
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

J. Non-Newtonian Fluid Mech. 163 (2009) 25–34

Contents lists available at ScienceDirect

Journal of Non-Newtonian Fluid Mechanics

journa l homepage: www.e lsev ier .com/ locate / jnnfm

Perturbation solutions of Poiseuille flows of weakly compressible
Newtonian liquids

Eleni G. Taliadorou a, Marina Neophytou b, Georgios C. Georgiou a,∗

a Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
b Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus

a r t i c l e i n f o

Article history:
Received 2 April 2009
Received in revised form 9 June 2009
Accepted 10 June 2009

Keywords:
Poiseuille flow
Newtonian fluid
Compressible flow
Perturbation solution

a b s t r a c t

Both the planar and axisymmetric isothermal Poiseuille flows of weakly compressible Newtonian liquids
with constant shear and bulk viscosities are solved up to the second-order. A linear equation of state is
assumed and a perturbation analysis of the primary flow variables is performed using compressibility
as the perturbation parameter. The effects of compressibility, the bulk viscosity, the aspect ratio, and the
Reynolds number on the velocity and pressure fields are studied and comparisons are made with available
analytical results.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Laminar Poiseuille flows of weakly compressible fluids (i.e. flows
corresponding to low Mach numbers) have been studied exten-
sively in the past few decades due to their applications in many
processes involving gas flows in long capillaries or at high speeds
[1], such as gas flows in micro-electro-mechanical systems (MEMS)
devices [2–5], liquid flows in relatively long tubes, such as waxy
crude oil transport [6] and polymer extrusion [7]. Numerical solu-
tions of weakly compressible Poiseuille flows have been presented
not only for Newtonian fluids [3,8–10] but also for generalized New-
tonian fluids, such as the Carreau fluid [7] and the Bingham plastic
[6], and viscoelastic fluids [11].

Perturbation and other approximate solutions have also been
presented in the literature for Poiseuille flows of compressible
Newtonian fluids, mostly under the assumption of ideal gas flow.
Prud’homme et al. [12] employed a double perturbation expansion
in terms of the radius to length ratio and the relative pressure drop
to approximately solve the flow of an ideal gas in a long tube under
the assumptions of purely axial flow (i.e. zero radial velocity com-
ponent), no radial pressure gradient, and negligible gravity. Van
den Berg et al. [13] investigated the compressible laminar New-
tonian flow in a capillary using a one-dimensional perturbation
analysis of radially symmetric flow and two lumped perturbation
parameters which could not allow the isolation of the effects of
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compressibility, inertia, and bulk viscosity. The same approach has
been adopted by Zohar et al. [14] to obtain a solution for subsonic
gas flow through microtubes and channels with wall slip. As noted
by Venerus [1], in the above studies the lubrication approximation
is implicitly invoked due to the assumption of zero radial pressure
gradient and the corresponding solutions are expected to be suffi-
ciently accurate for slow flow or flow in long capillaries. Venerus
[1] also pointed out that in the analyses of Prud’homme et al. [12]
and van den Berg et al. [13], terms of different orders of the aspect
ratio have been retained in the two components of the momentum
equation, which leads to the violation of the compatibility condi-
tion for the equations of motion. Venerus [1] analyzed up to the
second order the axisymmetric Poiseuille flow relaxing the lubrica-
tion approximation assumption using the streamfunction/vorticity
formulation with a linear equation of state (relating the density to
the pressure), and employing compressibility as the single pertur-
bation parameter. In contrast with previous analyses, he found both
a non-zero radial velocity and non-zero radial pressure gradient.
Much earlier, Schwartz [15] studied the plane Poiseuille flow using
a fourth-order perturbation expansion in the parameter (Mach
number)2/Reynolds number. His perturbation scheme was based
on the principle of slow variation, which implies that the flow prop-
erties vary slowly with distance along the channel for sufficiently
small viscosity and/or mass flow rate. He also assumed that the
fluid is a thermally perfect gas (i.e. the density is proportional to
the pressure) and that the bulk viscosity is zero.

In the present work we derive second order perturbation solu-
tions for both the planar and axisymmetric isothermal Poiseuille
flows of weakly compressible Newtonian liquids. Following
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Venerus [1], a linear equation of state is employed and the
isothermal compressibility is taken as the perturbation parameter.
Moreover, both the shear and bulk viscosities are assumed to be
constant (independent of the pressure) and the no-slip boundary
condition is assumed along the wall. However, instead of using a
vorticity/streamfunction formulation, only the primary unknown
fields are perturbed in the present work. In the following sections,
explicit analytical solutions for pressure, density, and velocity are
obtained up to the second order. These agree (up to the second
order) with the solution of Schwartz [15] at the exit of the channel.
The derivation of the solution of the axisymmetric flow is provided
in the Appendix A. The effects of compressibility, the Reynolds num-
ber, the aspect ratio, and the bulk viscosity on the velocity and
pressure fields are also discussed.

