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a b s t r a c t

In this work, we derive approximate semi-analytical solutions of the steady, creeping, weakly com-
pressible plane and axisymmetric Poiseuille flows of a Herschel–Bulkley fluid. Since the flow is weakly
compressible, the radial velocity component is assumed to be zero and the derivatives of the axial velocity
with respect to the axial direction are assumed to be much smaller than those with respect to the radial
direction. The axial velocity is then given by an expression similar to that holding for the incompress-
ible flow, the only difference being that the pressure-gradient is a function of the axial coordinate and
satisfies a non-linear equation involving the density of the fluid. In the present work, a linear as well
as an exponential equation of state, relating the density of the fluid to the pressure, are considered. The
pressure distribution along the flow direction is calculated by means of numerical integration and the
two-dimensional axial velocity can then be constructed. The effects of compressibility, the equation of
state, the Bingham number and the power-law exponent on the solutions are investigated.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Laminar Poiseuille flows of weakly compressible materials have
gained interest in the past two decades due to their applications
in many processes involving liquid flows in relatively long tubes,
such as waxy crude oil transport [1,2] and polymer extrusion [3,4].
Numerical solutions of weakly compressible Poiseuille flows have
been reported for Newtonian fluids [3], generalized Newtonian flu-
ids, such as the Carreau fluid [4] and the Bingham plastic [1], as well
as for viscoelastic fluids [5].

The objective of the present work is to solve approximately the
plane and axisymmetric Poiseuille flows of weakly compressible
fluids with yield stress, i.e. fluids obeying the Herschel–Bulkley
constitutive equation, and investigate the effects of compressibil-
ity by means of two different equations of state, i.e. a linear and
an exponential one. A linear equation of state has been employed
in previous numerical studies of the extrudate swell flow [6,7]
by Hatzikiriakos and Dealy [8] for HDPE, also for laminar capil-
lary flow by Venerus [9] for compressible Newtonian fluids, and
in our previous studies concerning the simulation of the stick-slip
extrusion instability [3,4]. Exponential equations of state have been
employed, for example, by Ranganathan et al. [10] for a HDPE and,
more recently, by Vinay et al. [1] in simulations of weakly compress-
ible Bingham flows.
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The paper is organized as follows. In Section 2, the governing
equations for the axisymmetric Poiseuille flow are presented and
the assumptions under which these are simplified are discussed.
Analytical and semi-analytical results are presented for both the
incompressible and compressible flows of a Herschel–Bulkley fluid
and the numerical method is briefly discussed. In Section 3, the
numerical results for the compressible flows of Newtonian, power-
law, Bingham, and Herschel–Bulkley fluids with both linear and
exponential equations of state are compared and the effects of the
compressibility and the yield stress are investigated. Finally, Section
4 contains the conclusions.

2. Governing equations

Let us consider the steady, compressible axisymmetric Poiseuille
flow of a generalized Newtonian fluid. The geometry of the flow is
given in Fig. 1. Assuming that the flow is creeping and neglecting
gravity, the momentum equation is reduced to

−∇p + ∇ · � = 0 (1)

where p is the pressure and � is the stress tensor. Let us also denote
the velocity vector by u and the rate-of-strain tensor by �̇ , i.e.

�̇ ≡ ∇u + (∇u)T , (2)

where ∇u is the velocity-gradient tensor, and the superscript T
denotes its transpose. Under the assumption of zero bulk viscosity,
which implies that the viscosity forces are only due to shear and
not to volume variations [1], the viscous stress tensor for a gener-
alized Newtonian fluid is defined by a constitutive equation of the
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Fig. 1. Geometry of compressible axisymmetric Poiseuille flow of a Herschel–Bulkley fluid.

following general form:

� = �(�̇)(�̇ − 2
3 ∇ · uI), (3)

where I is the identity tensor, and � is the viscosity which depends
on the magnitude �̇ of the rate-of-strain tensor:

�̇ =
√

1
2 II�̇ =

√
1
2 �̇ : �̇ (4)

II being the second invariant of a tensor.
The tensorial form of the Herschel–Bulkley constitutive equation

is:{
�̇ = 0, � ≤ �0

� =
(

�0

�̇
+ k�̇n−1

)
�̇, � ≥ �0

(5)

where �0 is the yield stress, k is the consistency index, n is the
power law exponent, and � is the magnitude of the stress tensor.
The power-law fluid and the Bingham plastic are the special cases
of the Herschel–Bulkley model for �0=0 and n = 1, respectively.

