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bstract

Semisolid materials are suspensions of metal alloys which are processed while in a mushy state. In this state, the suspensions behave as
iscoplastic materials with time-dependent material properties. During processing, the material is injected at high speed into a mold cavity with the
rocess lasting only fractions of a second. The short-term transient material response is thus very important for the understanding of the rheology
nd the further development of the process.

A theory based on the Herschel–Bulkley flow model appropriate for the short-term breakage of welded bonds in semisolid metal slurries is
roposed. The “strength” of the slurry due to these bonds is assumed to be a function of a coherency parameter which is proportional to the number of
elded bonds that break during the application of shear. The evolution of this parameter is described by a first-order kinetics. Using a novel and simple
omputational method, well suited for free and moving-boundary problems, we study the flow between two coaxial cylinders and obtain accurate
esults for the evolution of the structure, the extent of the yielded domain and the evolution of the stress. The results and conclusions apply directly
o the design and analysis of rotational rheometer experiments for semisolid metal slurries and suspension systems exhibiting similar behavior.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Semisolid metal (SSM) alloys are processed in a state
etween that of a pure solid and a pure liquid. Prior to process-
ng the raw material is melted and allowed to cool and solidify.
uring solidification, dendrites are broken by mechanical or

lectromagnetic means. The resultant slurry has an equiaxed
icrostructure made up of round, rosette-like crystals mixed in

utectic liquid. The specially prepared material is injected into a
ie (rheocasting) or solidified in billet form for later processing
thixoforming).

The advantages of semisolid processing derive from the fact
hat, as a solid the material maintains its structural integrity, and
s a liquid it flows with relative ease [1,2]. These advantages
nclude low porosity, reduced oxide entrapment, and a lower
perating temperature than that of casting in the liquid state [1,2].

he process is used to produce components with complicated

orm and with close dimensional tolerances reducing the need
or further mechanical machining.

∗ Corresponding author. Tel.: +357 22892256; fax: +357 22892254.
E-mail address: andalexa@ucy.ac.cy (A.N. Alexandrou).

f
a
s
S
S
t

377-0257/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
oi:10.1016/j.jnnfm.2006.09.003
uids; Yield stress; Structural parameter

Despite its attractive features semisolid processing is ham-
ered by technical problems primarily due to the complex rhe-
logy of the material. The effect of the process variables on
he filling of dies and the final quality of the parts is not well
nderstood and, therefore, it is difficult to control or optimize
he process.

In this work we present a theory appropriate for the short-term
reakdown of the continuous solid skeleton of SSM suspensions
n conjunction with the flow between two concentring cylinders.
his is a typical viscometric flow used in rotational rheometer
xperiments. The results and conclusions of the present work
ill apply directly to such experiments. Using a novel com-
utational method suited for problems with free and moving
oundaries with singularities, we study the evolution of the
trength of the slurry, the extent of the yielded domain and the
volution of the stress at the rotating surface.

In Section 2, we discuss the main issues associated with the
undamental rheology of SSM slurries. In Section 3, we present
general thixotropic theoretical framework which works rea-
onably well for the long-term description of the slurries [3]. In
ection 4, we propose a model for the short-term response of
SM suspensions. This is used in Section 5 to study the struc-

ural breakdown of SSM suspension flow between two coaxial

mailto:andalexa@ucy.ac.cy
dx.doi.org/10.1016/j.jnnfm.2006.09.003
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ylinders similar to the flow in a rotating rheometer. The numer-
cal results are presented and discussed in Section 6. The paper
oncludes in Section 7 with the final remarks.

. Rheological behavior of SSM suspensions

In the mushy state, a semisolid metal is a dense suspension
onsisting of liquid metal and solid particles the majority of
hich are welded together due to thermal diffusion to form a

ontinuous solid network.
There are two possible mechanisms relevant to the time-

ependent behavior of SSM [4–6]. The first mechanism is the
reakdown of the solid structure which involves the breaking up
f the bonds between particles due to shear forces. This mecha-
ism occurs during the early stages of the shearing history and
s responsible for the rapid decrease in the effective viscosity of
he material [4,7,8]. Since in an actual process the breakdown
f the structure is the most important effect this mechanism is
he focus of the current work.

