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a b s t r a c t

The purpose of this work is to simulate shear rejuvenation and aging effects in shear thinning yield stress
fluids in a typical rotational rheometer and to provide a common framework to describe the behavior of
yield stress materials in general. This is particularly important in the determination of material constants
under both steady and unsteady conditions. The breakdown and buildup of structure are studied using a
theory based on the Herschel–Bulkley flow model that it is consistent with experimental data. The theory
is implemented using a novel computational method. Interestingly, the simulations reveal the existence
of time-dependent shear banding that occurs within the gap when the macroscopically imposed shear
rate is below a certain critical value. Shear banding is analyzed in detail and results showing the effects
of major parameters on the phenomenon are presented.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In yield stress materials a finite stress value (yield stress) must
be exceeded for flow to occur; otherwise they behave as solids.
A few examples are various food products (mayonnaise, ketchup),
cosmetics (cold cream, make up, hair gel, shaving foam), pastes
(toothpaste), emulsions, foams, polymer gels (e.g. carbopol), sus-
pensions (oil drilling fluids like bentonite), wet and dry sand, certain
clays, certain paints and printing inks, coatings, quicksand and
quick clay [2–5].

The original motivation for this work [1] was our interest in
the semisolid process in which specially primed metal alloys are
processed in a state between that of a pure solid and a pure liq-
uid. At rest (in the order of minutes) semisolid slurries build up
structure as metal particles weld together to form a continuous
solid skeleton which is responsible for the viscoplastic behavior
of the slurry [1,6]. The specially prepared material is injected at
very high speed into a die for the production of high integrity
parts.

In most typical flowing suspensions of yield stress fluids, there
coexist three types of forces [7]: (a) those of colloidal origin; (b) the
Brownian (thermal) randomizing force; and (c) the viscous forces
acting on the particles due to fluid flow. The interplay between
these forces and their balance are responsible for the formation of
an internal structure which (i) has an inherit “strength”, i.e. a yield
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stress and (ii) it can be altered by an externally applied shear during
processing. In other more specialized suspensions, the mechanisms
responsible for the internal structure and the yield stress may be
entirely different. In semisolid suspensions, for instance, the yield
stress is the combined effect of the solid network of connected
particles and the dry friction between loose particles.

Given the nature of the internal structure and its “vulnera-
bility” to an applied shear, most suspensions exhibit not only a
strong non-linear viscoplastic behavior but also a time-dependent
or thixotropic behavior [9]. Fig. 1 shows typical experimental data
for a semisolid suspension from a rotational experiment where
the stress at the rotating surface changes with time: after a rapid
decrease in the stress at the rotating cylinder with a characteristic
sigmoidal variation (in a log–log representation) the stress achieves
a steady-state after a long time [12]. This time-dependent behav-
ior is due to the breakage of solid bonds formed during prolonged
rest between the solid particles. It is interesting to note that for
semisolid slurries the actual process is very fast with processing
times in the order of 0.5 s. This coincides with the time of the fastest
structural breakdown rate. This highlights the importance of con-
sidering this complex behavior in material constants for transient
applications.

Other mechanisms responsible for thixotropy can be the dis-
organization of individual particles in granular materials, the
deformation and disorganization of individual droplets changing
in shape from spherical to elliptical in colloids (foams and emul-
sions), the orientation of polymer chains along the velocity field –
as well as their breakage – in gels and the breaking of particle aggre-
gates in suspensions. It is clear from the above that the yield stress
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Fig. 1. A typical result for the variation of stress with time for an SSM slurry in a
rotational experiment [12].

Fig. 2. Coherency parameter in a fully structured state (left) and in a fully broken
state (right) [1].

and thixotropic effects are closely related and one cannot study one
effect without the other.

In most suspensions there is a critical shear rate which deter-
mines the relative competition between what are known as aging
and shear rejuvenation processes [14]. In shear rejuvenation as dis-
cussed above the structure breaks down resulting in decreasing
viscosity with time. However, upon the reduction or the removal
of shear aging occurs where the structure slowly rebuilds with a
corresponding increase in the viscosity. At steady-state, the rates
of shear rejuvenation and aging are equal. When shear is removed
completely the viscosity eventually reaches an infinite value and
the fluid finally ceases to flow [15].

