, or
‘‘interfacial’’, or, simply, ‘‘slip’’ yield stress. Hatzikiriakos and Dealy
[9] pointed out that slip model (3) fails to describe the slip velocity
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in the neighborhood of sc, which is critical in understanding poly-
mer slip phenomena. They thus used the following Bingham-type
equation:

uw ¼
0; sw 6 sc

asm
w ; sw P sc

�
ð4Þ

The following general phenomenological slip equation

uw ¼
0; sw 6 sc

aðsw � scÞm; sw P sc

�
ð5Þ

has been used by various researchers in the analysis of squeeze flow
of generalized Newtonian fluids with apparent wall slip [13,14].

As already mentioned, the dependence of the slip velocity on
the normal stress is weaker than that on the shear stress. In gen-
eral, slip velocity decreases with pressure, i.e. slip occurs near
the exit of a tube and is reduced upstream. Experimental evidence
for this phenomenon was provided in the late sixties by Vinogra-
dov and Ivanova [15] who carried out capillary extrusion experi-
ments showing that melt fracture was suppressed at elevated
pressures, an effect attributed to the reduction of slip at high pres-
sures. Hill et al. [6] proposed a framework of adhesive failure be-
tween a highly-stressed polymer melt and the wall based on the
theory of elastomer adhesion, which leads to a slip relation for
polyethylene melts that shows a power-law dependence of the slip
velocity on the wall shear stress and an exponential dependence on
the isotropic pressure:

uw ¼ a1e�a2psm
w ð6Þ

where a1 and a2 are material constants and p is the pressure. The
same expression was later used by Person and Denn [16] in a study
of the flow of a power-law fluid in a channel. Similarly, Hatzikiriakos
and Dealy [7] formulated a theoretical model based on an extension
of analysis of Lau and Schowalter [17], whose form is similar to that
of Eq. (8), despite its different theoretical basis. However, they
found a stronger pressure dependence at moderate pressures and
saturation at higher pressures [7].

Tang and Kalyon [18] developed a mathematical model describ-
ing the time-dependent pressure-driven flow of compressible
polymeric liquids subject to pressure-dependent slip and reported
that undamped periodic oscillations in pressure and mean velocity
are observed when the boundary condition changes from weak to
strong slip. In order to describe the pressure dependence of the slip
coefficient, they used the following expression

a ¼ a1
p0

p

� �j

ð7Þ

where p is the atmospheric pressure. The positive exponent j is
equal to 1 for Knudsen flow (i.e. for compressible gas flow) and is
determined experimentally for polymer melts and suspensions.

With the exception of some recent applications in micro- and
nano-fluidics, the issue of wall slip for Newtonian fluids has been
of rather limited interest [1]. The present work concerns fluid sys-
tems with a yield stress, such as concentrated suspensions, gels,
foams, drilling fluids, food products, and nanocomposites, for
which wall slip is commonplace [4] and may lead to spectacular ef-
fects [13]. In the case of concentrated suspensions, slip is due to the
displacement of the disperse phase away from solid walls [19]. So-
chi [4] points out that slip effects in non-Newtonian systems be-
come particularly important, since they affect the shear rate near
the wall and thus shear-rate-dependent parameters, such as the
viscosity. In their review paper on squeeze flow theory, Engmann
et al. [20] considered a wide class of materials, including yield-
stress and viscoelastic fluids, and pointed out that reliable results
can be obtained only if wall slip effects are taken into account.
There are numerous experimental works demonstrating slip
with viscoplastic materials. The hydraulic fracturing gels studied
by Jiang et al. [21] obeyed a Herschel–Bulkley constitutive equa-
tion and followed a power-law slip equation. Yilmazer and Kalyon
[13] studied slip effects in capillary and parallel disk torsional
flows of highly filled suspensions and found that the slip velocity
increased approximately linearly with the shear stress (at high val-
ues of the wall shear stress). Moreover, they reported that, due to
wall slip, the velocity in capillary flows is almost plug above a crit-
ical shear stress. Piau [22] studied the rheology and slip of carbopol
gels in rheometers. He used the Herschel–Bulkley constitutive
equation to describe their rheology and slip Eq. (5) (with m = 1)
to describe slip at the wall. Foams are also known to exhibit both
yield stress and slip [23,24]. Ballesta et al. [12] employed a linear
slip equation with a threshold shear stress (Eq. (5)) for hard-sphere
colloidal glasses obeying the Herschel–Bulkley constitutive equa-
tion. Ardakani et al. [25] performed experiments on a commercial
toothpaste and showed the existence of yield stress and thixot-
ropy. They also reported that severe slip occurs in capillary flow
with different die designs and employed a linear relationship for
slip, in order to simulate toothpaste extrusion.