2. Governing equations

The constitutive equation of a compressible Newtonian fluid is

� = �[∇u + (∇u)T ] +
(
� − 2

3
�
)

∇ · u I, (1)

where � is the viscous stress tensor, u is the velocity vector, ∇u is the
velocity gradient tensor, I is the unit tensor, � denotes the viscos-
ity, and � is the bulk (or dilatational) viscosity. In the present work,
both � and � are assumed to be constant, i.e. independent of pres-
sure. Note that the bulk viscosity �, which is very often neglected,
is identically zero only for monoatomic gases at low density. This
becomes important in polyatomic gases, in liquids containing gas
bubbles [16], and in liquids in general [1].

We consider the steady, two-dimensional, planar isothermal
Poiseuille flow of a weakly compressible Newtonian fluid under
zero gravity and no slip at the walls. Under these assumptions the
continuity and the x- and y-components of the Navier–Stokes equa-
tion become:

∂

∂x
(�ux) + ∂

∂y
(�uy) = 0, (2)

�

(
ux
∂ux
∂x

+ uy ∂ux
∂y

)
= −∂P

∂x
+ �

(
∂2ux
∂x2

+ ∂2ux
∂y2

)

+
(
� + �

3

)(
∂2uy
∂x∂y

+ ∂2ux
∂x2

)
, (3)

and

�

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)
= −∂P

∂y
+ �

(
∂2uy
∂x2

+ ∂2uy
∂y2

)

+
(
� + �

3

)(
∂2ux
∂x∂y

+ ∂2uy
∂y2

)
, (4)

where� is the fluid density,ux anduy are respectively the horizontal
and transverse velocity components, and P is the pressure. The fluid
density is assumed to obey a linear equation of state:

� = �0[1 + ˇ(P − P0)], (5)

where ˇ is the isothermal compressibility,

ˇ ≡ − 1
V0

(
∂V

∂P

)
P0,T

(6)

assumed to be constant, V is the specific volume, �0 and V0 are,
respectively, the density and the specific volume at a reference
pressure P0, and T is the temperature. Taking as the characteristic
velocity of the flow the velocity

U = Ṁ

�0HW
,

where Ṁ is the mass flow rate, H is the channel half width, and W is
the unit length in the x-direction, we define the Mach number by

Ma ≡ U

�
, (7)

where

� =
[
�

(
∂P

∂�

)
T

]1/2

=
(
�

ˇ�0

)1/2
(8)

is the speed of sound in the fluid, � being the heat capacity ratio (or
adiabatic index). In this work we consider subsonic flows so that
Ma� 1.

To nondimensionalize the governing equations, we scale x by L,
y by H, � by the reference density �0, ux by U, the transverse veloc-
ity uy by UH/L, and the pressure by 3�LU/H2. The latter pressure
scale is used so that the dimensionless pressure gradient along the
domain, in the incompressible flow is equal to 1. For the sake of
simplicity, in what follows we will use the same symbols (i.e. with-
out stars) for all dimensionless variables. Using the above scalings,
the dimensionless forms of the equation of state, the continuity
equation and momentum equations become:

� = 1 + εP, (9)

∂

∂x
(�ux) + ∂

∂y
(�uy) = 0, (10)

˛Re�

(
ux
∂ux
∂x

+ uy ∂ux
∂y

)
= −3

∂P

∂x
+ ˛2 ∂

2ux
∂x2

+ ∂2ux
∂y2

+˛2
(
	+ 1

3

)(
∂2uy
∂x∂y

+ ∂2ux
∂x2

)
,

(11)

˛3 Re�

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)
= −3

∂P

∂y
+ ˛4 ∂

2uy
∂x2

+ ˛2 ∂
2uy
∂y2

+˛2
(
	+ 1

3

)(
∂2ux
∂x∂y

+ ∂2uy
∂y2

)
,

(12)

where 	 ≡ �/� is the bulk-to-shear viscosity ratio, ˛ ≡ H/L is the
aspect ratio of the channel, and Re and ε are, respectively, the
Reynolds and compressibility numbers, which are defined by

Re ≡ �0UH

�
(13)

and

ε ≡ 3�ˇLU
H2

. (14)

The Mach number takes the form

Ma ≡
√
ε˛Re

3�
.

The system of partial differential equations (10)–(12) is supple-
mented by appropriate boundary conditions. Along the wall, it is
assumed that no slip occurs and the transverse velocity component
vanishes (impermeable wall):

ux(x,1) = uy(x,1) = 0, 0 ≤ x ≤ 1. (15)

Along the midplane, the usual symmetry conditions are employed:

∂ux
∂y

(x,0) = uy(x,0) = 0, 0 ≤ x ≤ 1. (16)
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At the exit plane, the dimensionless mass flow rate is set at a value
of 1:∫ 1

0

�ux dy = 1. (17)

Finally, the pressure is set to zero at x = y = 1:

P(1,1) = 0. (18)

As in [1], no boundary conditions are specified at the inlet plane.
For an interesting discussion on the inlet and outlet boundary con-
ditions, the reader is referred to the articles of Poinsot and Lele [17]
and Venerus [1].