Pignon et al. [16] have shown that structure buildup occurs over
two distinct time scales: a short one, corresponding to relaxation
of the alignment produced by the shearing after the latter is inter-
rupted, and a long one, corresponding to a slow aggregation process
which gives rise to a fractal behavior at length scales on the order of
1 mm. It is during this second stage that the continuous aggregate

Fig. 3. Schematic of the flow geometry. The material adjacent to the rotating shaft
yields, while the material away from the shaft remains unyielded [1].

Fig. 4. The method of solution: the velocity distribution is fixed and the positions of
the corresponding nodes are sought. The computational domain is in fact the yielded
domain [1].

Fig. 5. Shear stress versus shear rate at equilibrium for various Bingham numbers,
˛0 = ˛1 = ˛2 = 0.01 and n = 0.5.

Fig. 6. Flow curves obtained from steady rate sweep measurements with the col-
loidal star suspension 12828 in decane (95 mg/g) at three different temperatures,
6 ◦C (triangles), 12 ◦C (circles) and 30 ◦C (squares). Filled symbols represent the data
obtained with increasing shear from low to high; open symbols correspond to the
‘return’ experiment (ramp down). The measurement time per shear rate was kept
constant at 14.3 s (taken from Ref. [23] with permission).
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network is established, giving the suspension its yield stress fluid
character [16]. The competition between aging and shear rejuvena-
tion determines the mechanical behavior of the suspensions which
is important in many applications [8,10,11,14,17].

This work focuses on both the short-term and long-term
response to shear of such systems. The interest here is to study
the flow details within a standard rotational rheometer which is
used extensively in material characterization. Our intention is to
reveal the complex phenomena that take place within the gap of
the rheometer which can be critical in the evaluation of material
constants.

An interesting behavior exhibited by yield stress fluids in shear-
ing flows is that of shear banding. At sufficiently low shear rates
the flow domain is divided into two parts: (a) the yielded region
close to the shearing wall and (b) the unyielded or solid-like region.
This is in contrast to the Herschel–Bulkley fluid model which sug-
gests that all shear rates are possible in the material [15]. In the
unyielded region no flow is observed and the shear stress must
essentially be lower than the yield value of the material while in
the yielded region the shear stress should be higher than the yield
stress [15]. Experiments have shown that shear banding is related
to a critical shear rate. Below this value the flow is localized in a
region close to the shearing wall [18]. If the globally imposed shear
rate increases, it is not the shear rate in the material in the yielded
region that increases, but rather the extent of the sheared region
which increases to fill the entire gap of the shear cell exactly at the
critical shear rate [15,18–20].

Fig. 7. Evolutions of the coherency parameter, the shear rate, the shear stress and
the viscosity at the rotating surface, and of the length of the yielded domain for B = 2,
a0 = a1 = a2 = 0.01 and n = 0.5.

Fig. 8. Distributions of the coherency parameter, the shear rate, the shear stress and
the viscosity at equilibrium for B = 2, a0 = a1 = a2 = 0.01 and n = 0.5.

In this work, shear rejuvenation and aging effects in shear thin-
ning yield stress fluids are simulated in a rotational rheometer. A
theoretical thixotropic model, based on the H–B constitutive equa-
tion, involving a coherency parameter is proposed in Section 2.
The governing equations and the method of solution of the time-
dependent circular Couette flow problem are presented in Section
3. The numerical results are presented in Section 4. An interesting
finding of this work is the appearance of shear banding within the
gap when the imposed shear rate is below a critical value. Section
5 summarizes the conclusions.

2. Thixotropic model

To capture the evolution of the internal structure it is custom-
arily assumed that there exists a phenomenological structural or
coherency parameter � that characterizes the state of the struc-
ture; in a fully structured state, � is assumed to be unity, while in
a fully broken state it is assumed to be zero (Fig. 2). The param-
eter � can, for instance, represent the number of welded bonds
in metal slurries, the organization of individual particles in gran-
ular material, the organization and form of individual droplets in
colloids (foams and emulsions), the entanglement and integrity of
polymer chains in gels and the integrity of particle aggregates in
suspensions. The physics and evolution of � in time are governed
by appropriate evolution equations.

The rate of formation of new bonds in a suspension is typically
assumed to be proportional to the concentration of particles, since
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the collision probability increases with the latter. The rate of break-
down of inter-particle bonds in an average aggregate is assumed to
be proportional to the number of existing bonds (structural link-
ages) [12]. Hence, the evolution of the structure of the suspension
may be described by a kinetic equation for the coherency parameter
� of the type:

D�

Dt
= ˛0(1 − �) − ˛1��̇ e˛2�̇ (1)

where D�/Dt is the material derivative, ˛0 is the recovery parameter,
˛1 and ˛2 are breakdown parameters, and �̇ is the magnitude of
the rate of strain. The first term in the RHS of Eq. (1) describes the
aging effect and the second one accounts for the shear rejuvenation.
The exponential dependence on the deformation rate is included to
account for the fact that the shear stress evolution in shear rate step-
up experiments is typically faster than in step-down ones [21,22].

