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a b s t r a c t

The isothermal annular Poiseuille flow of a weakly compressible Newtonian liquid with constant shear
and bulk viscosities is considered. A linear equation of state is assumed and a perturbation analysis in
terms of the primary flow variables is performed up to the first order using the isothermal compressibility
as the perturbation parameter. The effects of compressibility, the bulk viscosity, the radii ratio, the aspect
ratio, and the Reynolds number on the velocity and pressure fields are studied.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The present paper is a continuation of our previous work [1]
where perturbation solutions have been derived for both the planar
and round compressible Poiseuille Newtonian flows, with com-
pressibility serving as the perturbation parameter. The objective
here is to derive the perturbation solution for the annular Poiseuille
flow of a compressible Newtonian fluid and to investigate the
effects of compressibility, the bulk viscosity, the aspect ratio and
the Reynolds number on the velocity and pressure fields.

The paper is organized as follows. In Section 2, the governing
equations and boundary conditions are presented and nondimen-
sionalized. In Section 3, the perturbation solution is derived only
up to first order, due to the fact that the solution in the annu-
lar geometry is much more complicated than in the planar and
axisymmetric Poiseuille flow. In Section 4, the effects of the various
parameters involved are presented and discussed. Finally, Section
5 summarizes the conclusions.

∗ Corresponding author. Tel.: +357 22892612; fax: +357 22892601.
E-mail address: georgios@ucy.ac.cy (G.C. Georgiou).

2. Governing equations

In this work, the fluid density, �, is assumed to obey a linear
equation of state:

� = �0[1 + ˇ(P − P0)] (1)

where P is the pressure, ˇ is the isothermal compressibility, and �0
is the density at a reference pressure P0. The constitutive equation
of a compressible Newtonian fluid is

� = �[∇u + (∇u)T ] +
(

�1 − 2
3

�
)

∇ · uI (2)

where � is the viscous stress tensor, u is the velocity vector, �u
is the velocity gradient tensor, I is the unit tensor, � denotes the
viscosity, and �1 is the bulk (or dilatational) viscosity. In the present
work, both � and �1 are assumed to be constant, i.e. independent
of pressure. The bulk viscosity, �1, which is very often neglected,
is identically zero only for mono-atomic gases at low density and
becomes important in polyatomic gases and in liquids [2,3].

We consider the isothermal, steady, axisymmetric annular
Poiseuille flow of a weakly compressible Newtonian fluid under
zero gravity and no slip at the walls. The inner and outer radii of
the annulus are respectively �R and R, with 0 < � < 1 and its length
is L. To nondimensionalize the governing equations, we scale z by
L, r by R, � by �0, the axial velocity uz by

U = Ṁ

��0R2
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where Ṁ is the mass flow rate, the transverse velocity ur by UR/L,
and the pressure by A�LU/R2, where

A = 8
1 + �2 − B

(3)

and

B = 1 − �2

ln(1/�)
(4)

The latter pressure scale is chosen so that the dimensionless
pressure gradient along the domain, in the incompressible flow is
equal to unity. Using the above scalings, the dimensionless forms
of the equation of state, the continuity equation and z- and r-
momentum equations become:

� = 1 + εP (5)

1
r

∂

∂r
(r�ur) + ∂

∂z
(�uz) = 0 (6)

˛Re�

(
ur

∂uz

∂r
+ uz

∂uz

∂z

)
= −A

∂P

∂z
+ 1

r

∂

∂r

(
r

∂uz

∂r

)
+˛2 ∂2uz

∂z2
+ ˛2

(
� + 1

3

)[
∂

∂z

(
1
r

∂

∂r
(rur)

)
+ ∂2uz

∂z2

]
(7)

˛3Re�

(
ur

∂ur

∂r
+ uz

∂ur

∂z

)
= −A

∂P

∂r
+ ˛2 ∂

∂r

(
1
r

∂

∂r
(rur)

)
+˛4 ∂2ur

∂z2
+ ˛2

(
� + 1

3

)[
∂

∂r

(
1
r

∂

∂r
(rur)

)
+ ∂2uz

∂r∂z

]
(8)

where

� ≡ �1

�
(9)

is the bulk-to-shear viscosity ratio,

˛ ≡ R

L
(10)

is the aspect ratio of the outer cylinder, and Re and ε are,
respectively, the Reynolds and compressibility numbers, which are
defined by

Re ≡ �0UR

�
(11)

and

ε ≡ A�ˇLU

R2
(12)

The Mach number takes the form

Ma ≡
√

ε˛Re

A	
(13)

where 	 being the heat capacity ratio (or adiabatic index). In this
work we consider subsonic flows so that Ma � 1.