For a weakly compressible flow, we can assume that the radial
velocity component is zero. This assumption is consistent up to
first order with Newtonian perturbation solutions in terms of com-
pressibility [11,9]. When ur = 0 the expression for �̇ is simplified as
follows:

�̇ =

√
2

(
∂uz

∂z

)2

+
(

∂uz

∂r

)2

(6)

We further assume that ∂uz/∂z � 1 so that the second term in the
RHS of Eq. (3) is negligible and

�̇ �
∣∣∣∣∂uz

∂r

∣∣∣∣ . (7)

Then from the r-momentum equation it is deduced that p = p(z)
and the z-momentum equation is reduced to

−dp

dz
+ 1

r

∂

∂r
(r�rz) = 0, (8)

where the pressure-gradient is also a function of z. It should be
noted that the above assumptions are valid when the radius of the
tube is much smaller than its length [12]. Eq. (5) is simplified as
follows:⎧⎪⎨
⎪⎩

∂uz

∂r
= 0, |�rz | ≤ �0

�rz = −�0 + k

(
−∂uz

∂r

)n

, |�rz | ≥ �0

(9)

Being a function of the pressure, the density also varies across the
tube, i.e. � = �(z). For the mass to be conserved, it must be

2��(z)

∫ R

0

uz(r, z)r dr = const.

or

�(z)Q (z) = Q0 (10)

where Q (z) is the volumetric flow rate and Q0 = Q (0).
In the following subsections we will first discuss the

one-dimensional incompressible and then the two-dimensional
compressible axisymmetric Poiseuille flow of a Herschel–Bulkley
fluid. The equations for the planar compressible Poiseuille flow are
given in Appendix A.

2.1. Incompressible axisymmetric Poiseuille flow

The solution of the incompressible Poiseuille flow of a
Herschel–Bulkley fluid is straightforward and well known. How-
ever, it is presented here in order to show the analogy with
the weakly compressible solution and to introduce the non-
dimensionalization of the problem. In incompressible flow, the
pressure-gradient and the density are constant and the axial veloc-
ity component depends only on the radial coordinate [13]:

uz(r) = n

21/n(n + 1)k1/n

(
−dp

dz

)1/n

×
{

(R − r0)1/n+1, 0 ≤ r ≤ r0

[(R − r0)1/n+1 − (r − r0)1/n+1], r0 ≤ r ≤ R
(11)

Fig. 2. Velocity profiles for the axisymmetric incompressible Poiseuille flow of a
Herschel–Bulkley fluid with n = 0.5 and various Bingham numbers.
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Fig. 3. Velocity profiles for the axisymmetric incompressible Poiseuille flow of a
Herschel–Bulkley fluid with Bn = 10 and various values of the power-law exponent.

Fig. 4. Position of the yield point in axisymmetric incompressible Poiseuille flow of
Herschel–Bulkley fluids.

Fig. 5. Pressure distributions for four different fluids obtained with the linear (solid) and the exponential (dashed) equations of state in axisymmetric Poiseuille flow with
B = 0 (incompressible flow), 0.01 and 0.1.
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where R is the capillary radius, (−dp/dz) is the constant pressure-
gradient, and

r0 = 2�0

(−dp/dz)
< R (12)

denotes the yield point, i.e. the point at which the material yields.
Note that flow occurs only if (−dp/dz) > 2�0/R. The volumetric flow
rate is given by

Q = �n

21/n(3n + 1)k1/n

(
−dp

dz

)1/n

R1/n+3
(

1 − r0

R

)1/n+1

×
{

1 + 2n

2n + 1
r0

R

[
1 + n

n + 1
r0

R

]}
. (13)