At very low or zero shear rates, aging dominates and the struc-
ture builds-up at a constant rate of ˛0(1 − �) or 1/T0, where T0 is
the characteristic time of the aging [14]. For the steady-state case,
when aging and shear rejuvenation at a given shear rate �̇e cancel
each other out, the structure ceases to evolve:

D�

Dt
= 0 ⇒ �e = 1

1 + (˛1/˛0)�̇e e˛2�̇
(2)

where �e is the value of the coherency parameter at equilibrium.
The viscosity approaches an equilibrium value �e(�̇e).

Experiments verify that thixotropic suspensions are described
well by the Herschel–Bulkley model with time-dependent proper-
ties [6]. This model is a combination of the Bingham plastic and the
power-law models. The former accounts for the finite yield stress

Fig. 9. Effects of the Bingham number B on (a) the length of the yielded domain and
(b) the coherency parameter at the rotating surface; a0 = a1 = a2 = 0.01 and n = 0.5.

Fig. 10. Effects of the Bingham number B on (a) the shear stress, (b) the shear rate
and (c) the viscosity at the rotating surface; a0 = a1 = a2 = 0.01 and n = 0.5.

that must be exceeded for flow to occur, while the latter takes non-
linear shearing effects into account. The material parameters of the
model are assumed to be functions of the coherency parameter �
and hence of time

� =
[

�0(�)
�̇

+ K(�)�̇n(�)−1
]

D (3)

where � is the viscous shear stress tensor, K(�) is the consistency
index, n(�) is the power-law index, �0(�) is the yield stress and �̇ is
the second invariant of the rate of strain tensor D =�u+(�u)T.
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In a simple shear flow experiment Eq. (3) can be written in scalar
form as follows

� = �0(�) + K(�)�̇n(�) (4)

The material parameters in the model, ˛0, ˛1 and ˛2, and the equi-
librium functions K(�), n(�) and �0(�), can be estimated by stress
versus time plots which are constructed using experimental steady-
state data (�̇ = �̇e) [6]. For simplicity, it is assumed here that the
equilibrium functions are constant, i.e. independent of the state of
the structure.

The time-dependent function, �0(�(t)) must be defined a priori.
In the present study a simple linear form

�0(�(t)) = �(t)�0 (5)

is adopted. Of course, given sufficient information any other func-
tional form can be readily used.

At steady-state D�/Dt = 0 or when � = �e this model predicts flow
curves of the type shown in Fig. 5. Despite the model’s simplicity
the predicted behavior is almost identical to recent experimental
data for concentrated star polymer suspensions obtained by Beris
et al. [23] and shown in Fig. 6. This provides a further verification
of the validity of the theoretical model.

Fig. 11. . Effects of a0 on (a) the length of the yielded domain and (b) the coherency
parameter at the rotating surface; B = 2, a1 = a2 = 0.01, n = 0.5, a0 = 0.001, 0.01, 0.05,
0.1, 0.2, 0.5, 1.0.

Fig. 12. Effects of a0 on (a) the shear stress, (b) the shear rate and (c) the viscosity at
the rotating surface; B = 2, a1 = a2 = 0.01, n = 0.5, a0 = 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1.0.

3. Flow in a rotational rheometer

We consider the flow of a thixotropic material in a classical
rotational rheometer, schematically shown in Fig. 3. It is assumed
that the globally imposed shear rate is constant and that shear-
ing is isothermal, i.e. the temperature of the fluid remains constant
throughout the experiment.

The conservation of linear momentum for the rotational flow of
Fig. 3 is given by

�
∂u

∂t
= 1

r2

∂

∂r
(r2�) (6)
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where u is the tangential velocity, � = �r� , and � is the density. Eqs.
(4) and (5) give

� = ��0 + K�̇n (7)

where

�̇ =
∣∣∣r d

dr

(
u

r

)∣∣∣ .

The angular velocity of the rotating shaft is ω, thus the tangential
velocity of the fluid at the shaft is u(R1) = ωR1 = U. In the unyielded
region (rmax ≤ r ≤ R2) the fluid is at rest.