The second mechanism is the build-up of the solid struc-
ure and refers to the formation of metallurgical bonds (necks)
etween particles, occurring while the sample is at rest [7,8].
bviously, given the speed of the process relative to thermal
iffusion the structure breaks down at a rate much faster than
he rate it builds up.

One of the most commonly used methods to study the rhe-
logy of SSM slurries is the rotating vane-cup rheometer, with
hich time-dependent rheological data can be obtained follow-

ng the sudden application of a constant rotational speed. The
hear stress (and thus the apparent viscosity) is determined as a
unction of time by measuring the torque on the rotational part of
he rheometer [4–9]. Typical time-dependent results obtained in
ur experiments are shown in Fig. 1. In general, it has been found
hat for a given rotational speed the shear stress (or the viscosity)
ecreases rapidly at the start of shearing before it approaches a

teady value. The rate at which the viscosity decreases is a strong
unction of the rotational speed and the solid volume fraction of
he sample [4–9].

ig. 1. Typical experimental results for the variation of the stress with time for
SM slurry from a rotational experiment [9].

w
α

c
o
e
b
t
e

e

F
s

nian Fluid Mech. 142 (2007) 199–206

Notwithstanding the experimental difficulties, the different
xperimental techniques used for material characterization and
he wide variance in the conditions used, it is generally accepted
hat semisolid slurries behave as viscoplastic materials with a
nite yield stress and time-dependent material properties. In the
SM scientific community there is wide consensus that the slur-
ies can be represented well using the Herschel–Bulkley model
3,10,13–17]. Currently the short-term response of SSM slurries
s not well modeled and more accurate models are needed for the
arly stages of the deformation. Therefore, the objective here is
o expand the theory based on the Herschel–Bulkley model by
ncluding the early breakdown of the solid structure.

. General thixotropic model for SSM suspensions

In this section, we discuss a general theoretical framework
pplicable to many suspension systems. The framework pro-
ides a convenient basis on which to develop the breakdown
odel proposed here.
In a previous work, Burgos et al. [3] used a structural-

arameter model, similar to those in Refs. [12,13] to describe the
hixotropy of SSM slurries. The structural parameter, ξ, charac-
erizes the state of the structure. In a fully structured state, i.e.
hen all the particles are connected, ξ is assumed to be unity.

n a fully broken state, when no particles are connected, ξ is
ssumed to be zero, as illustrated in Fig. 2.

The evolution of the structural parameter is governed by a
rst-order rate equation, similar to those used to describe chemi-
al reaction kinetics [18]. It is assumed that the rate of breakdown
epends on both the fraction of links existing at any instant and
he deformation rate. Similarly, the rate of build-up is assumed
o be proportional to the fraction of links remained to be formed

Dξ

Dt
= α0(1 − ξ) − α1ξγ̇ eα2γ̇ (1)

here D·/Dt is the material derivative, the recovery parameter,
0, and the breakdown parameters, α1 and α2, are empirical
onstants to be determined experimentally, and γ̇ is the sec-
nd invariant of the rate of strain tensor, D =�u + (�u)T. The
xponential dependence on the deformation rate, in the rate of
reakdown term of Eq. (1), is included in order to account for
he fact that the shear stress evolution in the shear-rate step-up

xperiment is faster than that in the step-down case [10,11].