Many important applications require the study of weakly com-
pressible flows of yield-stress fluids. A notable example is the
time-dependent flow of waxy crude oils in a tube investigated
numerically by Vinay et al. [26], who employed the Bingham mod-
el and an exponential equation of state and used the augmented
Lagrangian method. Belblidia et al. [27] solved the time-
dependent, weakly compressible extrudate-swell flow of a Herschel–
Bulkley fluid. Their study showed that extrudate swell is unaltered
by compressibility under no-slip wall conditions. They pointed out
that ‘‘it is expected that this position will be altered under slip-wall
settings’’. Taliadorou et al. [28] derived approximate semi-analyti-
cal solutions of the axisymmetric and plane Poiseuille flows of
weakly compressible Herschel–Bulkley fluid with no slip at the
wall. The two-dimensional axial velocity was assumed to be given
by an expression similar to that for the incompressible flow, with
the pressure-gradient and the yield stress point assumed to be
functions of the axial coordinate. The effects of compressibility
have been studied by using a linear and an exponential equation
of state. These results showed the pressure required to drive the
flow for a given tube length is reduced with compressibility. More-
over, the two-dimensional axial velocity was characterized by
pluglike regions the size of which increases upstream, in agree-
ment with more sophisticated numerical simulations [26].

The objective of the present work is to extend the work of
Taliadorou et al. [28] allowing slip at the wall. In order to investi-
gate the combined effects of compressibility and slip, we solve
approximately the plane and axisymmetric Poiseuille flows of
weakly compressible fluids with yield stress, i.e. fluids obeying
the Herschel–Bulkley constitutive equation, under the lubrication
approximation assumptions used by Person and Denn [16] for
power-law fluids. A linear equation of state relating the fluid den-
sity to the pressure is employed [7]. To account for slip, Navier’s
slip condition is assumed to hold at the wall and the interfacial
yield stress is taken to be zero (sc = 0). Moreover, the slip
coefficient is allowed to be pressure dependent. Both a linear and
an exponential model are employed to describe the pressure-
dependence of the slip coefficient.

The paper is organized as follows. In Section 2, we summarize
the solution of the one-dimensional incompressible axisymmetric
Poiseuille flow of a Herschel–Bulkley fluid with Navier (i.e. pres-
sure-independent linear) slip at the wall and discuss the underly-
ing assumptions. In Section 3, the results are extended to the
two-dimensional weakly compressible Poiseuille flow. Analytical
and semi-analytical results are presented for both the incompress-
ible and compressible flows and comparisons are made with avail-
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able perturbation solutions. In Section 4, the case of pressure-
dependent slip is analyzed and discussed. The equations for the
planar compressible Poiseuille flow are given in Appendix A.

2. Incompressible Poiseuille flow with slip

The tensorial form of the constitutive equation of a compress-
ible Herschel–Bulkley fluid with zero bulk viscosity (which implies
that the viscosity forces are only due to shear and not to volume
variations [26]) is:

_c ¼ 0; s 6 s0

s ¼ s0

_c
þ k _cn�1

� �
_c� 2

3
r � uI

� �
; s P s0

8<
: ð8Þ

where s is the stress tensor, u is the velocity vector, I is the unit ten-
sor, and _c is the rate-of-strain tensor, i.e.

_c � ruþ ðruÞT ð9Þ
where ru is the velocity-gradient tensor, and the superscript T de-
notes its transpose. Moreover, k is the consistency index, n is the
power law exponent, and _c and s are respectively the magnitudes
of _c and s, e.g.

_c �
ffiffiffiffiffiffiffiffiffi
1
2

II _c

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

_c : _c

r
ð10Þ

II being the second invariant of a tensor. The power-law fluid and
the Bingham plastic are the special cases of the Herschel–Bulkley
model for s0 = 0 and n = 1, respectively.