For this simple shear flow experiment, Eq. (1) reduces to

∂�

∂t
= ˛0(1 − �) − ˛1��̇ e˛2�̇ (8)

By using R1, U, and K(U/R1)(n−1) as scales respectively for length,
velocity, and stress, the following dimensionless forms of Eqs. (6–8)
are obtained:

Re
∂u′

∂t′ = 1

r′2
∂

∂r′ (r′2� ′) (9)

� ′ = �B + �̇ ′n (10)

∂�

∂t′ = ˛′
0(1 − �) − ˛′

1��̇ ′ e˛′
2

�̇ ′
(11)

where all the primed variables are dimensionless, and
Re = (�UR1/K)(R1/U)n−1 and B = (�0/K)(R1/U)n are, respectively,
the generalized Reynolds and Bingham numbers. The primes will
be dropped hereafter for simplicity.

Fig. 13. Effects of n on (a) the length of the yielded domain and (b) the coherency
parameter at the rotating surface; B = 2, a0 = 0.1, a1 = a2 = 0.01.

Fig. 14. Effects of n on (a) the shear stress, (b) the shear rate and (c) the viscosity at
the rotating surface; B = 2, a0 = 0.1, a1 = a2 = 0.01.

3.1. Method of solution

Since Herschel–Bulkley models are singular, obtaining an ana-
lytical solution is only possible for simple, steady and mostly
unidirectional flows. In time-dependent and more geometrically
complex flows the model should be regularized in order to remove
the singularity and improve computational efficiency. A popular
regularization is the one introduced by Papanastasiou which makes
use of a smooth exponential function to represent the steep rise in
the stress as the shear rate tends to zero [24].
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Fig. 15. Velocity distribution in the gap between the two concentric cylinders (R1 = 1,
R2 = 1.15) as a function of time; B = 6, a0 = a1 = a2 = 0.01 and n = 0.5.

The flow geometry of Fig. 3, allows the use of the inverse finite
element method (IFEM) solution procedure [25]. In this method,
the dependent variable (node velocity) is fixed and the solution is
obtained for the independent variable (coordinates of the nodes)
without inverting the equations. Here the velocity varies from 1
at the rotating end to 0 at the fixed surface. As shown in Fig. 4
the solution procedure determines the location of the nodes that
correspond to a predefined velocity distribution. The advantages
of this procedure, which is discussed in more detail in Ref. [1],
are:

Fig. 16. The time evolutions of (a) the length of the yielded domain and (b) the shear
rate at the rotating surface for R2 = 20 and R2 = 1.15; B = 6, a0 = a1 = a2 = 0.01 and n = 0.5.

(a) Since the computational domain is limited to the yielded part
of the fluid, the singularity no longer exists and the solution
corresponds to the ideal constitutive model.

(b) The boundary conditions are applied and satisfied exactly.
(c) The method is ideal for studying stress shear banding not pos-

sible with standard computational methods.

The Jacobian of the Newton-Raphson procedure is saved using
an element-by-element storage and solved by an iterative method

Fig. 17. The minimum B as a function of the outer radius for shear banding to occur.
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Fig. 18. The effect of B, n and a0: shear banding occurs only for parameter combina-
tions above the curves.

Fig. 19. The effect of B on the final shear band location for a0 = 0.01.

based on a modification of the BiConjugate Gradient Stabilized
Method [25,26]. The Jacobi preconditioning is used to speed up con-
vergence. For converged results, usually two to three iterations in
the Newton-Raphson procedure are necessary at each time step.

Fig. 20. The effect of a0 on the final shear band location for B = 10.

The structure evolution equation (Eq. (11)) – corrected for the
fact that the mesh moves with velocity um– is given by

d�

dt
= um

∂�

∂r
+ ˛0(1 − �) − ˛1��̇ e˛2�̇ (12)

This is solved explicitly at each Newton-Raphson iteration step
for each node using high-order finite difference approximation for
the velocity gradient subject to the proper boundary conditions:

(a) At the early stages of shearing r = rmax and � = 1.0. In this case
rmax is unknown and it is determined by the solution procedure.

(b) When the material within the gap yields completely the last
node is fixed at the location of the second cylinder i.e. r = R2 and
it is treated as known. The parameter � is evaluated using Eq.
(12).

(c) In cases where the yielded front retreats the location of the last
node is treated as unknown as in case (a) and � is evaluated
again using Eq. (12).