In the cases of a Bingham plastic (n = 1) and a power-law fluid (�0 =
0, r0 = 0), Eq. (13) is reduced to

Q = �

8k

(
−dp

dz

)
R4

[
1 − 4

3
r0

R
+ 1

3

(
r0

R

)4
]

(14)

and

Q = �n

21/n(3n + 1)k1/n

(
−dp

dz

)1/n

R1/n+3 (15)

respectively.
In what follows, it is preferable to work with dimensionless

equations. Lengths are scaled by the tube radius, R, the velocity by
the mean velocity, V0, in the capillary, and the pressure by kVn

0 /Rn.
With these scalings, the dimensionless velocity profile is written as
follows:

uz(r) = n

21/n(n + 1)

(
−dp

dz

)1/n

×
{

(1 − r0)1/n+1, 0 ≤ r ≤ r0

[(1 − r0)1/n+1 − (r − r0)1/n+1], r0 ≤ r ≤ 1
(16)

where all quantities are now dimensionless,

r0 = 2Bn

(−dp/dz)
< 1 (17)

and

Bn = �0Rn

kVn
0

(18)

is the Bingham number. The dimensionless version of the constitu-
tive equation, i.e. of Eq. (9), is:⎧⎪⎨
⎪⎩

∂uz

∂r
= 0, |�rz | ≤ Bn

�rz = −Bn +
(

−∂uz

∂r

)n

, |�rz | ≥ Bn
(19)

Moreover, the dimensionless pressure-gradient is a solution of the
following equation:

21/n 3n + 1
n

(
−dp

dz

)3

=
[(

−dp

dz

)
− 2Bn

]1/n+1
[(

−dp

dz

)2

+ 4nBn

2n + 1

(
−dp

dz

)
+ 8n2Bn2

(n + 1)(2n + 1)

]
. (20)

In the case of a power-law fluid (Bn = 0), the solution of Eq. (20) is
simply(

−dp

dz

)
= 2

(
3n + 1

n

)n

. (21)

In the case of a Bingham-plastic (n = 1), Eq. (20) is reduced to

3
(

−dp

dz

)4

− 8(Bn + 3)
(

−dp

dz

)3

+ 16Bn4 = 0 (22)

It should be noted that flow occurs only if (−dp/dz) > 2Bn. For given
values of Bn and n, Eq. (20) is easily solved for the pressure-gradient
using the Newton–Raphson method, and then the velocity profile
can be constructed using Eq. (16). In Fig. 2, the velocity profiles
calculated for n = 0.5 and various Bingham numbers are shown. In
Fig. 3, the velocity profiles obtained with Bn = 10 and n = 0.5, 1 and
1.5 are compared. With fixed volumetric flow rate, the size of the
yielded region is reduced as the power-law exponent is increased.
This is also shown in Fig. 4, where the yield point r0 is plotted as a
function of the Bingham number for various values of n.

2.2. Compressible axisymmetric Poiseuille flow

In the case of compressible flow, the pressure-gradient and the
density are functions of z and so are r0 and the volumetric flow
rate. It is easily deduced then that the dimensionless axial velocity
(scaled by the mean velocity, V0, at the exit of the capillary) is given
by

uz(r, z) = n

21/n(n + 1)

(
−dp

dz

)1/n

(z)

×
{

[1 − r0(z)]1/n+1, 0 ≤ r ≤ r0

{[1 − r0(z)]1/n+1−[r − r0(z)]1/n+1}, r0 ≤ r ≤ 1
(23)

where

r0(z) = 2Bn

(−dp/dz)(z)
. (24)

It is clear that at the capillary exit (z = 0), Eqs. (23) and (24) give
the incompressible flow solution.

It should be pointed out that in steady compressible Poiseuille
flow r0(z) is just a convenient idealization and not a real yield point.
Since the axial velocity varies along the tube, ∂uz/∂z > 0 and thus
�̇ is nonzero, which implies that unyielded regions cannot exist.