3. Perturbation solution

Eqs. (9)–(12) constitute a nonlinear system of PDEs that cannot
be solved analytically. By using perturbation methods, approximate
solutions of the flow can be obtained. As already discussed, different
perturbation parameters have been used in the literature. The com-
pressibility number,ε, is chosen here as the perturbation parameter.
This choice has also been made by Venerus [1] and [15]. The latter
author used the parameter (Mach number)2/Reynolds number at
x = 1, which is equivalent to the compressibility number used here.
Prud’homme et al. [12] employed a double perturbation expansion
in terms of the aspect ratio and the relative pressure drop.

As already mentioned, perturbation is performed on all primary
variables, �, ux, uy, and P using the compressibility number, ε, as
the perturbation parameter:

� = �(0) + ε�(1) + ε2�(2) + O(ε3)

uy = u(0)
y + εu(1)

y + ε2u(2)
y + O(ε3)

ux = u(0)
x + εu(1)

x + ε2u(2)
x + O(ε3)

P = P(0) + εP(1) + ε2P(2) + O(ε3)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (19)

Substituting the above expressions into the governing equations
(9)–(12) and collecting terms of the same order in the perturbation
parameter ε, we get a regular perturbation scheme. The solutions
up to the second order are provided below. For the zero- and the
first-order equations it is assumed that the transverse velocity uy
is zero throughout the domain. For the second-order equations it is
assumed that uy = uy(y) and that its second derivatives at the wall
and the plane of symmetry are equal to zero.

3.1. Zero-order solution

The zero-order equations are:

�(0) = 1,

∂

∂x
[�(0)u(0)

x ] + ∂

∂y
[�(0)u(0)

y ] = 0,

˛Re�(0)

[
u(0)
x
∂u(0)
x

∂x
+ u(0)

y
∂u(0)
x

∂y

]

= −3
∂P(0)

∂x
+ ∂2u(0)

x

∂y2
+ ˛2 ∂

2u(0)
x

∂x2

+˛2
(
	+ 1

3

)[
∂2u(0)

y

∂x∂y
+ ∂2u(0)

x

∂x2

]
,

and

˛3 Re�(0)

[
u(0)
x

∂u(0)
y

∂x
+ u(0)

y

∂u(0)
y

∂y

]

= −3
∂P(0)

∂y
+ ˛4 ∂

2u(0)
y

∂x2
+ ˛2 ∂

2u(0)
y

∂y2

+˛2
(
	+ 1

3

)[
∂2u(0)

x

∂x∂y
+ ∂2u(0)

y

∂y2

]
.

With the assumptions u(0)
y (x, y) = 0 and P(0)(x = 0) = 1, the zero-

order solution is easily obtained:

�(0) = 1, (20)

u(0)
y = 0, (21)

u(0)
x = 3

2
(1 − y2), (22)

P(0) = 1 − x. (23)

Obviously, the above solution is the solution of the incompressible
Newtonian planar Poiseuille flow.

3.2. First-order solution

The first-order equations are:

�(1) = P(0)(x),

∂

∂x
[�(0)u(1)

x + �(1)u(0)
x ] + ∂

∂y
[�(0)u(1)

y + �(1)u(0)
y ] = 0,

˛Re�(1)

[
u(0)
x
∂u(0)
x

∂x
+ u(0)

y
∂u(0)
x

∂y

]

+˛Re�(0)

[
u(0)
x
∂u(1)
x

∂x
+ u(1)

x
∂u(0)
x

∂x
+ u(0)

y
∂u(1)
x

∂y
+ u(1)

y
∂u(0)
x

∂y

]

= −3
∂P(1)

∂x
+ ∂2u(1)

x

∂y2
+ ˛2 ∂

2u(1)
x

∂x2

+˛2
(
	+ 1

3

)[
∂2u(1)

y

∂x∂y
+ ∂2u(1)

x

∂x2

]
,

and

˛3 Re�(1)

[
u(0)
x

∂u(0)
y

∂x
+ u(0)

y

∂u(0)
y

∂y

]

+˛3 Re�(0)

[
u(0)
x

∂u(1)
y

∂x
+ u(1)

x

∂u(0)
y

∂x
+ u(0)

y

∂u(1)
y

∂y
+ u(1)

y

∂u(0)
y

∂y

]

= −3
∂P(1)

∂y
+ ˛4 ∂

2u(1)
y

∂x2
+ ˛2 ∂

2u(1)
y

∂y2

+˛2
(
	+ 1

3

)[
∂2u(1)

x

∂x∂y
+ ∂2u(1)

y

∂y2

]
.
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Obviously, �(1) = P(0)(x) = 1 − x. Assuming that u(1)
y (x, y) = 0, we

find from the continuity and the y-momentum equations that

u(1)
x = − 3

2
(1 − x)(1 − y2) + f (y)

and

P(1) = 1
2
˛2

(
	+ 1

3

)
(1 − y2) + g(x),

where f (y) and g(x) are unknown functions. Substituting into the
x-momentum equation and separating variables we get

9
4
˛Re(1 − y2)

2 − f ′′(y) = −3
∂P(1)

∂x
+ 3(1 − x) = c,

where c is a constant to be determined. Integrating the resulting
ODEs and applying the boundary conditions f ′(0) = f (1) = 0 and∫ 1