4. Results and discussion

Since Re is a multiplying factor in Eq. (9) we obtain results
only for Re = 1. Changing its value leads only to a different time
scale. All simulations start with an arbitrary small yielded domain
(1 ≤ r < 1 + ε). Numerically this one-dimensional problem is quite
stiff and care must be exercised in the selection of the mesh and
time discretizations. For mesh-independent results a total of 40
one-dimensional quadratic elements is used and ε is set to 0.005.
The time step used for stable solutions is of the order of 10−7; how-
ever, the step is adjusted internally by the code (up to 10−2) during
the simulation.

4.1. Aging and shear rejuvenation in partially yielded material

Fig. 7 shows the evolution of the shear rate, the shear stress,
the coherency parameter and the viscosity (n = �/�̇) at the rotating
surface, as well as the evolution of the length of the yielded domain,
in a typical flow with B = 2, a0 = a1 = a2 = 0.01 and n = 0.5. In this and
all subsequent simulations of partially yielded material, the radius
R2 of the outer cylinder is larger than the maximum length of the
yielded domain (rmax). The default value of R2 is set to a large value
of 20. Of course this is an unnecessarily large value since in all cases
examined the yielded domain never exceeds the value of 2.

Upon shearing the length of the yielded domain increases
rapidly to a quasi-steady-state which is independent of ε and then
drops to a final steady value. The shear stress at the rotating cylinder
undergoes a typical sigmoidal variation as shown in experiments
[12]. Again this is a further demonstration of the validity of the
model. On the other hand, the shear rate drops from an initially
large value gradually to a minimum value. As soon as the yielded
domain starts retreating (after its quasi-steady-state) the shear rate
rises again as a result of the fluid being confined to a smaller region.
The shear rate reaches a maximum and then drops approaching
a steady-state value. Shortly after the shear rate starts decreasing
the coherency parameter reaches a minimum and the buildup term
in Eq. (11) relatively increases. Therefore, the coherency parameter
reaches a minimum (breakdown and buildup cancel each other out)
and then increases (aging of the fluid structure) before reaching a
steady-state, where the buildup and breakdown terms are equal.
Upon the application of shear, the viscosity increases quite fast and
reaches a maximum. As soon as the shear rate starts increasing the
viscosity decreases and reaches a minimum when the shear rate
reaches a maximum. As the shear rate starts to fall for the sec-
ond time the viscosity increases and reaches a steady-state value.
This complex behavior necessitates the need for more sophisticated
tools for the determination of unsteady material constants.
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Fig. 8 shows the steady-state or equilibrium distribution of the
coherency parameter, the shear rate, the shear stress and the viscos-
ity, along the radial direction in the yielded region. The coherency
parameter increases gradually with r from a very low value at the
rotating cylinder surface; however, at some point very close to the
yield point a steep increase occurs. The coherency parameter tends
asympotically to unity at the yield point, which indicates a fully
connected internal structure. The shear stress decreases almost lin-
early along the length of the yielded region. The shear rate starts
from a finite value at the rotating surface and drops to zero at the
yield point. At the region where there is a steep increase in the
coherency parameter the rate at which the shear rate decreases is
much faster. The viscosity increases almost linearly with the radial
distance. However, at the region where the rate of decrease of the
shear rate is very large the viscosity increases sharply and becomes
practically infinite at the yield point.

Figs. 9 and 10 show the effects of the Bingham number B on the
length of the yielded domain, and the coherency parameter, the
shear stress, the shear rate and the viscosity at the rotating surface,
respectively for a0 = a1 = a2 = 0.01 and n = 0.5. While the coherency
parameter and the length of the yielded domain decrease with B,
the shear stress and shear rate at the rotating surface increase. This
is expected as the strength of the suspension increases with the
yield stress and hence with B. As a result of the shear stress and
shear rate variations, the viscosity increases with B immediately
upon shearing and decreases with B for times larger than ∼0.5 to
∼1.6 s (depending on B).

The effect of the recovery coefficient on all quantities of interest
is illustrated in Figs. 11 and 12, where results for B = 2, a1 = a2 = 0.01
and n = 0.5 are shown. The quasi-steady-state value of the length
of the yielded domain is unaffected by a0 (Fig. 11a); however, its
value clearly increases with a0 as the flow develops further. The
reason is that for large values of a0 the strength of the fluid is suffi-
cient to support shearing over a larger yielded region. As expected,
the coherency parameter increases with a0 (Fig. 11b). During the
early stages of shearing the shear stress does not vary with a0; this
increases with a0 about one second after flow is initiated. This is
expected as the strength of the suspension during shearing does not
decrease as much for larger recovery coefficients. This behavior sup-
ports the assumption that buildup can be negligible for short-term
transients [1].