The system of partial differential Eqs. (5)–(8) is supplemented by
appropriate boundary conditions, which are shown in Fig. 1. Along
the two walls, it is assumed that no slip occurs and the transverse
velocity component vanishes (impermeable wall):

uz(z, �) = uz(z, 1) = ur(z, �) = ur(z, 1) = 0, 0 ≤ z ≤ 1 (14)

At the exit plane, the dimensionless mass flow rate is set at a
value of 1:

2

∫ 1

k

�uzr dr = 1 (15)

Fig. 1. . Dimensionless geometry and boundary conditions for the compressible
annular Poiseuille flow.

Finally, the pressure is set to zero at z = r = 1:

P(1, 1) = 0 (16)

As in Venerus [3], no boundary conditions are specified at the
inlet plane.

3. Perturbation solution

Since the system of Eqs. (5)–(8) cannot be solved analytically, we
seek an approximate perturbation solution. Following Venerus [3],
Schwartz [4], and Taliadorou et al. [1], the compressibility number,
ε, is used as the perturbation parameter. Due to the complexity of
the perturbation solution, this is derived only up to the first order,
under the assumption of zero radial velocity. The methodology is
described in [1] and only the perturbation solution is given here:

� = 1 + ε(1 − z) + O(ε2) (17)

P = 1 − z + ε

[
˛2

4

(
� + 1

3

)
(1 − r2 + B ln r) − 1

2
(1 − z)2

+ A

16
˛Rec(1 − z)

]
+ O(ε2) (18)

ur = O(ε2) (19)

uz = A

4
(1 − r2 + B ln r) [1 − ε(1 − z)]

+ A2

16
˛Reε

[
K1 + K2 ln r − 1

4
cr2 + 1

8
(2 − 4B + 3B2)r2

+ 1
16

(B − 2)r4 + 1
36

r6 + 1
2

(B − B2)r2 ln r − 1
8

Br4 ln r

+1
4

B2r2 ln2r
]

+ O(ε2) (20)

where c, K1, and K2 are constants defined respectively by

c = A

192

[
12(1 + �2 + �4 + �6) − 44(1 + �2 + �4)B + 63(1 + �2)B2 − 36B3

]
(21)

K1 = A

2304
[−4(2 + 2�2 − 9�4 − 9�6) + (38 − 6�2 − 132�4)B

−(45 − 81�2)B2] (22)

and

K2 = AB

2304
[−4(2 + 13�2 + 13�4 + 2�6) + (38 + 164�2 + 38�4)B

−45(1 + �2)B2] (23)

It is easily verified that the above solution is equivalent to the
first-order solution for the axisymmetric Poiseuille flow given in
[1] when � → 0. It is also equivalent to the plane Poiseuille flow
solution when � approaches unity.
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Fig. 2. Effect of ε on (a) the velocity and (b) the pressure contours (ε = 0, 0.1, 0.5);
� = 0.1, ˛ = 0.01, Re = 0, � = 0.

Fig. 3. Effect of ε on the pressure contours (ε = 0, 0.1, 0.5); � = 0.1, ˛ = 1, Re = 0, � = 0.

Fig. 4. Effect of Re on (a) the velocity and (b) the pressure contours (Re = 0, 10, 100);
� = 0.1, ˛ = 0.1, ε = 0.2, � = 0.

4. Results

In the present section, the effects of compressibility, the bulk
viscosity, the radii ratio, the aspect ratio, and the Reynolds number
on the velocity and pressure fields are discussed. The basic features
of the velocity and pressure fields described by Eqs. (17)–(20) are
the following:

(a) The density is a decreasing function of z, as expected.
(b) The pressure is a function of both z and r and increases with

the bulk viscosity, the aspect ratio, and the Reynolds number.
The r-dependence at first order in ε becomes stronger as ˛2 is
increased (i.e. in short channels).

(c) The transverse velocity, ur, is zero to first order, as in the case
of tube and channel flow.