In the present work, we consider the steady, laminar axisym-
metric Poiseuille flow of a Herschel–Bulkley fluid in a tube of ra-
dius R, as shown in Fig. 1. We also assume that slip occurs along
the wall according to Navier’s slip Eq. (1). In Sections 2 and 3,
the slip coefficient a is assumed to be constant. As already men-
tioned, the limiting case a ?1 corresponds to full-slip, whereas
a = 0 corresponds to the no-slip boundary condition. In Section 4,
we investigate the more general case where a varies with pressure.

The solution of the steady, incompressible Poiseuille flow of a
Herschel–Bulkley fluid with slip at the wall is straightforward. This
has been provided under different forms by Kalyon and co-workers
[29]. It is presented here in order to show the analogy with the
weakly compressible solution of Section 3 and to introduce the
non-dimensionalization of the problem. Under the assumptions
of unidirectionality and zero gravity, the z-momentum equation
becomes

� dp
dz
þ 1

r
@

@r
ðrsrzÞ ¼ 0 ð11Þ

where the pressure gradient (�dp/dz) is constant. The constitutive
Eq. (11) is simplified as follows:

@uz

@r
¼ 0; jsrzj 6 s0

srz ¼ �s0 � k � @uz

@r

� �n

; jsrzjP s0

8>><
>>: ð12Þ
Fig. 1. Geometry of axisymmetric Poiseuille flow of a Herschel–Bulkley fluid.
The resulting axial velocity component is given by

uzðrÞ ¼ uw þ
n

21=nðnþ 1Þk1=n � dp
dz

� �1=n

�
ðR� r0Þ1=nþ1

; 0 6 r 6 r0

ðR� r0Þ1=nþ1 � ðr � r0Þ1=nþ1
h i

; r0 6 r 6 R

8<
: ð13Þ

where uw is the slip velocity, given by

uw ¼
aR
2
� dp

dz

� �
ð14Þ

and

r0 ¼
2s0

ð�dp=dzÞ < R ð15Þ

denotes the yield point, i.e. the point at which the material yields.
Note that when (�dp/dz) < 2s0/R the fluid moves with uniform
velocity uw. The volumetric flow rate is given by

Q ¼ pR2uw þ
pn

21=nð3nþ 1Þk1=n � dp
dz

� �1=n

R1=nþ3 1� r0

R

� �1=nþ1

� 1þ 2n
2nþ 1

r0

R
1þ n

nþ 1
r0

R

� 	� 

ð16Þ

In what follows, it is preferable to work with dimensionless
equations. We thus scale lengths by the tube radius, R, the velocity
by the mean velocity, V0, in the capillary, and the pressure and the
stress components by kVn

0
Rn . With these scalings, the dimensionless

form of the slip equation is

sw ¼
1

2A1
uw ð17Þ

where

A1 �
kaVn�1

0

2Rn ð18Þ

is the slip number. The no-slip and full-slip limiting cases are recov-
ered when A1 ? 0 and 1, respectively.

The dimensionless version of the constitutive equation, i.e. of
Eq. (12), is:

@uz

@r
¼ 0; jsrzj 6 Bn

srz ¼ �Bn� � @uz

@r

� �n

; jsrzjP Bn

8>><
>>: ð19Þ

where

Bn � s0Rn

kVn
0

ð20Þ

is the Bingham number. The dimensionless velocity profile is writ-
ten as follows

uzðrÞ ¼ uw þ
n

21=nðnþ 1Þ
� dp

dz

� �1=n

ð1� r0Þ1=nþ1
; 0 6 r 6 r0

ð1� r0Þ1=nþ1 � ðr � r0Þ1=nþ1
h i

; r0 6 r 6 1

8<
: ð21Þ

where

uw ¼ A1 �
dp
dz

� �
ð22Þ

and

r0 ¼
2Bn

ð�dp=dzÞ 6 1 ð23Þ
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If (�dp/dz) 6 2Bn, the fluid is sliding with uniform velocity uw.
Otherwise, the dimensionless pressure-gradient is a solution of
the following equation:

21=n 3nþ 1
n
ð1� uwÞ �

dp
dz

� �3

¼ � dp
dz

� �
� 2Bn

� 	1=nþ1

� � dp
dz

� �2

þ 4nBn
2nþ 1

� dp
dz

� �
þ 8n2Bn2

ðnþ 1Þð2nþ 1Þ

" #
ð24Þ

In the case of a Bingham plastic (n = 1) flow with slip at the wall, Eq.
(24) is reduced to