At equilibrium, the rates of breakdown and recovery are
qual. For constant γ̇ , the equilibrium value of the structural

ig. 2. Coherency parameter in a (a) fully structured state and (b) fully broken
tate.
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arameter, ξe, is then obtained from Eq. (1) as

e = 1

1 + (α1/α0)γ̇ eα2γ̇
(2)

Consistent with experimental observations the suspension is
ssumed to behave as a Herschel–Bulkley fluid. The model is a
ombination of the Bingham and power-law fluid models. For
SM slurries the Bingham fluid model accounts for the pres-
nce of a finite yield stress, while the power-law model accounts
or the shear-dependency of the suspension. Here, the material
arameters of the model are assumed to be functions of both the
olid fraction and the structural parameter:

=
[
τy(s, ξ)

γ̇
+ K(s, ξ)γ̇n(s,ξ)−1

]
D (3)

here � is the viscous stress tensor, K(s, λ) the consistency index,
(s, λ) the power-law index, and τy(s, λ) is the yield stress. In a
imple shear flow experiment, Eq. (3) reduces to

= τy(s, ξ) + K(s, ξ)γ̇n(s,ξ) (4)

he material parameters in the model, α0, α1 and α2, and the
aterial functions, K(s, ξ), n(s, ξ) and τy(s, ξ), are identified

sing appropriate experimental data.

. Short-term breakdown of SSM suspensions

The thixotropic model described in Section 3 was applied
o the experiments performed by Modigell et al. [13] in order
o determine material constants for SSM suspensions [3]. The
esults of this work have shown that with proper choice of
aterial constants the model could predict fairly well long-

erm step-up and step-down experiments. The Herschel–Bulkley
odel that captured well the long-term behavior supported the

resence of a residual yield stress even after several minutes
f shearing. Note that the experiments were lengthy, lasting for
everal minutes a time frame much longer than any real SSM
rocess. Unlike the long-term behavior, the short-term response
f the slurry immediately after the initial application of shear
as not predicted well. This implies that the physics of the early
reakdown is different from that of the long-term behavior.

Recent experiments by Salvo et al. [19] showed that the solid
atrix formed by the bonding of solid particles is quite exten-

ive. Three-dimensional X-ray micro-tomography revealed that
olid particles formed a very coherent three-dimensional struc-
ure (a fact consistent with the presence of a finite yield stress).
he physics of the early breakdown are indeed related to this

nitial structure and its subsequent breakdown upon the appli-
ation of shear. Obviously, once it breaks down, the structure
annot recover in the short time of the process. Therefore, shear
train step-up/step-down experiments such as the one used in
13] are not useful in describing the short-term response. More

seful information for understanding the behavior of SSM slur-
ies may be provided by detailed stress versus time data obtained
rom rotational experiments.

In line with the above observations we developed a model for
he short-term response based on the following principles:

i
c
s
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. The bulk of the finite yield stress of SSM slurries is primarily
due to the welded bonds between solid particles. Their effect
is defined as the “strength” of the slurry τ0. This is a time
dependent contribution to the rheology of SSM slurries. The
breakage of bonds due to shear explains the characteristic
rapid decrease in the stress observed in transient experiments.

. In the short time of the process we assume that the con-
tribution of the structure evolution as described earlier
with the parameter ξ is a second-order effect. Possible
particle–particle and fluid–particle interactions due to the
evolution of the structure (and the part of the solid skeleton
that survives the shearing) are included in a time-invariant but
rate of strain-dependent contribution, τss. Note that a more
complicated model will also include for the same time scale
the evolution of the structure as explained in Section 3. In
such a case the number of unknown parameters increases
significantly and the model becomes less practical to use.
Moreover, it becomes almost impossible to verify experi-
mentally the validity of such complex model.

Based on the above assumptions and physical observations
nd by defining a coherency parameter λ that represents the
elative number of welded bonds that eventually break (λ > 0, at
teady state) we can write

= τ0(s, λ(t)) + τss(s, γ̇e, γ̇)

here

ss(s, γ̇, γ̇e) = τe(s, γ̇e) + τpp(s, γ̇) + τfp(s, γ̇)

ith τpp(s, γ̇) being the particle–particle and τfp(s, γ̇) the
uid–particle interactions taken to be functions of γ̇ . The term
e(s, γ̇e) is the part of the solid network that survives the shearing
t a given steady-state γ̇e.