0
f (y) dy = 0 for u(1)

x (x, y) and P(1)(1,1) = 0 for P(x, y) we find that
c = 54/35˛Re and the functions g(x) and f (y). The first-order solu-
tion reads:

�(1) = 1 − x, (24)

u(1)
y = 0, (25)

u(1)
x = − 3

2
(1 − x)(1 − y2) + 3

280
˛Re(1 − y2)(−5 + 28y2 − 7y4),

(26)

P(1) = 1
2
˛2

(
	+ 1

3

)
(1 − y2) − 1

2
(1 − x)2 + 18

35
˛Re(1 − x). (27)

We observe that the first-order pressure is a function of both x and
y. It should also be noted that the assumption of zero, first-order
transverse velocity is made implicitly in the analysis of Venerus [1]
for the axisymmetric flow, since simple functional forms for the
first-order vorticity and streamfunction are assumed instead.

3.3. Second-order solution

The equations governing the second-order solution are:

�(2) = P(1)(x, y),

∂

∂x
[�(0)u(2)

x + �(1)u(1)
x + �(2)u(0)

x ]

+ ∂

∂y
[�(0)u(2)

y + �(1)u(1)
y + �(2)u(0)

y ] = 0,

˛Re�(2)

[
u(0)
x
∂u(0)
x

∂x
+ u(0)

y
∂u(0)
x

∂y

]

+˛Re�(1)

[
u(0)
x
∂u(1)
x

∂x
+ u(1)

x
∂u(0)
x

∂x
+ u(0)

y
∂u(1)
x

∂y
+ u(1)

y
∂u(0)
x

∂y

]

+˛Re�(0)

[
u(0)
x
∂u(2)
x

∂x
+ u(1)

x
∂u(1)
x

∂x
+ u(2)

x
∂u(0)
x

∂x
+ u(0)

y
∂u(2)
x

∂y

+u(1)
y
∂u(1)
x

∂y
+ u(2)

y
∂u(0)
x

∂y

]

= −3
∂P(2)

∂x
+ ∂2u(2)

x

∂y2
+ ˛2 ∂

2u(2)
x

∂x2

+˛2
(
	+ 1

3

)[
∂2u(2)

y

∂x∂y
+ ∂2u(2)

x

∂x2

]
,

and

˛3 Re�(2)

[
u(0)
x

∂u(0)
y

∂x
+ u(0)

y

∂u(0)
y

∂y

]

+˛3 Re�(1)

[
u(0)
x

∂u(1)
y

∂x
+ u(1)

x

∂u(0)
y

∂x
+ u(0)

y

∂u(1)
y

∂y
+ u(1)

y

∂u(0)
y

∂y

]

+˛3 Re�(0)

[
u(0)
x

∂u(2)
y

∂x
+ u(1)

x

∂u(1)
y

∂x
+ u(2)

x

∂u(0)
y

∂x
+ u(0)

y

∂u(2)
y

∂y

+u(1)
y

∂u(1)
y

∂y
+ u(2)

y

∂u(0)
y

∂y

]

= −3
∂P(2)

∂y
+ ˛2 ∂

2u(2)
y

∂y2
+ ˛4 ∂

2u(2)
y

∂x2

+˛2
(
	+ 1

3

)[
∂2u(2)

x

∂x∂y
+ ∂2u(2)

y

∂y2

]
.

For �(2) we simply have:

�(2) = P(1)(x, y) = 1
2
˛2

(
	+ 1

3

)
(1 − y2) − 1

2
(1 − x)2

+ 18
35
˛Re(1 − x). (28)

At this point the assumption of zero transverse velocity is relaxed,
letting uy to be a function of y, u(2)

y = u(2)
y (y). Note again that in

the analysis of Venerus [1] for the axisymmetric flow, the simplest
expressions for the second-order vorticity and streamfunction are
postulated instead. From the continuity and y-momentum equa-
tions we respectively get:

u(2)
x = 9

4
(1 − x)2(1 − y2) − 3

4
˛2

(
	+ 1

3

)
(1 − y2)

2

− 3
280

˛Re(1 − x)(1 − y2)(67 + 28y2 − 7y4)

+ ∂u
(2)
y

∂y
(1 − x) + F(y) (29)

and

P(2) = 1
3
˛2 ∂u

(2)
y

∂y
− 3

2
˛2

(
	+ 1

3

)
(1 − x)(1 − y2)

+ 1
280

˛3Re
(
	+ 1

3

)
(1 − y2)(67 + 28y2 − 7y4) + G(x),

(30)

where F(y) andG(x) are functions to be determined. Combining Eqs.
(28)–(30) and the x-momentum equation leads to:

˛Re

[
−3yu(2)

y − 3
2

(1 − y2)
∂u(2)
y

∂y
− 27

4
(1 − x)(1 − y2)

2

+ 9
560

˛Re(1 − y2)
2
(62 + 56y2 − 14y4)

]

= −3G′(x) − 9
2

(1 − x)2 + ∂3u(2)
y

∂y3
(1 − x) + F ′′(y)