3ð1þ 8A1Þ �
dp
dz

� �4

� 8ðBnþ 3Þ � dp
dz

� �3

þ 16Bn4 ¼ 0 ð25Þ
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Fig. 2. Velocity profiles in incompressible flow with various values of the slip
number: (a) Newtonian fluid; (b) Bingham fluid with Bn = 1 (the critical slip number
is A1,crit = 0.5); and (c) Bingham fluid with Bn = 10 (the critical slip number is
A1,crit = 0.05).
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In the case of the flow of a power-law fluid (Bn = 0), one gets:

21=n 3nþ 1
n

1� A1 �
dp
dz

� �� 	
¼ � dp

dz

� �1=n

ð26Þ
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The above equation can be solved analytically only for certain val-
ues of the power-law exponent. For a Newtonian fluid (n = 1) the
standard Poiseuille flow solution with slip is recovered:

� dp
dz

� �
¼ 8

1þ 8A1
and p ¼ � 8z

1þ 8A1
ð27Þ

uw ¼
8A1

1þ 8A1
ð28Þ
and

uzðrÞ ¼
8A1 þ 2ð1� r2Þ

1þ 8A1
ð29Þ

Similarly, for n = 1/2 and 1/3 one finds respectively

� dp
dz

� �
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 1þ 5A2

1

� �r
� 10A1 ð30Þ

and

� dp
dz

� �
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64A3

1 þ 9
q

þ 24
� �1=3

� 8A1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64A3

1 þ 9
q

þ 24
� �1=3 ð31Þ

The corresponding velocity profiles are then given as special cases
of Eq. (21) (with r0 = 0):

uzðrÞ ¼ A1 �
dp
dz

� �
þ n

21=nðnþ 1Þ
� dp

dz

� �1=n

ð1� r1=nþ1Þ ð32Þ

In the general case, for any values of Bn, n, and A1, the nonlinear
Eq. (24) is easily solved for the pressure gradient, and then the
velocity profile can be calculated by means of Eq. (21). In Fig. 2,
the velocity profiles of a Newtonian (Bn = 0) and two Bingham flu-
ids (Bn = 1 and 10) are shown for various values of the slip number.
With the Newtonian fluid, the velocity tends to a plug profile (ux =
uw = 1) in the limit of infinite A1 (full slip). Interestingly, with visco-
plastic fluids, the plug velocity profile is attained at a finite value of
A1 at which the yield distance r0 becomes 1. This phenomenon is
illustrated in Fig. 3, where the yield distances for n = 0.5, 1, and
1.5 are plotted versus the Bingham number. We observe that the
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size of the yielded region is reduced as the power-law exponent is
increased. When no-slip is applied (Fig. 3a), r0 tends to unity
asymptotically as Bn goes to infinity. When slip occurs (Fig. 3b),
r0 becomes 1 and the velocity profile is plug at a critical Bingham
number, the value of which is independent of the power-law expo-
nent n. In other words, the flow becomes plug at a critical wall
shear stress, which agrees, for example, with experimental obser-
vations on highly filled suspensions [13].

It is clear that when Navier slip with zero slip yield stress is al-
lowed, for a given value of A1 there is an upper bound for the Bing-
ham number at which both the yield distance and the slip velocity
become 1 (Fig. 4). Equivalently, for a given Bingham number, solu-
tions beyond a critical value of A1 are not admissible. Note that for
values of A1above a critical value the LHS of Eq. (24) becomes neg-
ative while the RHS is always positive, since (�dp/dz) > 2Bn. The
critical value of A1at which both sides of Eq. (24) vanish is

A1;crit ¼
1

� dp
dz

� �
crit

¼ 1
2Bn

ð33Þ

Similarly, a critical Bingham number is defined when the value of
the slip number is specified. Theoretically, there can be plug flow
in the limiting case (�dp/dz) = 2Bn when linear slip is allowed and
the slip number is given by Eq. (33). Fig. 4 also illustrates the vari-
ation of the slip velocity with the Bingham number. A plateau is ob-
served initially corresponding to essentially Newtonian flow, but
then uw increases rapidly reaching unity at the corresponding crit-
ical Bingham number.

The combined effects of the Bingham and slip numbers on the
pressure gradient required to drive the flow are illustrated in
Fig. 5. As the slip number is increased, the dependence of the pres-
sure gradient on Bn and the corresponding critical Bingham num-
ber are reduced. Finally, Fig. 6 shows plots of the pressure gradient
for Bn = 0 and 1 and various values of the exponent n. Obviously,
the required pressure gradient increases with n. All curves are hor-
izontal initially but as slip becomes stronger, (�dp/dz) decreases
rapidly. In the case of a power-law fluid, it goes asymptotically
to zero, whereas in the case of a yield-stress fluid it goes down
to the critical value 2Bn at a finite value of the slip number.