For large values of a0 the variation of the shear stress is exponen-
tial and not sigmoidal. As expected the shear rate decreases with a0.
Even though the maximum of the shear rate curve decreases with a0
the shear rate after this maximum drops faster for very small coef-

Fig. 21. The effect of n on the final shear band location for a0 = 0.01.

Fig. 22. The effect of a0 on the final shear band location for n = 0.5.

Fig. 23. Retreat time as a function of the Bingham number for various values of n
and a0 = 0.01.

ficients but its steady-state value is smaller. The viscosity increases
with a0 but its steady-state value follows a non-monotonic varia-
tion at very small a0. Generally, the larger the coefficient the sooner
the system reaches an equilibrium state.

Fig. 24. Retreat time as a function of the Bingham number for various values of a0

and n = 0.5.
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Table 1
Final shear band location for various parameter combinations.

n B

2 3 4 5 6 7

a0

0.001

0.4 – 1.1091 1.0683 1.0465 1.0333 1.0247
0.5 – – 1.1121 1.0832 1.0645 1.0515
0.6 – – – 1.1250 1.1015 1.0846
0.7 – – – – – 1.1261

0.005

0.4 – 1.1067 1.0669 1.0459 1.0329 1.0244
0.5 – – 1.1097 1.0819 1.0638 1.0510
0.6 – – – 1.1237 1.1003 1.0849
0.7 – – – – – –

0.01

0.4 – 1.1052 1.0656 1.0452 1.0325 1.0246
0.5 – – 1.1076 1.0806 1.0629 1.0505
0.6 – – – 1.1240 1.0992 1.0830
0.7 – – – – – –

0.05

0.4 – – 1.0663 1.0430 1.0297 1.0232
0.5 – – 1.1209 1.0751 1.0586 1.0473
0.6 – – – 1.1256 1.0935 1.0783
0.7 – – – – – –

0.1

0.4 – – 1.1027 1.0463 1.0299 1.0220
0.5 – – – 1.1146 1.0607 1.0456
0.6 – – – – 1.1310 1.0856
0.7 – – – – – –

0.2

0.4 – – – 1.0881 1.0370 1.0236
0.5 – – – – 1.1284 1.0804
0.6 – – – – – –
0.7 – – – – – –

0.5

0.4 – – – – 1.1127 1.0589
0.5 – – – – – –
0.6 – – – – – –
0.7 – – – – – –

1.0

0.4 – – – – – –
0.5 – – – – – –
0.6 – – – – – –
0.7 – – – – – –

Figs. 13 and 14 show the effect of the power-law index n. The
length of the yielded domain increases with n, except during the
very early stages of the flow initiation. Unlike the shear rate, the
coherency parameter, shear stress and viscosity at the rotating
cylinder increase with n. It is interesting to note that the time for
reaching equilibrium is practically independent of n.

4.2. Shear banding

To illustrate the shear banding phenomenon R2 is set to 1.15.
It is important to repeat here that, except for a simple unsnap-
ping rule described below for the node fixed to the outer boundary
at the instant the yielded domain starts to retreat, these results
are obtained automatically without user intervention due to the
novelty of the solution procedure: the method tracks at all times
the yielded domain free of any mathematical singularities by sat-
isfying exactly all boundary conditions, governing equations and
constitutive relations without regularization.

Fig. 15 shows the evolution of the velocity distribution between
the two concentric cylinders when B = 6, a0 = a1 = a2 = 0.01 and
n = 0.5. The velocity varies from unity at R1 to zero at R2. As soon
as the yielded material reaches the fixed cylinder, the velocity
increases throughout the entire gap (Fig. 15a). As the shearing
continues the material breaks down, the velocity decreases every-
where within the gap and shear banding occurs (Fig. 15b). When
the yielded material retreats sufficiently, the velocity in the yielded
region increases and reaches equilibrium when the shear band loca-
tion attains a steady value (Fig. 15c). At equilibrium the velocity

except close to the fixed cylinder varies almost linearly within the
yielded region.