− 3
280

˛Re(1 − x)(−78 − 420y2 + 210y4)

+ 9
2
˛2(1 − y2) + 3˛2

(
	+ 1

3

)
(1 − 3y2). (31)
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Here, it is assumed that the terms involving both (1 − x) and y must
be equal to a (scalar) multiple of (1 − x). Thus we can assume that

27
4
˛Re(1 − y2)

2 + ∂3u(2)
y

∂y3
− 3

280
˛Re(−78 − 420y2 + 210y4)

= ˛Re� , (32)

where � is new constant to be determined. Solving the above
equation with the conditionsu(2)

y (0) = u(2)
y (1) = 0 and ∂u(2)

y /∂y(1) =
∂2u(2)

y /∂y
2(0) = 0 yields � = 216/35 and the second-order trans-

verse velocity:

u(2)
y = 3

140
˛Rey(1 − y2)

2
(5 − y2). (33)

Separating variables in Eq. (31) gives the following ODEs for F(y)
and G(x):

˛Re

[
−3yu(2)

y − 3
2

(1 − y2)
∂u(2)
y

∂y

+ 9
560

˛Re(1 − y2)
2
(62 + 56y2 − 14y4)

]

− F ′′(y) − 9
2
˛2(1 − y2) − 3˛2

(
	+ 1

3

)
(1 − 3y2) = A (34)

and

−3G′(x) − 9
2

(1 − x)2 + ˛Re�(1 − x) = A, (35)

where A is another constant to be determined. Integrating Eq. (34)

and applying the conditions F ′(0) = F(1) = 0 and
∫ 1

0
F(y) dy = 0 we

find that

F(y) = ˛2
(
	+ 1

3

)(
3

20
− 9

10
y2 + 3

4
y4

)
+˛2

(
3

40
− 9

20
y2 + 9

24
y4

)
− 3

431200
˛2Re2(2193 − 11356y2 + 2310y4

+ 12012y6 − 5775y8 + 616y10) (36)

and

A = − 18˛2

5
− 6

5
˛2

(
	+ 1

3

)
+ 9132

13475
˛2 Re2. (37)

Integrating now Eq. (35) and substituting A under the condition
P(2)(1,1) = 0 we obtain

G(x) = 1
2

(1 − x)3 − 6
5
˛2(1 − x) − 36

35
˛Re(1 − x)2

+ 3044
13475

˛2Re2(1 − x) − 2
5
˛2

(
	+ 1

3

)
(1 − x). (38)

Thus, the second order solution reads:

�(2) = 1
2
˛2

(
	+ 1

3

)
(1 − y2) − 1

2
(1 − x)2 + 18

35
˛Re(1 − x), (39)

u(2)
y = 3

140
˛Rey(1 − y2)

2
(5 − y2), (40)

u(2)
x = (1 − y2)

[
9
4

(1 − x)2 − 3
280

˛Re(57 + 84y2 − 21y4)(1 − x)

+ 3
40
˛2(1 − 5y2) − 3

5
˛2

(
	+ 1

3

)
− 3

431200
˛2 Re2(2193 − 9163y2 − 6853y4

+ 5159y6 − 616y8)
]

, (41)

P(2) = 1
2

(1 − x)3 − 6
5
˛2(1 − x) − 36

35
˛Re(1 − x)2

+ 3044
13475

˛2Re2(1 − x) − 1
10
˛2

(
	+ 1

3

)
(19 − 15y2)(1 − x)

+ 1
280

˛3Re(1 − y2)

×
[

2(5 − 28y2 + 7y4) +
(
	+ 1

3

)
(67 + 28y2 − 7y4)

]
. (42)

Summarizing the results, the solution of the flow problem up to the
second order is as follows:

� = 1 + ε(1 − x)

+ ε2
[

1
2
˛2

(
	+ 1

3

)
(1 − y2) − 1

2
(1 − x)2 + 18

35
˛Re(1 − x)

]
+O(ε3), (43)

uy = 3
140

ε2˛Rey(1 − y2)
2
(5 − y2) + O(ε3), (44)

ux = 3
2

(1 − y2)
[

1 − ε(1 − x) + 1
140

ε˛Re(−5 + 28y2 − 7y4)

+ 3
2
ε2(1 − x)2 − 1

140
ε2˛Re(57 + 84y2 − 21y4)(1 − x)

+ 1
20
ε2˛2(1 − 5y2) − 2

5
ε2˛2

(
	+ 1

3

)
− 1

215600
ε2˛2 Re2(2193 − 9163y2 − 6853y4

+ 5159y6 − 616y8)
]

+ O(ε3), (45)

P = 1 − x + 1
2
ε˛2

(
	+ 1

3

)
(1 − y2) − 1

2
ε(1 − x)2 + 18

35
ε˛Re(1 − x)

+ 1
2
ε2(1 − x)3 − 6

5
ε2˛2(1 − x) − 36

35
ε2˛Re(1 − x)2

+ 3044
13475

ε2˛2Re2(1 − x) − 1
10
ε2˛2

(
	+ 1

3

)
(19 − 15y2)(1 − x)

+ 1
280

ε2˛3Re(1 − y2)

×
[

2(5 − 28y2 + 7y4) +
(
	+ 1

3

)
(67 + 28y2 − 7y4)

]
+ O(ε3).