The above remarks for the existence of a finite critical slip num-
ber hold only when the interfacial yield stress is zero. If, for exam-
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ple, sc = s0 and slip is described by Eq. (5) with m = 1, then the
dimensionless slip velocity in axisymmetric Poiseuille flow when
sw > s0 is given by

uw ¼ A1 � dp
dz

� �
� 2Bn

� 	
ð34Þ

and, thus,

A1;crit ¼
1

� dp
dz

� �
� 2Bn

� 	
crit

!1 ð35Þ

The analysis of flow in the case of non-zero slip yield stress is out of
the scope of the present work.

3. Weakly compressible Poiseuille flow with slip

For a weakly compressible flow, it can be assumed that the ra-
dial velocity component is zero. This assumption is consistent up
to first order with Newtonian perturbation solutions in terms of
compressibility [30]. Assuming further that @uz/@z� 1, then
_c � j@uz=@rj. In creeping flow, the z-momentum equation is re-
duced to Eq. (11) where the pressure gradient is now a function
of z. These assumptions are valid in very long tubes, i.e. when R/
L� 1 [26]. With the terminology of Wachs et al. [31] the present
model is a 1.5D model. However, this can simply be viewed as a
lubrication approximation model [16]. Being a function of the pres-
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Fig. 11. Velocity contours in incompressible Newtonian flow with pressure-
dependent slip for A1 = 0.1 and various values of A2 (exponential model); L = 10.
sure, the density also varies across the tube, i.e. q = q(z). For the
mass to be conserved, there must be

qðzÞQðzÞ ¼ Q 0 ð36Þ

where Q(z) is the volumetric flow rate and Q0 = Q(0). The dimen-
sionless axial velocity (scaled by the mean velocity, V0, at the exit
of the capillary) is then given by

uzðr; zÞ ¼ A1 �
dp
dz

� �
ðzÞ þ n

21=nðnþ 1Þ
�dp

dz

� �1=n

ðzÞ

ð1� r0ðzÞÞ1=nþ1
; 0 6 r 6 r0

ð1� r0ðzÞÞ1=nþ1 � ðr � r0ðzÞÞ1=nþ1
h i

; r0 6 r 6 1

8<
: ð37Þ

where r0 is now a function of z:

r0ðzÞ ¼
2Bn

ð�dp=dzÞðzÞ < 1 ð38Þ

It is clear that at the capillary exit (z = 0), Eqs. (37) and (38) yield the
incompressible flow solution.

As pointed out by Vinay et al. [26], r0(z) in steady compressible
Poiseuille flow is just a pseudo-yield point, i.e. a convenient ideal-
ization. Since the axial velocity varies along the tube, @uz/@z > 0 and
thus _c is nonzero, which implies that unyielded regions, similar to
the classical plug regions, cannot be obtained. Vinay et al. [26] have
also calculated steady-state velocity profiles at the inlet and the
outlet of the tube with the plug region at the center corresponding
to half the pipe radius.

The pressure dependence of the density is taken into account by
means of a linear thermodynamic equation of state. At constant
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Fig. 12. Pressure gradient (a) and slip velocity (b) in incompressible Newtonian
flow with pressure-dependent slip for A1 = 0.1 and various values of A2 (exponential
model); L = 10.
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temperature and for low pressures, the density can be repre-
sented by the linear approximation of the standard exponential
expression:

q ¼ q0½1þ bðp� p0Þ� ð39Þ

where b � �ð@t=@pÞp0 ;T0
=t0 is the isothermal compressibility as-

sumed to be constant, t is the specific volume, q0 and t0 are, respec-
tively, the density and the specific volume at the reference pressure
p0, and temperature, T0. The equation of state is nondimensional-
ized scaling the density q by q0 and the pressure as in Section 2:

q ¼ 1þ Bp ð40Þ
where the reference pressure, p0, has been set to zero, and B is the
compressibility number,

B � bkVn
0

Rn ð41Þ

The pressure gradient (�dp/dz)(z) across the capillary, i.e. for z 6 0,
can be calculated using the conservation of mass, i.e. Eq. (36). It
turns out that the pressure gradient is a solution of the following
equation

21=n 3nþ 1
n

� dp
dz

� �3 1
qðpÞ � uw

� 	
¼ � dp

dz

� �
� 2Bn

� 	1=nþ1

� dp
dz

� �2

þ 4nBn
2nþ 1

� dp
dz

� �
þ 8n2Bn2

ðnþ 1Þð2nþ 1Þ

" #
ð42Þ

which involves the pressure-dependent density of the fluid. The
pressure gradient can be viewed as a function of p and is expected
to decrease upstream.