Experimental data and the consensus in SSM modeling indi-
ate that τss(s, γ̇, γ̇e) fits very well a Herschel–Bulkley fluid
odel [9]. Therefore

= τ0(s, τ(λ))︸ ︷︷ ︸
sturry strength

+ τs(s, γ̇e) + K(s, γ̇e)γ̇n(s,γ̇e)︸ ︷︷ ︸
“steady state”

(5)

he functions τs(s, γ̇e), K(s, γ̇e) and n(s, γ̇e) are obtained
y curve-fitting experimental data. These are steady-state data
oints from stress versus time measurements obtained after long
hearing time when the flow reaches steady state where γ̇ = γ̇e.
t is important to note here that the error in estimating the param-
ters may become quite large, if the true rate of strain is not used
n the analysis. Unfortunately, this is the case in the majority of
ublished works on the rheology of SSM.

The time-dependent function τ0(s, λ(t)) must be defined a
riori. The simplest, and most obvious approach is to assume a
inear dependence of the form:

0(s, λ(t)) = λ(t)τ0(s)
To complete the theoretical formulation we also need to spec-
fy the dependence of the coherency parameter on the local flow
onditions. The evolution of λ is assumed to follow an expres-
ion similar to the one used in Section 3 for the evolution of
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he structure of the slurry. Since the rate of build-up during the
arly stages of deformation is insignificant, α0 = 0 and hence the
xpression can be written as

Dλ

Dt
= −α1λγ̇ eα2γ̇ (6)

. Flow between coaxial cylinders

The objective of the present work is to study the breakdown of
he solid structure in SSM slurries in conjunction with the flow
etween two coaxial cylinders. This is a prototype flow used in
otational rheometers in order to determine material properties.
he results and conclusions apply directly to the design of such
xperiments and to the subsequent analysis of the data. Fig. 3
hows the schematic of the flow near the rotating cylinder.

Here we will assume that due to the short time of interest,
hermal diffusion is limited and hence the temperature T and
he solid volume fraction s(T) of the slurry remain constant.
onsequently the dependence on s in the following analysis
ill be ignored. In case thermal effects are important the energy

quation with a suitable model for the solid fraction dependence
ust be introduced.
The conservation of linear momentum for the flow geometry

iven in Fig. 3 is given by

∂u

∂t
= 1

r2

∂

∂r
(r2τ) (7)

here u is the angular velocity, τ = τrθ , and ρ is the density. From
q. (5), we get

= λτ0 + τs + Kγ̇n (8)

here γ̇ = |r(d/dr)(u/r)|. The inner cylinder is assumed to
otate at a rate ω, and thus u(R1) = ωR1 = U. In the unyielded
egion, i.e. rmax < r < R2 where R2 is the radius of the outer cylin-
er it is assumed that the material is stagnant, i.e. u(r > rmax) = 0.

nitially the flow is assumed to be at rest. As discussed below,
ue to the special method of solution used here the computa-
ional domain includes only the yielded part of the domain as
hown in Fig. 4.

ig. 3. Schematic of the flow geometry. Due to the motion of the cylinder the
djacent material yields while away from the cylinder the material remains
nyielded.
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ave been assigned a particular velocity, i.e. unknowns are the coordinates (ri)
f the nodes. Note that the location of the last node rmax is by default the length
f the yielded domain.