(46)

The perturbation solution for the axisymmetric flow has been
also derived and is provided in the Appendix A. This is the
same as the solution reported by Venerus [1] who used a vor-
ticity/streamfunction formulation instead of working with the
primary flow variables.

The basic features of the velocity and pressure fields given in
Eqs. (43)–(46) are the following:
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(a) The transverse velocity, uy, which depends only on the y coor-
dinate, is zero at first order in ε (by assumption). At second
order in ε, uy is always positive, varies linearly with the aspect
ratio and the Reynolds number, and is independent of the bulk
viscosity.

(b) The horizontal velocity, ux, deviates from the parabolic incom-
pressible solution at first order inεdue to fluid inertia. At second
order in ε, there is a reduction of the horizontal velocity that
is independent of inertia and enhanced by the bulk viscosity,
which does not alter its parabolicity.

(c) The pressure is a function of both x and y. The y-dependence at
first order in ε becomes stronger as ˛2 is increased (i.e. in short
channels). It also increases with the bulk viscosity. (It should be
noted that there is y-dependence even when the bulk viscosity
vanishes.) At second order in ε, the y-dependence of P is due
not only to ˛ and the bulk viscosity but also to inertia.

(d) The density is a decreasing function of both x and y. This is
expected since the fluid is decompressed as it moves down-
stream and the density takes is lowest value at x = y = 1. At the
exit of the channel (x = 1), for example,

� = 1 + 1
2
ε2˛2

(
	+ 1

3

)
(1 − y2).

Since at the exit of the channel only very small variations of �
can be acceptable, it must be ε˛� 1.

Fig. 1. Effect of the Reynolds number on the velocity components: (a) deviation of
the horizontal velocity ux from the incompressible profile; (b) transverse velocity
uy; ε = 0.25, ˛ = 0.01, 	 = 0, and x = 0.9.

In the compressible flow under study, the volumetric flow rate
is an increasing function of x:

Q (x) =
∫ 1

0

ux(x, y) dy

= 1 − ε(1 − x) + 1
70
ε2

[
−28˛2

(
	+ 1

3

)
− 36˛Re(1 − x)

+ 105(1 − x)2
]

+ O(ε3). (47)

In the special case ˛� 1, one gets Q (0) = 1 − ε+ 3ε2/2 which is
a parabola with a minimum at ε∗ = 1/3. Since increasing ε leads
to more compression, i.e. to a lower value at Q (0), the perturbation
solution is valid for ε < 1/3. The same conclusion is reached for the
axisymmetric flow (see Appendix A) for which Venerus [1] reported
that the compressibility parameter is limited to values ε ≤ 0.25.

The present results agree up to the second order with the third-
order results of Schwartz [15] at x = 1 when x = 1, 	 = 0 and ˛ = 3.
It is interesting to note that employing the lubrication approxima-
tion would have led to the following simplified solution [8]

� = 1 + εP
uy = 0

ux = 3
2

(1 − y2)√
1 + 2ε(1 − x)

P = −1 +
√

1 + 2ε(1 − x)
ε

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (48)

Fig. 2. Effect of compressibility on the velocity components: (a) deviation of the
horizontal velocity ux from the incompressible profile; (b) transverse velocity uy;
Re = 10, ˛ = 0.01, 	 = 0, and x = 0.9.
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Fig. 3. Transverse velocity profiles for ε = 0.25, ˛ = 0.1 and ˛Re = 1.

Fig. 4. Pressure field contours for plane Poiseuille flow (0.1,0.2, . . . ,0.9) with ε =
0.25 and ˛ = 0.1: (a) ˛Re = 1, ˛2(	+ 1/3) = 0; (b) ˛Re = 0, ˛2(	+ 1/3) = 1.

Expanding the expressions of ux and P as power series to second
order in ε leads to the approximate solution

� = 1 + ε(1 − x) − 1
2
ε2(1 − x)2 + O(ε3)

uy = 0

ux = 3
2

(1 − y2)
[

1 − ε(1 − x) + 3
2
ε2(1 − x)2

]
+ O(ε3)

P = 1 − x − 1
2
ε(1 − x)2 + 1

2
ε2(1 − x)3 + O(ε3)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (49)

which involves only the compressibility parameter ε and agrees
with the perturbation solution for ˛� 1 and Re� 1.