Computationally retreating is first signaled when the nodal
velocities (um = dri/dt) of the nodes adjacent to the node fixed to
the outer cylinder assume negative values and the aspect ratio of
the associated elements start to differ by a set percentage. Then,
when the shear rate at the node decreases to a small value close
to zero the rule is activated when the next change in the shear
goes through a sign reversal: the fixed node is reclassified as a
“free” node and its current location is set to a value slightly smaller
than R2 to R2 − 1.0E−6. Its new location is calculated according
to the solution procedure. If the calculated location is less than
R2 no other action is taken, otherwise its value is set again to
R2 − 1.0E−6. The time integration is continued normally by main-
taining the classification of the node as “free”. Actually the rule
is optimized for most simulations performed to ensure that once
implemented the above adjustment is not repeated for more than a
couple of time steps. Therefore, given the normally small time inte-
gration steps used in these simulations and that each simulation
typically takes several million time steps to complete, this simple
rule produces smooth solutions without irregularities that can be
documented. In all simulations performed, at the instant of retreat-
ing there was no tendency for physical oscillations of the yielded
domain.

As shown in Fig. 16a the yielded domain for a fixed cylin-
der at R2 = 1.15 retreats following the exact same “path” as the
yielded domain in the case of partially yielded material (where
the default value is set at R2 = 20). Here the fixed cylinder is placed
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Table 2
Retreat time for various parameter combinations.

n B

2 3 4 5 6 7

a0

0.001

0.4 – 13.4 4.8 2.6 1.7 1.1
0.5 – – 13.0 6.2 3.8 2.6
0.6 – – – 16.6 8.4 5.4
0.7 – – – – – 25.4

0.005

0.4 – 14.0 4.8 2.6 1.7 1.1
0.5 – – 13.5 6.3 3.8 2.6
0.6 – – – 17.3 8.5 5.5
0.7 – – – – – –

0.01

0.4 – 15.0 4.9 2.6 1.7 1.1
0.5 – – 14.1 6.4 3.9 2.6
0.6 – – – 18.2 8.7 5.5
0.7 – – – – – –

0.05

0.4 – – 5.5 2.8 1.7 1.1
0.5 – – 26.1 7.5 4.2 2.7
0.6 – – – 32.8 11.0 6.3
0.7 – – – – – –

0.1

0.4 – – 6.9 3.0 1.8 1.2
0.5 – – – 10.4 4.7 2.9
0.6 – – – – 19.0 7.7
0.7 – – – – – –

0.2

0.4 – – – 3.6 1.9 1.2
0.5 – – – – 7.2 3.5
0.6 – – – – – –
0.7 – – – – – –

0.5

0.4 – – – – 2.8 1.5
0.5 – – – – – –
0.6 – – – – – –
0.7 – – – – – –

1.0

0.4 – – – – – –
0.5 – – – – – –
0.6 – – – – – –
0.7 – – – – – –

between the quasi-steady-steady and the steady-state value of the
length of the yielded region. Therefore, the fixed cylinder posi-
tion is critical and it determines whether shear banding occurs
or not. When the material in the gap between the two cylin-
ders is fully yielded (i.e. the extent of the yielded domain reaches
the fixed boundary at R2 = 1.15) the local shear rate increases to
compensate for the confinement of the fluid by the fixed cylin-
der (Fig. 16b). Importantly, Fig. 17 shows the minimum value of
B required for banding to occur as a function of the outer radius
R2.

Fig. 18 shows the effect of B, n and a0 on shear banding. The
latter occurs only for parameter combinations above the curves.
For combinations below the curves the material between the two
cylinders is completely yielded. It is clearly shown that for values
of n up to about 0.7 the minimum Bingham number (B) for which
shear banding occurs increases with a0. For larger values of n the
stress and shear rate in the material are quite large (i.e. the material
brakes down more easily). Therefore, only large (>0.2) values of a0
can significantly affect the flow. As a result, for small a0 a large B
is required to cause shear banding. The opposite happens for larger
values of a0.

Fig. 19 shows the effect of B on the final shear band location for
various n and a0 = 0.01. As B increases the final shear band location
decreases and the maximum n – for which shear banding occurs
– increases. Fig. 20 shows the effect of a0 on the final shear band
location for various n and B = 10. For small n the final shear band
location is practically unaffected by a0; it decreases only slightly
with a0 (0.01–0.2). The same occurs for small a0 (0.01 and 0.1). For

larger a0 (0.2 and 0.5) shear banding occurs at lower n and the final
location of the band increases.