Eq. (42) can be integrated analytically and solved for p only in
the case of a Newtonian fluid (Bn = 0, n = 1). It turns out that
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pðzÞ ¼ 1
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16

1þ 8A1
Bz

s
� 1

 !
ð43Þ

and the corresponding velocity profile is:

uzðr; zÞ ¼
8A1 þ 2ð1� r2Þ

ð1þ 8A1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16

1þ8A1
Bz

q ð44Þ

The slip velocity is obviously given by

uwðzÞ ¼
8A1

ð1þ 8A1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16

1þ8A1
Bz

q ð45Þ

The results in (43)–(45) agree with the perturbation solution of
Poyiadji et al. [32] up to first order.
In the general case, the pressure gradient and the pressure are cal-
culated numerically. Once the pressure p(z) is known at a point (e.g.,
p(0) = 0), the pressure gradient (�dp/dz)(z) can be calculated from
Eq. (42). Then the pressure can be calculated by setting p = 0 at
the exit plane (z = 0) and integrating the pressure gradient moving
upstream [28].

The effect of compressibility on the shape of the velocity profile
across the tube in the case of slip is illustrated in Figs. 7 and 8 for
Bn = 0 (Newtonian) and 4 (Bingham plastic), where B was set to the
rather high value of 0.1 in order to exaggerate compressibility
effects. As for the slip coefficient, the value A1 = 0.1 was used for
Bn = 0; for Bn = 4 a much lower value was used (A1 = 0.01), for
reasons to be discussed below. Due to compressibility, the mean
velocity is reduced upstream. When slip occurs the radial depen-
dence of the solution is weaker and the velocity profile tends to be-
come flat. This effect becomes more striking in the case of Bingham
fluids (Fig. 8). The pressure gradients across the tube for the two
flows of Figs. 7 and 8 are plotted in Fig. 9 and Fig. 10a. As demon-
strated by Taliadorou et al. [28] for the no-slip case, in compress-
ible flow the pseudo-yield point moves towards the wall
upstream. This phenomenon is accelerated by slip, as illustrated
in Fig. 10b, where the variation of r0(z) across the tube is shown.
In the case of no slip, the pseudo-yield point moves to the wall
asymptotically. In the case of slip and under our assumptions the
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flow becomes plug at a finite distance upstream the exit. Similarly,
the pressure gradient is reduced down to the critical value 2Bn.

4. Poiseuille flows with pressure-dependent slip

In the case that the slip coefficient is pressure dependent, the
above analysis still holds under the assumptions uy = 0 and @uz/
@z� 1, with A1 in Eq. (22) now replaced by a function of pressure,
A(p). As already mentioned, the analysis of Person and Denn [16]
for the flow of a power-law fluid in a slit with pressure-dependent
wall slip is based on the same assumptions (lubrication approxi-
mation). For a Newtonian fluid (Bn = 0 and n = 1), one gets:
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qðpÞ½1þ 8AðpÞ� �dp
dz

� �
¼ 8 ð46Þ

which results in the following expression for the velocity profile:
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uzðr; zÞ ¼
8AðpÞ þ 2 1� r2

� �
qðpÞ½1þ 8AðpÞ� ð47Þ

In the present work we considered two models describing the pres-
sure dependence of A. The first is linear

AðpÞ ¼ A1 � A2p; 0 6 p 6 A1=A2 ð48Þ

while the second one is exponential [16]:

AðpÞ ¼ A1e�A2p ð49Þ

where A2 is a dimensionless constant:
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Fig. 19. Velocity contours in Newtonian flow with pressure-dependent slip for
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A2 �
ka2Vn

0

Rn ð50Þ

Obviously when A2 = 0, the pressure-independent Navier slip condi-
tion is recovered in both cases. The two models are equivalent for
small values of A2 and small pressures.