The streamfunction,  (x, y), defined by

∂ 

∂x
≡ �uy and

∂ 

∂y
≡ −�ux (50)

is found to be

 (x, y) = 1
2
y
(

3 − y2
)

− 3
280

ε˛Re y(1 − y2)
2
(5 − y2)

+ ε2
[

3
40
˛2y(1 − y2)

2 + 3
20
˛2

(
	+ 1

3

)
y(1 − y2)

2

+ 3
140

˛Rey(1 − y2)
2
(5 − y2)(1 − x)

+ 9
431200

˛2 Re2y(1 − y2)
2
(−6579 − 1802y2

+ 1589y4 − 168y6)
]

+ O(ε3). (51)

Fig. 5. Pressure field contours for plane Poiseuille flow (0.1,0.2, . . . ,0.9) with ε =
0.25 and ˛ = 0.1: (a) ˛Re = 0, ˛2(	+ 1/3) = 0; (b) ˛Re = 1, ˛2(	+ 1/3) = 1.
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4. Results and discussion

The effects of all parameters involved in the solution, i.e. the
compressibility number, ε, the aspect ratio,˛, the Reynolds number,
Re and the bulk viscosity, 	, have been studied. Mostly results for
the planar compressible Poiseuille flow will be presented in this
section, since the perturbation solution for the axisymmetric flow
(Appendix A) is that obtained by Venerus [1].

The effects of the Reynolds number and compressibility on the
two velocity components are illustrated in Figs. 1 and 2, respec-
tively. The deviation of the horizontal velocity profile from the
incompressible solution relatively close to the exit at x = 0.9 is
shown in Fig. 1 a for different Reynolds numbers (Re = 0,10,100),
˛ = 0.01, and for the relatively high compressibility number ε =
0.25. While for low Reynolds numbers it is parabolic, the devia-
tion from the incompressible solution becomes sigmoidal at higher
Reynolds numbers. The effect of the Reynolds number on the trans-
verse velocity, uy, is illustrated in Fig. 1 b. It is clear from Eq. (44),
that uy is always positive, does not depend on the x coordinate and
the bulk viscosity 	, and increases linearly with the Reynolds num-
ber. Fig. 2 a shows the deviation of the horizontal velocity from the
incompressible flow near the exit (x = 0.9) for different values of ε,
Re = 10 and ˛ = 0.01. It can be observed that the profile of ux flat-
tens as compressibility is increased. The effect of εon the transverse
velocity is shown in Fig. 2 b. As expected, uy increases quadratically
with the compressibility number. Fig. 3 shows the transverse veloc-
ity profile in both the axisymmetric and planar cases for ε = 0.25,
˛ = 0.1, ˛Re = 1 and ˛2(	+ 1/3) = 0. The axisymmetric result is

Fig. 6. Velocity field contours for plane Poiseuille flow (0.1,0.2, . . . ,1.4) with ε =
0.25 and ˛ = 0.1: (a) ˛Re = 1, ˛2(	+ 1/3) = 0; (b) ˛Re = 0, ˛2(	+ 1/3) = 1.

of course identical to that of Venerus [1]. A more flattened profile
is obtained in the planar case.

In Fig. 4, we show the pressure contours obtained with ε = 0.25
and˛ = 0.1 for the two cases considered by Venerus [1]: (a)˛Re = 1
and ˛2(	+ 1/3) = 0; (b) ˛Re = 0 and ˛2(	+ 1/3) = 1. These are
similar to their axisymmetric counterparts [1]. When the channel
is relatively short (˛Re = 1, Fig. 4a) the flow is essentially incom-
pressible and the pressure contours are practically vertical and
equidistant. For longer channels (˛Re = 0), however, the pressure
contours are slightly parabolic as illustrated in Fig. 4 b. Moreover
the distance between the contours increases upstream, due to com-
pressibility. As pointed out by Venerus [1] this effect is due to the
bulk viscosity. Note that Venerus [1] does not specify the value of
˛ which is taken here to be equal to 0.1. In Fig. 5 we provide the
pressure contours for the two complementary cases: (a) ˛Re = 0
and ˛2(	+ 1/3) = 0; (b) ˛Re = 1 and ˛2(	+ 1/3) = 1. Compar-
ing Figs. 4 and 5, we deduce that the parameter ˛2(	+ 1/3) has
a stronger effect on the pressure contours than ˛Re. The veloc-
ity contours for all cases considered in Figs. 4 and 5, are given in
Figs. 6 and 7, respectively.

Fig. 8 shows the horizontal velocity field deviation from the
incompressible solution at various distances from the inlet plane,
as given by Eq. (45) with ε = 0.25 and ˛ = 0.1 for two cases: (a)
˛Re = 1,˛2(	+ 1/3) = 0 and (b)˛Re = 0,˛2(	+ 1/3) = 1. In Fig. 8
a, where the channel is relatively short the velocity profile flattens
as the fluid moves downstream. For longer channels (Fig. 8b) the
effect of the bulk viscosity is small and the horizontal velocity pro-

Fig. 7. Velocity field contours for plane Poiseuille flow (0.1,0.2, . . . ,1.4) with ε =
0.25 and ˛ = 0.1: (a) ˛Re = 0, ˛2(	+ 1/3) = 0; (b) ˛Re = 1, ˛2(	+ 1/3) = 1.
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Fig. 8. Horizontal velocity field deviation from incompressible flow at various dis-
tances from the inlet plane for ε = 0.25 and ˛ = 0.1: (a) ˛Re = 1, ˛2(	+ 1/3) = 0;
(b) ˛Re = 0, ˛2(	+ 1/3) = 1.

file remains parabolic. These results which are similar to those of
Venerus [1] for the axisymmetric case, are also consistent with the
numerical results of Guo and Wu [3,10].