Fig. 6. Velocity contours for four different fluids obtained for the axisymmetric
Poiseuille flow with the linear equation of state with B = 0 (incompressible flow),
0.01 and 0.1.
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Hence, r0(z) will be referred to as the pseudo-yield point. The fact
that the classical plug region flow cannot be obtained in a com-
pressible case was first emphasized by Vinay et al. [1]. However,
these authors also calculated steady-state velocity profiles at the
inlet and the outlet of the tube with the plug region at the center
corresponding to half the pipe radius.

The pressure-gradient (−dp/dz)(z) across the capillary, i.e. for
z ≤ 0, can be calculated using the conservation of mass, i.e. Eq. (10).
It turns out that the pressure-gradient is a solution of the following
equation:

21/n 3n + 1
n�(p)

(
−dp

dz

)3

=
[(

−dp

dz

)
− 2Bn

]1/n+1
[(

−dp

dz

)2

+ 4nBn

2n + 1

(
−dp

dz

)
+ 8n2Bn2

(n + 1)(2n + 1)

]
(25)

which involves the pressure-dependent density of the fluid. The
pressure-gradient is obviously a function of p and is expected to
decrease upstream.

The pressure dependence of the density is taken into account
by means of a thermodynamic equation of state. At constant tem-
perature and low pressures, the density can be represented by the
linear approximation

� = �0[1 + ˇ(p − p0)], (26)

where ˇ ≡ −(∂�/∂p)p0,T /�0 is the isothermal compressibility
assumed to be constant, � is the specific volume, �0 and �0 are,
respectively, the density and the specific volume at a reference pres-
sure p0, and T is the temperature. For comparison purposes, the
following exponential equation is also used:

� = �0 eˇ(p−p0). (27)

This is equivalent to the linear equation of state for sufficiently
small values of ˇ and low pressures. A disadvantage of this equa-
tion is the fast growth of the density (for high values of ˇ). On the
other hand, the linear model may lead to negative values of the
density. Obviously more sophisticated equations of state should be
used for highly compressible flows. The equations of state are non-
dimensionalized scaling the density � by �0 and the pressure as
above. We thus get

� = 1 + Bp (28)

and

� = eBp, (29)

where the reference pressure, p0, has been set to zero, and B is the
compressibility number,

B ≡ ˇkVn
0

Rn
. (30)

Fig. 7. Velocity profiles at z = 0, −10 and −20 for four different fluids obtained with the linear equation of state in axisymmetric Poiseuille flow with B = 0.1.
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Fig. 8. Position of the pseudo-yield point in axisymmetric Poiseuille flow of a
Bingham fluid for Bn = 10 and various compressibility numbers. The solid lines
correspond to the linear equation of state and the dashed ones to the exponential
one.

The Mach number is defined by Ma = V0/c, where c is the speed of
sound in the fluid. In the present work, we consider subsonic flows
such that Ma � 1.

Eq. (25) can be integrated analytically in the case of a power-law
fluid (Bn = 0). With the linear equation of state one finds:

p(z) = 1
B

{[
1 − 2(n + 1)

(
1
n

+ 3
)n

Bz

]1/(n+1)

− 1

}
(31)

and

uz(r, z) = (3n + 1)(1 − r1/n+1)

(n + 1)[1 − 2(n + 1)(1/n + 3)nBz]
1/(n+1)

(32)

Similarly, with the exponential equation of state one gets:

p(z) = 1
nB

ln

[
1 − 2n

(
1
n

+ 3
)n

Bz

]
(33)

and

uz(r, z) = (3n + 1)(1 − r1/n+1)

(n + 1)[1 − 2n(1/n + 3)nBz]
1/n

(34)

Nevertheless, in the general case the pressure-gradient and the
pressure are calculated numerically.

Fig. 9. Velocity contours in axisymmetric Poiseuille flow of a Bingham fluid with
Bn = 10 and different compressibility numbers using the linear and the exponential
equations of state.