Substituting Eqs. (40) and (48) into Eq. (46) we get

ð1þ BpÞ½1þ 8A1 � 8A2p� � dp
dz

� �
¼ 8 ð51Þ

From the above equation it is directly deduced that the effect of
pressure-dependent slip is opposite to that of compressibility. Inte-
grating Eq. (51) results in a cubic equation that can be solved ana-
lytically for the pressure p. In the case of incompressible flow (B = 0)
one gets:

pðzÞ ¼ 1þ 8A1

8A2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 128A2

ð1þ 8A1Þ2
z

s !
ð52Þ

and

uzðr; zÞ ¼
8ðA1 � A2pÞ þ 2ð1� r2Þ
ð1þ 8A1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 128A2

ð1þ8A1Þ2
z

q ð53Þ
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The numerical results presented below have been obtained
using the exponential model in Eq. (49), with which no analytical
solution can be obtained. The velocity contours in incompressible
Newtonian flow for A1 = 0.1 and various values of A2 are given in
Fig. 11. For zero or small values of A2 the contour lines are horizon-
tal indicating that the flow is essentially one-dimensional. At high-
er values of A2 the dependence of uz on z becomes stronger and
thus the contours are bending towards the axis of symmetry.
Fig. 12 shows the profiles of the pressure gradient and the slip
velocity across the tube for A1 = 0.1 and various values of A2.
Obviously, for A2 = 0 (no pressure-dependence) both the pressure
gradient and the slip velocity are constant, since the flow is one-
dimensional. For small values of A2 (weak pressure-dependence),
the pressure gradient decreases and the slip velocity increases lin-
early across the tube. For high values of A2 (strong pressure depen-
dence), slip is restricted only near the exit of the tube. Upstream,
the slip velocity is essentially zero and the pressure gradient is
constant.

The combined effects of compressibility and pressure-depen-
dent slip for the Newtonian case are illustrated in Fig. 13, where
the velocity contours for B = 0.01, A1 = 0.1 and various values of
A2 are shown. As the pressure dependence is increased, the velocity
contours tend to become horizontal and a velocity peak appears
close to the tube exit. The variation of the pressure gradient and
the slip velocity with A2 is illustrated in Fig. 14. Note that due to
compressibility both the pressure gradient and the slip velocity
are increasing with the axial distance when A2 = 0. As expected,
the slip velocity is reduced and the pressure gradient increases
with A2. At high values of A2, however, there appears a maximum
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Fig. 21. Velocity profiles at the inlet and the outlet in Newtonian flow with pressure-de
numbers; L = 10
of the pressure gradient which moves towards the exit as A2 is in-
creased and slip becomes more localized.

The effects of the slip decay parameter A2 in the case of Bing-
ham flow are illustrated in Figs. 15–18, where velocity contours
and results for the pressure gradient, the yield point, and the slip
velocity are presented for both the incompressible and compress-
ible cases. In incompressible flow (B = 0.01), the size of the pseu-
do-unyielded region is reduced upstream as the slip velocity is
reduced (Figs. 15 and 16 for Bn = 1 and B = 0). In the compressible
case, the results are more interesting, since at high values of A2 the
radius of the pseudo-unyielded region appears to pass through a
minimum (Fig. 18) leading to the appearance of unyielded islands
(Fig. 17). This phenomenon becomes more pronounced as the Bing-
ham number is increased.