For this simple shear flow experiment, the evolution of the
oherency parameter (Eq. (6)) reduces to

∂λ

∂t
= −α1λγ̇ eα2γ̇ (9)

By using R1, U, and K(U/R1)(n−1) as scales, respectively, for
ength, velocity, and viscosity, we obtain the following dimen-
ionless forms of Eqs. (7)–(9):

e
∂u

∂t
= 1

r2

∂

∂r
(r2τ) (10)

= λB1 + B2 + γ̇n (11)

∂λ

∂t
= −α′

1λγ̇ eα′
2γ̇ (12)

here all variables are dimensionless including the constants
′
1 and α′

2 (the primes will be dropped from hereafter). The
eneralized Reynolds number, Re, and the Bingham numbers,
1 and B2, are given by

e = ρUR1

K

R
(n−1)
1

U(n−1) , B1 = τ0

K

Rn
1

Un
, B2 = τs

K

Rn
1

Un

.1. Method of solution

Because Herschel–Bulkley models are singular, finding an
nalytical solution is possible only for very simple, steady, and
ostly unidirectional flows. In time-dependent and more geo-
etrically complex flows, the ideal Herschel–Bulkley model

s typically regularized in order to remove the singularity and
mprove computational efficiency. One of the most popular reg-
larizations is the one introduced by Papanastasiou [20], which
ses a smooth exponential function to represent a steep rise in

he stress in the limit of zero shear rate. With proper use of the
egularization parameter this model can predict with fidelity the
ow and stress fields along with the location of the yielded and
nyielded surfaces [3].
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B
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q
f
tions we assumed that the material between the two cylinders is
partially yielded, i.e. R2 > rmax.

Upon application of shear, the yielded domain increases
quite rapidly to a quasi-steady-state which is independent of
A.N. Alexandrou, G. Georgiou / J. Non-

Since regularized Herschel–Bulkley models are viscous
pproximations of the ideal model, in a strictly mathemati-
al sense, they can never reproduce exactly the ideal behav-
or. The ultimate objective, however, of the present work
s to apply the results to the design of rotational-rheometer
xperiments and in the proper analysis of the data presum-
bly through a reverse-engineering approach. It is important
hen to get results free of any ambiguity in terms of their
ccuracy.

Fortunately, the flow geometry allows the use of the inverse
nite element method (IFEM) solution procedure [21]. As we
ill elaborate below this is an “inverse” solution procedure
here the dependent variable (for example the velocity) is fixed

nd without inverting the equations the solution is obtained for
he independent variable such as the location of the computa-
ional nodes. In simpler terms, the procedure seeks to find the
ocation of the nodes which correspond to a predefined velocity
istribution (Fig. 4).

The discretization of the conservation of linear momentum
Eq. (10)) follows a classical Galerkin finite element approach
sing three-noded line elements:

(ri) =
∫ rmax

0
φi

[
Re

∂u

∂t
− 1

r2

∂

∂r
(r2τ)

]
2πr dr = 0 (13)

t is obvious that in this case the mesh is not fixed but moves
ith velocity um = (dri/dt). Therefore

∂u

∂t
= ∂u

∂t
− um

∂u

∂r

here (du/dt) is a total derivative, i.e. is the rate of change of the
elocity at a node.

Following a standard Finite Element formulation and by inte-
rating by parts Eq. (13) reduces to

(ri) =
∫ rmax

0

[
φiRe

(
du

dt
− um

∂u

∂r

)
+ τ

(
∂φi

∂r
− φi

r

)]
r dr

−rmaxτ|r=rmax = 0 (14)

here rmax is the location of the last node is the limit of the
ielded domain. This limit (which is indeed a key parameter) is
btained as a function of time automatically with the solution.
he IFEM is implemented by considering the fact that the veloc-

ty in the yielded part varies from u = 1 at the rotating surface to
= 0 at r = rmax. The velocity is distributed and kept constant at
ll times at the computational nodes, hence (du/dt) = 0.

The advantages of the IFEM approach for fluids with yield
tress are obvious:

(a) since the solution is limited to the yielded part of the mate-
rial, the singularity is automatically removed, and hence the
solution corresponds to the ideal constitutive model without
any regularization;
b) the boundary conditions are applied and satisfied exactly.

The resulting non-linear system of equations is solved using
Newton–Raphson procedure with its quadratic convergence

F
i
D
u
B
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haracteristics:

∂r(ri)

∂rj

drj = −R(ri)

Note that the derivatives of the residual equations R(ri) are
btained with respect to the unknown nodal locations rj.