Once the pressure p(z) is known at a point (e.g. p(0) = 0), the
pressure-gradient (−dp/dz)(z) can be calculated from Eq. (25),
using the Newton–Raphson method, as before. Hence, we can write

−dp

dz
= f (p), (35)

where the function f is implicitly known. If the pressure pi at a point
zi is given, then the point zi+1 at which the pressure becomes pi+1 =
pi + 	p can be found by integrating the above equation:

zi+1 = zi −
∫ pi+	p

pi

dp

f (p)
. (36)

The integral in the RHS of the above equation was calculated using
the composite Simpson’s rule with 101 points and 	p = 0.1. At
each integration point, the pressure is known and the correspond-
ing pressure-gradient is calculated solving Eq. (25). It is also clear
that we start at the channel exit (z0 = 0) and march to the left, up to
any desired distance upstream. The numerical code has been tested
against the analytical expressions for the pressure distribution in
the case of a power-law fluid.

Fig. 10. Velocity profiles at different distances from the capillary exit in axisymmet-
ric Poiseuille flow of a Bingham fluid with Bn = 10 and B = 0.01: (a) linear equation
of state and (b) exponential equation of state.
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3. Numerical results

Numerical results have been obtained using both the linear and
exponential equations of state in order to investigate the effects
of compressibility in Poiseuille flow of fluids with a yield stress.
The effects of the three dimensionless parameters controlling the
flow, i.e. the Bingham number, the compressibility number, and the
power-law exponent have also been studied.

The pressure distributions for a Newtonian, a power-law, a
Bingham and a Herschel–Bulkley fluid obtained using both the
equations of state for B = 0, 0.01 and 0.1 are shown in Fig. 5. Note
that the latter value of B is very high and corresponds to a highly
compressible flow; it is used here only for illustration purposes.
It is clear that the pressure-gradient and the pressure required
to drive the flow are reduced as compressibility is increased and
increase with the Bingham number and the power-law exponent.
The two equations of state give essentially the same results only
for sufficiently low compressibility numbers and/or near the die
exit. Therefore, a careful selection of the equation of state is nec-
essary when one studies compressible Poiseuille flow in very long
channels.

Once the pressure-gradient is known as a function of z, the two-
dimensional axial velocity can be constructed by means of Eq. (23).
The velocity contours corresponding to the flows of Fig. 5 are shown

Fig. 11. Effect of the Bingham number in axisymmetric Poiseuille flow of a Bingham
fluid with the linear equation of state and B = 0.01: (a) pressure distribution and (b)
position of the pseudo-yield point.

Fig. 12. Effect of the Bingham number on the velocity contours in axisymmetric
compressible Poiseuille flow of a Bingham fluid; linear equation of state, B = 0.01.

in Fig. 6. Since the density becomes higher, the flow decelerates
upstream and forces the higher contours to bend towards the sym-
metry axis. In the case of fluids with a yield stress, this phenomenon
is more abrupt, since just before the disappearance of a contour line,
this is vertical to the symmetry plane and extends up to the corre-
sponding pseudo-yield point. The results for the Bingham plastic
(n = 1) and the Herschel–Bulkley fluid (n = 0.5) are quite similar.
We can clearly observe that the pseudo-yield point moves towards
the wall as we move upstream. The velocity profiles for the four
fluids at z = 0, −10 and −20 obtained using the linear equation of
state with B = 0.1 are given in Fig. 7. As already mentioned, the
presence of unyielded regions in steady compressible viscoplastic
flow is only an idealization. However, regions of plug-like flow may
still exist as indicated by the steady-state numerical results of Vinay
et al. [1].

In Fig. 8, the positions of the pseudo-yield point calculated
using both equations of state for three compressibility numbers are
shown. In the incompressible flow, the yield point is, of course, inde-
pendent of the axial distance. In the compressible flow, r0 moves
towards the wall as we move upstream, which implies that the
size of the plug-like region increases. This phenomenon is better
observed in the exponential case due to the faster increase of the
density. In Fig. 9, we plot the velocity contours of a Bingham fluid
with Bn = 10 and B = 0, 0.01 and 0.02 using both equations of state.
Upstream, the velocity reduces rapidly in the case of the exponential
equation of state, which is expected because of the faster increase of
the density. As a result, the velocity contours are crowded towards
the exit plane. In Fig. 10, we plot the velocity profiles at different
distances from the capillary exit of a Bingham fluid with Bn = 10
and B = 0.01 using again both equations of state.