To investigate further the combined effects of slip pressure-
dependency and compressibility, we fixed the slip parameters to
A1 = 0.1 and A2 = 0.01 (always for the exponential model) and var-
ied the compressibility number. It should be noted that the veloc-
ity profile at the exit plane (z = 0) is independent of the
compressibility number, since this is by assumption the profile
for incompressible flow with constant slip. In Fig. 19, a reversal
of the velocity contour pattern is observed as the compressibility
number is increased. Initially, the effects of the slip pressure-
dependency prevail but as B is increased these are counterbalanced
and then suppressed by compressibility effects. For B = 0.001 the
competing effects of A2 and B are equivalent so that the velocity
contours are almost everywhere horizontal. The corresponding
pressure-gradient and slip velocity distributions are given in
Fig. 20. We observe in Fig. 20a that for small compressibility num-
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pendent slip for A1 = 0.1, A2 = 0.01 (exponential model) and various compressibility
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bers the pressure gradient is decreasing across the tube. However,
this trend changes as B increases. For a critical value between 0.001
and 0.01 the pressure gradient is roughly constant and the velocity
profile is weakly dependent on z. This effect is illustrated in Fig. 21
where the velocity profiles at the inlet and the outlet are compared
for B = 0, 0.001, 0.01, and 0.1. As expected, the mean velocity is re-
duced upstream due to the conservation of mass. At some low va-
lue of B (Fig. 21b) the velocity profiles at the inlet and the outlet are
quite similar, but at higher values of B the velocity at the inlet is
reduced dramatically and tends to become flat. This phenomenon
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Fig. 22. Velocity contours in Bingham flow with pressure-dependent slip for Bn = 1
and various compressibility numbers; A1 = 0.1, A2 = 0.01 (exponential model), and
L = 10.
becomes more striking in the case of Bingham flow in which the
velocity in the unyielded region is flat anyway. In Fig. 22, we show
results obtained with Bn = 1, A1 = 0.1 and A2 = 0.01. As in the New-
tonian case, the velocity contour pattern changes dramatically as
compressibility is increased. For small compressibility numbers,
the pseudo-yield distance is slightly reduced upstream, but at
higher compressibility numbers this trend is reversed. As in the
case of pressure-independent slip, the flow upstream tends to be-
come plug when the compressibility of the fluid is taken into
account.

5. Conclusions

Approximate semi-analytical solutions of the steady, creeping,
weakly compressible plane and axisymmetric Poiseuille flows of
a Herschel–Bulkley fluid with slip at the wall have been derived,
under lubrication approximation assumptions, employing a linear
equation of state and Navier’s slip condition with zero slip yield
stress. The combined effects of compressibility, slip, and yield
stress and the case of pressure-dependent slip have been investi-
gated. In agreement with previous works [26,28], it was shown
that when slip is present and the yield stress fluid is compressible,
the velocity upstream, tends to become plug, which justifies the
use of averaged models in solving viscoplastic flows in long tubes.
This effect is enhanced with the presence of slip. It has also been
demonstrated that the effect of slip pressure-dependency is oppo-
site to that of compressibility. As for the future plans, we intend to
extend the present analysis to 1.5D time-dependent models.
Appendix A. Compressible plane Poiseuille flow with slip

In plane Poiseuille flow, lengths are scaled by the channel-half-
width, H, the velocity by the mean velocity, V0, at the exit of the
channel, and the pressure by kV0/Hn. Under the same assumptions
used for the axisymmetric flow, the dimensionless velocity profile
in the case of compressible plane flow is written as follows:

uxðx; yÞ ¼ uwðxÞ þ
n

nþ 1
� dp

dx

� �1=n

ðxÞ

ð1� y0ðxÞÞ
1=nþ1

; 0 6 y 6 y0

½ð1� y0ðxÞÞ
1=nþ1 � ðy� y0ðxÞÞ

1=nþ1�; y0 6 y 6 1

( ð54Þ

where the slip velocity and the yield point are given by

uw ¼ A1 �
dp
dx

� �
ð55Þ

and

y0 ¼
Bn

ð�dp=dxÞðxÞ ð56Þ

The slip and Bingham numbers are respectively defined by

A1 �
akVn�1

0

Hn ð57Þ

and

Bn � s0Hn

kVn
0

ð58Þ

It turns out that the dimensionless pressure-gradient is a solu-
tion of the following equation:

2nþ 1
n

� dp
dx

� �2 1
qðpÞ � uw

� 	
¼ �dp

dx

� �
� Bn

� 	1=nþ1

�dp
dx

� �
þ n

nþ 1
Bn

� 	
: ð59Þ
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In the case of a power-law fluid, Eq. (59) is simplified as follows:

2nþ 1
n

1
qðpÞ � A1 �

dp
dx

� �� 	
¼ � dp

dx

� �1=n

ð60Þ

In the case of a Bingham-plastic, Eq. (68) is reduced to

2ð1þ 3A1Þ �
dp
dx

� �3

� 3 Bnþ 2
qðpÞ

� �
� dp

dx

� �2

þ Bn3 ¼ 0; ð61Þ

which has the following solution:

� dp
dx

� �
¼ 1

1þ 3A1

Bn
2
þ 1

qðpÞ

� �

1þ 2 cos
1
3

cos�1 1� 2 1þ 3A1ð Þ2Bn3

ðBnþ ð2=qðpÞÞÞ3

( )" #" #
ð62Þ
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