The Jacobian of the Newton–Raphson procedure is saved
sing an element-by-element storage and solved by an iterative
ethod based on a modification of the biconjugate gradient sta-

ilized method [22,21]. The Jacobi preconditioning was used
o speed up convergence. For converged results, usually two to
hree iterations in the Newton–Raphson procedure are necessary
t each time step.

The evolution equation (Eq. (12)) (corrected for the fact that
he mesh moves with velocity um):

dλ

dt
= um

∂λ

∂r
− α1λγ̇ eα2γ̇ (15)

t each Newton–Raphson iteration step is solved explicitly for
ach node using high-order finite difference approximation for
he velocity gradient, subject to the boundary condition that at
he last (extreme) boundary node (r = rmax) λ = 1.0. The solution
dvances to the next time step when all unknowns converge to
he convergence criterion set to a relative error of 10−7.

. Results

Fig. 5 shows a typical fluid behavior for Re = 1, B1 = 3,
2 = 1, n = 0.5 and α1 = α2 = 0.01. The simulation is started with
n arbitrarily small yielded domain (i.e. r = 1 + ε). For mesh-
ndependent results we used a total of 40 one-dimensional
uadratic elements and ε was set to 0.01. The time steps used
or stable solutions were in the order of 10−6. In all the simula-
ig. 5. Typical fluid behavior: upon the application of shear the yielded domain
ncreases rapidly to a quasi-steady-state and then shrinks to a final steady value.
uring deformation the material breaks down continuously while the stress
ndergoes a typical sigmoidal variation to a final steady state (Re = 1, B1 = 3,

2 = 1, n = 0.5, α1 = �2 = 0.01).
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F
B

the decrease in the rate of strain that results from the increase in
�r. For the same reason as shown in Fig. 11 the rate of break-
down decreases with increasing n as a result of the decrease in
the rate of strain.
ig. 6. Effect of B1 on the stress at the rotating surface (Re = 1, B1 = 1–5, B2 = 1,
= 0.5, α1 = α2 = 0.01).

he choice of ε (point a on the figure) and then after a given
ime (point b) it starts to shrink to a final steady value (point c).
s seen clearly from the figure, during deformation the material
reaks down continuously while the stress undergoes a typi-
al sigmoidal variation to a final steady state. This behavior is
onsistent with actual experimental results as those shown in
ig. 1.

The development of the flow and the various flow parameters
re linked to the imposed rate of strain due to the rotation. By
pproximating the derivatives using the length of the yielded
omain �r we get γ̇ = |r(d/dr)(u/r)| ≈ (U/�r). This result
hows that the imposed rate of strain and, hence the stress,
ecrease with increasing �r. The reverse is also true when �r
ecreases. However, due to the continuous breakdown of the
tructure there is a continuous decrease in the stress. Therefore,
he final stress level is the combination of the two, sometimes
ompeting, effects. It is clear that data from rotational experi-
ents for such materials must be analyzed with caution and that

roper modeling of the experiment with high fidelity simulations
ay be necessary.
Below for uniformity we present results for times

> 0.001 seconds since our experimental equipment cannot reli-
bly verify the results at shorter time scales. This corresponds to
non-dimensional time of t = 0.01. Moreover, the simulations in
uch shorter times are not reliable because as the flow is started

rom rest the unavoidable singular flow behavior then is affected
y the choice of ε and the time step �t.