(d) The axial velocity, uz, deviates from the quasi-parabolic incom-
pressible solution at first order in ε due to fluid inertia. Unlike
pressure, this is independent of the bulk viscosity up to the first
order. This is also the case in plane and round Poiseuille flows
[1].
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Fig. 5. Deviation of uz from the incompressible solution at (a) z = 0 and (b) z = 1;
� = 0.1 and ε = 0.1.

From Eq. (18), it is deduced that the pressure PW along both walls
of the annulus is not dependent on the bulk viscosity:

PW = (1 − z)
{

1 − ε
[

1
2

(1 − z) − Ac

16
˛Re

]}
(24)

It is also clear that when the Reynolds number is zero, PW is also
independent of the diameter and aspect ratios. The required wall
pressure required for driving the flow,


PW = PW (0) − PW (1) = PW (0) = 1 − ε
(

1
2

− Ac

16
˛Re

)
(25)

is reduced as compressibility is increased, only for small values of
˛Re. At higher values of ˛Re, 
PW may be an increasing function of
ε. It is easily shown that the expression Ac/16 is bounded above by
0.2. Since, ˛Re is of the order of unity, the second term in Eq. (25)
may be negligible. Therefore, at first order

PW (0) � 1 − 1
2

ε (26)

The effect of the term ˛Re becomes significant only when this is
of the order of unity or greater. In the flows of interest, ˛ is 0.01 or
less.

Another interesting observation is that for any value of r, the
pressure difference between the inlet and the outlet planes is con-

Fig. 6. Effect of � on (a) the velocity and (b) the pressure contours (� = 0.1, 0.5, 0.9);
˛ = 1, ε = 0.1, Re = 0, � = 0.

stant (independent of r). It turns out that


P = PW (0) = 1 − ε
(

1
2

− Ac

16
˛Re

)
(27)

This implies that the pressure profiles for different values of z,
differ only by a constant. Let us now consider the pressure profile
at the exit plane, which, obviously, is independent of the Reynolds
number:

Pexit = ˛2ε

4

(
� + 1

3

)
(1 − r2 + B ln r) (28)

In other words, the pressure varies with r exactly as the incom-
pressible velocity profile. The magnitude of Pexit increases linearly
with ε and � and quadratically with ˛.

The effects of compressibility on the velocity and pressure con-
tours are illustrated in Fig. 2, where results for � = 0.1, ˛ = 0.01,
Re = 0, � = 0, and three different values of ε (0, 0.1 and 0.5), are
shown. In the case of incompressible flow the velocity contours are
horizontal and those of pressure are vertical. As compressibility is
increased, the velocity contours are curved towards the interior of
the annular tube. The pressure contours are also curved to the right.
This is more clearly seen in shorter tubes, as in Fig. 3 where ˛ = 1. It
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is clear from Eq. (20) that at first order uz depends on the product
˛Re. Therefore, the velocity contours are identical to those of Fig. 2
(˛Re = 0 in both cases).

The effect of the Reynolds number is illustrated in Fig. 4.
The velocity contours become more curved as compressibility is
increased. The effect of the parameter ˛Re on the velocity is also
illustrated in Fig. 5 where the deviation of the axial velocity from
its incompressible counterpart at both the inlet and outlet planes
is shown for various values of ˛Re, ε = 0.1 and � = 0.1. Finally, Fig. 6
shows the effect of the diameter ratio on the velocity and pressure
contours. Unlike the pressure contours, the velocity contours are
more curved at higher values of �.

5. Conclusions

We have derived, up to the first order in terms of compress-
ibility, the perturbation solution of the annular Poiseuille flow of
weakly compressible liquids with constant shear and bulk vis-
cosities, assuming a linear equation of state. The effects of the
various parameters involved on the pressure and velocity fields

have been discussed. In particular, the pressure difference required
to drive the flow in a given tube decreases with compressibility and
increases with the Reynolds number. At any axial distance, the pres-
sure distribution is of the form the incompressible velocity profile,
i.e. it is minimal at the walls and increases with the compressibility
and the bulk viscosity.

An interesting extension of the present work is the consideration
of linear slip in compressible Poiseuille flow and the investigation
of the possibility to have non-zero transverse velocity to first order
due to the variation of the slip velocity with the axial coordinate.
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