Fig. 11 shows the effects of the Bingham number on the pres-
sure distribution and the position of the pseudo-yield point in the
case of Bingham flow (n = 1) using the linear equation of state with
B = 0.01. We observe that the pressure increases upstream and the
pseudo-yield point moves faster towards the wall as the Bingham
number increases. This is more clearly shown in Fig. 12, where the
velocity contours for different Bingham numbers are shown. As Bn
is increased the unyielded region moves towards the exit of the die.

4. Conclusions

We have derived approximate semi-analytical solutions of the
axisymmetric and plane Poiseuille flows of weakly compressible
Herschel–Bulkley fluid. The two-dimensional axial velocity is given
by an expression similar to that for the incompressible flow, with
the pressure-gradient and the yield stress point assumed to be
functions of the axial coordinate. The pressure-gradient is calcu-
lated by means of numerical integration starting at the exit of the
tube and marching upstream. The effects of compressibility have
been studied by using a linear and an exponential equation of state.
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The effects of the yield stress and the power-law exponent on the
pressure-gradient and the velocity have also been investigated. Our
calculations lead to the following conclusions:

(a) The pressure required to drive the flow for a given tube length
is reduced with compressibility.

(b) The linear and the exponential equations of state give similar
predictions only for sufficiently low compressibility numbers
and/or for short tubes. Hence, the equation of state should be
chosen very carefully in numerical simulations of compressible
flow in long tubes.

(c) The two-dimensional axial velocity is characterized by plug-
like regions the size of which increases upstream, in agreement
with the more sophisticated numerical simulations of Vinay et
al. [1].

(d) With the exponential equation of state, the upstream growth of
the pseudo-unyielded region is much faster than with the linear
equation of state.

Appendix A. Compressible plane Poiseuille flow

In plane Poiseuille flow, lengths are scaled by the channel-
halfwidth, H, the velocity by the mean velocity, V0, at the exit of
the channel, and the pressure by kVn

0 /Hn. Under the same assump-
tions used for the axisymmetric flow, the dimensionless velocity
profile in the case of compressible plane flow is written as follows:

ux(x, y) = n

n + 1

(
−dp

dx

)1/n

(x)

×
{

[1 − y0(x)]1/n+1, 0 ≤ y ≤ y0

{[1 − y0(x)]1/n+1 − [y − y0(x)]1/n+1}, y0 ≤ y ≤ 1

(37)

where

y0(x) = Bn

(−dp/dx)(x)
(38)

and

Bn = �0Hn

kVn
0

(39)

is the Bingham number. The dimensionless pressure-gradient is a
solution of the following equation:

2n + 1
n�(p)

(
−dp

dx

)2

=
[(

−dp

dx

)
− Bn

]1/n+1 [
n

n + 1
Bn +

(
−dp

dx

)]
.

(40)

It is clear that at the channel exit (x = 0), Eqs. (37) and (38) yield
the solution for incompressible flow.

In the case of a power-law fluid, the solution of Eq. (40) is simply(
−dp

dx

)
=

(
2n + 1
n�(p)

)n

. (41)

In the case of a Bingham-plastic, Eq. (40) is reduced to

2
(

−dp

dx

)3

− 3
(

Bn + 2
�(p)

)(
−dp

dx

)2

+ Bn3 = 0, (42)

which has the following solution:(
−dp

dx

)
=

(
Bn

2
+ 1

�(p)

)

×
[

1 + 2 cos

[
1
3

cos−1

{
1 − 2Bn3

(Bn + (2/�(p)))3

}]]
.

(43)

Detailed results for the compressible plane Poiseuille flow can be
found in Ref. [14].
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