Finally, Fig. 9 shows the two transverse velocity profiles obtained
with (a) Re = 100, ε = 0.006 and (b) Re = 0.01, ε = 0.2 when ˛ = 3.
The latter value of˛was chosen in order to make comparisons with
the results reported by Schwartz [15] at the exit x = 1. The present
results agree with those of Schwartz [15] up to the second order.

Fig. 9. Transverse velocity profiles of plane Poiseuille flow with ˛ = 3 and the
Reynolds and compressibility numbers used by Schwartz [15].

According to Eq. (44), uy is always positive which is not the case
with the third-order solution of Schwartz [15]; this is valid only at
the exit and yields negative values ofuy for small Reynolds numbers
(Re = 0.001).

5. Conclusions

A perturbation analysis with compressibility serving as the
perturbation parameter to the primary flow variables has been
performed in order to solve up to second order the Navier–Stokes
equations for both the planar and the axisymmetric Poiseuille flows
of weakly compressible viscous fluids. For that purpose, a linear
equation of state has been employed and both the shear and bulk
viscosities have been taken as constants. The results for the axisym-
metric flow are the same as those of Venerus [1] who employed
a streamfunction/vorticity formulation. The results for the planar
flow, which are similar to their axisymmetric counterparts, com-
pare well with available results in the literature for some special
cases, such as with the solution of Schwartz [15] at the exit of the
channel (up to the second order). The effects of the compressibility,
the Reynolds number, the aspect ratio, and the bulk viscosity on the
velocity and pressure fields have been studied.
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Appendix A. Compressible axisymmetric Poiseuille flow

The two-dimensional perturbation solution of the compress-
ible axisymmetric Poiseuille flow is derived in this Appendix A. To
nondimensionalize the equations, we scale z by L, r by R, the density
by the reference density �0, the axial velocity uz by U = Ṁ/�0
R2,
the radial velocity ur by UR/L, and the pressure by 8�LU/R2. The
dimensionless forms of the governing equations are:

� = 1 + εP, (52)

1
r

∂

∂r
(r�ur) + ∂

∂z
(�uz) = 0, (53)

˛Re�

(
ur
∂uz
∂r

+ uz ∂uz
∂z

)

= −8
∂P

∂z
+ 1
r

∂

∂r

(
r
∂uz
∂r

)
+ ˛2 ∂

2uz
∂z2

+˛2
(
	+ 1

3

)[
∂

∂z

(
1
r

∂

∂r
(rur)

)
+ ∂2uz
∂z2

]
, (54)

˛3 Re�

(
ur
∂ur
∂r

+ uz ∂ur
∂z

)

= −8
∂P

∂r
+ ˛2 ∂

∂r

(
1
r

∂

∂r
(rur)

)

+˛4 ∂
2ur
∂z2

+ ˛2
(
	+ 1

3

)[
∂

∂r

(
1
r

∂

∂r
(rur)

)
+ ∂2uz
∂r∂z

]
, (55)

where
	 ≡ �

�
, ˛ ≡ R

L
, Re ≡ �0UR

�
, and ε ≡ 8�ˇLU

R2
.

The boundary conditions are similar to those used for the planar
problem.
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Following similar steps and making analogous assumptions as
for the planar flow, we derive the following perturbation solution:

� = 1 + ε(1 − z)

+ ε2
[
− 1

2
(1 − z)2 + 1

4
˛Re(1 − z) + 1

4
˛2

(
	+ 1

3

)
(1 − r2)

]
+O(ε3), (56)

ur = 1
36
ε2˛Rer(1 − r2)

2
(4 − r2) + O(ε3), (57)

uz = 2(1 − r2)
[

1 − ε(1 − z) − 1
36
ε˛Re(2 − 7r2 + 2r4)

+ 3
2
ε2(1 − z)2 − 1

12
ε2˛Re(1 + 7r2 − 2r4)(1 − z)

+ 1
16
ε2˛2(1 − 3r2) − 1

6
ε2˛2

(
	+ 1

3

)
+ 1

43200
ε2˛2 Re2(43 − 957r2 + 2343r4 − 1257r6 + 168r8)

]
+O(ε3), (58)

P = (1 − z) − 1
2
ε(1 − z)2 + 1

4
ε˛Re(1 − z) + 1

4
ε˛2

(
	+ 1

3

)
(1 − r2)

+ 1
2
ε2(1 − z)3 − 1

12
ε2˛2

(
	+ 1

3

)
(11 − 9r2)(1 − z)

− 1
2
ε2˛Re(1 − z)2 − 1

2
ε2˛2(1 − z) + 1

27
ε2˛2Re2(1 − z)

+ 1
144

ε2˛3 Re(1 − r2)

×
[

(4 − 14r2 + 4r4) +
(
	+ 1

3

)
(7 + 7r2 − 2r4)

]
+ O(ε3). (59)

The above solution is the same as that found by Venerus [1](with
the exception of a typo in his pressure expression).
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