Fig. 21 shows the effect of n on the final shear band location as a
function of B and a0 = 0.01. The final shear band location increases
with n. Values of B that result in fully unyielded material are not
included in the results. Fig. 22 shows the effect of a0 on the final
shear band location as a function of B and n = 0.5. The final shear
band location increases with a0. For larger values of B, however, the
effect of a0 is not significant; the final shear band location decreases
only slightly with a0.

Fig. 23 shows the effect of n on the retreat time for various B
and a0 = 0.01. The retreat time, defined as the time during which
the material within the gap remains fully yielded, clearly increases
with n. This is because when the yielded material reaches the fixed
cylinder and the stress and shear rate at that point start to increase,
they reach a larger maximum value as n increases. Therefore, more
time is needed for these two quantities to drop to zero in order for
the yielded domain to start retreating. Fig. 24 shows the effect of a0
on the retreat time as a function of B and n = 0.5. The retreat time
increases with a0 even though the effect is not as pronounced for
large values of B.

Results for the final shear band location and retreat time are
shown in Tables 1 and 2 respectively, for various parameters. It is
clearly shown that the final shear band location and retreat time
variables increase with a0 and n and decrease with B. However, for
small values of a0 (≤0.01), the final shear band location is practically
unaffected, whereas retreat times increase slightly with a0. As the
Bingham number increases the effect of a0 is less pronounced.
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5. Conclusions

The flow of a yield stress material (e.g. semisolid suspension) in a
concentric cylindrical rheometer has been simulated. The short and
long-term responses of the material have been modeled using the
Herschel–Bulkley fluid model and the effects of shear rejuvenation,
aging and shear banding have been investigated.

Shear rejuvenation and aging have been studied in partially
yielded material by setting the radius of the fixed outer cylinder
at a large default value (R2 = 20, R1 = 1). Upon shearing, the mate-
rial breaks down resulting in the decrease of the stress and shear
rate at the rotating surface and along the length of the yielded
domain. The latter initially increases reaching a quasi-steady-state
value and then drops to an equilibrium value. Therefore, two regions
are created: the yielded and the unyielded one. At early stages,
shear rejuvenation dominates the evolution of the structure. After
a very long time, the rates of breakdown and buildup become equal
canceling each other and the material attains an equilibrium state
(all the variables acquired steady-state-values). At the maximum
length of the yielded region (yield point) the shear rate is zero and
the viscosity is infinite, at all times.

Shear banding has been investigated by setting the radius of the
fixed cylinder at R2 = 1.15. It has been shown that in addition to
the physical parameters shear banding also depends on the flow
geometry. Even for large values of the outer radius the yielded
region eventually retreats provided the local shear rate and the
structural parameter at the outer cylinder (Figs. 9a, 11a and 13a)
are sufficiently low. When R2 is set below the steady-state length
of the yielded region shear banding is not observed. Various exper-
iments reported in the literature have shown that shear banding
occurs below a critical globally imposed shear rate [13]. This is true
provided the position of the fixed cylinder is set between the maxi-
mum and the steady-state values of the length of the yielded region
(Fig. 16a). Fluids with large buildup coefficients reach equilibrium
in relatively short time which may be important in shearing appli-
cations. Additionally, the buildup coefficient must be at least an
order of magnitude larger than the breakdown coefficient in order
to significantly affect the flow.

Shear rejuvenation, aging and shear banding are important phe-
nomena in thixotropic shear thinning of yield stress fluids. The
effects of the various fluid parameters and flow geometry on those
phenomena must be known in order to accurately predict the fluid
behavior under various shearing conditions. Computational rheol-
ogy provides a meaningful, fast and certainly cost-effective means
to determine material constants from rheological tests provided of
course it is accompanied by appropriate models and underlying
assumptions.

Finally as a cautionary note, we should admit that modeling
thixotropic effects has some inherent difficulties. The structural
parameters used are not necessarily directly measurable and dif-
ferent models of structure evolution may be well able to reproduce
a given data set. The approach is thus necessarily phenomenologi-
cal. Similar critiques may be leveled at other branches of mechanics
and thermodynamics, which are awash with ‘internal variables’.
Such critiques do not invalidate the study of the phenomena and
should not prevent the advancement of knowledge, by postulating
appropriate models that fit reasonably with the available data, as
we have done here. Ideally of course we would like to be able to
directly validate any given structure evolution model. It is hard to
envisage experiments that can do this, and in the case of semisolid
metals there are additional constraints.
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