Figs. 6–8 document the effects of the initial strength of the
lurry as reflected by B1. As shown quite clearly in the figures,
hile the stress level at the rotating cylinder increases with B1 the
aximum extent of the yielded domain decreases with B1. Both

esults are expected because of the higher strength of the slurry.
iven the higher stress for the larger B1 the rate of breakdown

ncreases with B1 as shown in Fig. 8.
Figs. 9–11 show the effects of the power-law exponent n.
he figures show that at a given time both the stress level at the
otating cylinder and the extent of the yielded domain increase
ith increasing n. This implies that the increase due to the
ower exponent overcompensates the stress reduction due to

F
n

ig. 8. Effect of B1 on the coherency parameter λ at the rotating surface (Re = 1,

1 = 1–5, B2 = 1, n = 0.5, α1 = α2 = 0.01).
ig. 9. Effect of n on the stress at the rotating surface (Re = 1, B1 = 2, B2 = 1,
= 0.25, 0.5, 0.75, 1.0, 1.25, α1 = α2 = 0.01).
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Fig. 12. Effect of α1 on the stress at the rotating surface (Re = 1, B1 = 2, B2 = 1,
n = 0.5, α1 = 0.005, 0.01, 0.03, 0.05, 0.1, 0.25, 0.75, α2 = 0.01).
ig. 10. Effect of n on the length of the yielded domain (Re = 1, B1 = 2, B2 = 1,
= 0.25, 0.5, 0.75, 1.0, 1.25, α1 = α2 = 0.01).

Figs. 12–14 demonstrate the effect of the parameter α1 which
ontrols the rate of breakdown of the structure. The figures show
hat at a given time both the stress level at the rotating cylinder
s higher for smaller values of α1. This is due to the fact that
or a smaller rate of decay at the same time the residual strength
f the slurry is high and hence the resultant stress. The higher
tress justifies the increased length of the yielded domain with
ecreasing α1 as shown in Fig. 13. Finally the rate of break-
own predicted in Fig. 14 is consistent with the definition of the
arameter.

The results of the simulation indicate that the flow within
he rotational rheometer is not only a strong function of time
ut it is also quite complex. The details of the flow and the
nternal structure of the slurry depends on factors such as the
aterial constants and their evolution and on hydrodynamic

ffects within the rheometer and the evolution of the yielded

nd unyielded domains. This complexity raises concerns about
he routine use of rotational rheometers as a standard method to
etermine transient material constants for SSM slurries. Reliable
ata can only be extracted by an effective use of computational

ig. 11. Effect of n on the coherency parameter λ at the rotating surface (Re = 1,

1 = 2, B2 = 1, n = 0.25, 0.5, 0.75, 1.0, 1.25, α1 = α2 = 0.01).

Fig. 13. Effect of α1 on the length of the yielded domain (Re = 1, B1 = 2, B2 = 1,
n = 0.5, �1 = 0.005, 0.01, 0.03, 0.05, 0.1, 0.25, 0.75, α2 = 0.01).

Fig. 14. Effect of α1 on the coherency parameter λ at the rotating surface (Re = 1,
B1 = 2, B2 = 1, n = 0.5, α1 = 0.005, 0.01, 0.03, 0.05, 0.1, 0.25, 0.75, α2 = 0.01).



2 Newto

r
t

7

t
m
b
o
t
p
a
fl
l
e

d
i
n
m
t
m

R

[

[

[

[

[

[

[

[

[

[

[

06 A.N. Alexandrou, G. Georgiou / J. Non-

heology where one makes a combined and parallel use of both
he experiments and of high fidelity numerical simulations.

. Conclusions

The short-term response of semisolid materials in a rota-
ional rheometer is modeled using the Herschel–Bulkley fluid

odel. The yield stress is decomposed into two parts: one that
reaks down during the early stages of the deformation, and the
ther that survives the shearing after a long time. It is assumed
hat the first component is a linear function of the coherency
arameter and that the other, combined with the consistency
nd the power-law indices, constitute the Herschel–Bulkley
ow behavior observed in steady-state experiments. The evo-

ution of the coherency parameter is defined by a first-order rate
quation.

The above discussion shows clearly that the strong time-
ependent behavior of semisolid slurries plays a critical role
n the flow development of SSM slurries. This highlights the
eed to use computational rheology as a way to extract true
aterial constants. It is expected then that in a real process the

ime-dependent behavior will affect the quality of the parts being
ade using this technology.
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