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Abstract

We discuss how matrix-free/timestepper algorithms can efficiently be used with dynamic non-Newtonian fluid mechanics simulators in performing
systematic stability/bifurcation analysis. The timestepper approach to bifurcation analysis of large-scale systems is applied to the plane Poiseuille
flow of an Oldroyd-B fluid with non-monotonic slip at the wall, in order to further investigate a mechanism of extrusion instability based on the
combination of viscoelasticity and non-monotonic slip. Due to the non-monotonicity of the slip equation the resulting steady-state flow curve is
non-monotonic and unstable steady states appear in the negative-slope regime. It has been known that self-sustained oscillations of the pressure
gradient are obtained when an unstable steady state is perturbed [M.M. Fyrillas, G.C. Georgiou, D. Vlassopoulos, S.G. Hatzikiriakos, A mechanism
for extrusion instabilities in polymer melts, Polymer Eng. Sci. 39 (1999) 2498–2504].

Treating the simulator of a distributed parameter model describing the dynamics of the above flow as an input–output “black-box” timestepper of
the state variables, stable and unstable branches of both equilibrium and periodic oscillating solutions are computed and their stability is examined.
It is shown for the first time how equilibrium solutions lose stability to oscillating ones through a subcritical Hopf bifurcation point which generates
a branch of unstable limit cycles and how the stable periodic solutions lose their stability through a critical point which marks the onset of the
unstable limit cycles. This implicates the coexistence of stable equilibria with stable and unstable periodic solutions in a narrow range of volumetric
flow rates.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The complex viscoelastic character of polymers, the normal
stress differences and the high extensional viscosity and wall
slip may lead to non-linear phenomena and undesirable insta-
bilities in polymer processing. Time-periodic phenomena are
often observed, such as pressure oscillations at fixed volumetric
flow rate in the stick-slip extrusion instability and draw res-
onance, which gives rise to spontaneous thickness and width
oscillations in film casting, to a periodic fluctuation of the cross-
sectional area in fiber spinning, and to periodic fluctuations of
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the bubble diameter in film blowing [1]. For example, draw res-
onance in the latter process corresponds to a self-sustained limit
cycle type supercritical Hopf bifurcation [2]. In such flows,
in addition to the steady-state solutions and linear stability,
transient studies and non-linear stability analyses are neces-
sary, in order to develop techniques for process optimization
[2].

Modelling and understanding the mechanisms of such flow
instabilities by determining the regions and the critical points
where these occur are of major importance. For this purpose,
the efficient simulation of the transient behavior of the underly-
ing physical system, usually expressed in terms of a system of
ordinary differential and algebraic equations or integro-partial
differential algebraic equations, is required. Over the last years,
some excellent temporal (direct integration in time) commercial
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and home-made fluid mechanics simulation packages are the
tools of choice. Such packages, which incorporate many man-
years of effort and expertise, may also allow the computation
of steady states using Newton-like solvers and comprise a very
good option even for large-scale systems.

However, other important tasks, such as the exact location
of the critical points that mark the onset of instabilities, as well
as the dependence of the location on parameter values, can-
not be obtained easily using temporal simulations. Furthermore,
the tracing of branches of unstable steady states is often (in
the absence of good initial guesses) impossible for large-scale
systems. For the systematic and accurate analysis of the model
dynamics, one has to resort to bifurcation analysis. Numerical
bifurcation theory provides an arsenal of algorithms and soft-
ware packages, such as AUTO, CONTENT and MATCONT for
tasks such as the continuation of stable or unstable steady states
and limit cycles, and the continuation of critical points [3–11].
While, these software packages are invaluable tools for per-
forming systematic analysis for small- to medium-scale systems,
there are some drawbacks in using them. Most of them require
as input the system evolution equations, which are assumed to
be explicitly available in discretized form. Linking the evolution
equations with such packages is not a trivial task. These packages
often use a Newton-like method, which requires the calculation
of the Jacobian of the system (i.e. the matrix with the partial
derivatives of the “right-hand-sides” of the discretized govern-
ing ODEs or the PDEs, with respect to the discrete unknowns).
This imposes a serious computational burden in the analysis of
large-scale systems. But even for small- to medium-size systems,
tasks, such as the continuation of limit cycles or the continua-
tion of turning points of limit cycles, become overwhelmingly
computationally expensive or even prohibitive; these computa-
tions are usually performed by augmenting the system space
with one more variable corresponding to the normalized time
variable. The latter turns an initial-value problem to a boundary-
value one, with a consequent vast increase in the size of the
problem.

The solution to the “curse of dimensionality” comes from
the matrix-free algorithms of iterative linear algebra [12] such
as the Recursive Projection Method (RPM) of Shroff and
Keller [13]. Here one does not need to numerically compute
a matrix, such as the Jacobian of the system, in order to per-
form tasks such as solving, using for example the Newton
method, systems of non-linear equations and stability analysis.
What is required is the calculation of matrix-vector products
which can be obtained by treating the dynamic simulators –
the time integration codes (timesteppers) – as input–output
“black-boxes” that take an initial condition and give the
result of the integration after a prescribed time interval. These
algorithms acquire the necessary information by calling the
“black-box” timesteppers from appropriate nearby initial con-
ditions and for relatively short-time intervals. This “wrapping”
of matrix-free algorithms around industrial process simulators
(like gPROMS) has been recently discussed by Siettos et al.
[14] who applied the RPM for the efficient location of the cycle
steady states and stability analysis of a periodically forced pro-
cess.

The purpose of this paper is twofold: (a) to introduce the
concept of matrix-free/timestepper approach that enables non-
Newtonian fluid dynamics simulators to perform efficiently
numerical stability/bifurcation analysis (such as continuation of
both steady states and limit cycles and the computation of their
stability); (b) to demonstrate the applicability of the method to
viscoelastic flow problems in performing systematic numerical
bifurcation and stability analysis of periodic solutions.

For the latter objective, the time-dependent, one-dimensional
plane Poiseuille flow of an Oldroyd-B fluid with non-monotonic
slip at the wall has been chosen. This problem has been con-
sidered by Georgiou and co-workers [15–17] who studied the
combined effect of elasticity and non-monotonic slip and exam-
ined whether this can provide an explanation for the stick-slip
extrusion instability [1]. All theoretical explanations suggested
in the literature for this instability are based on the non-
monotonicity of the flow curve (the plot of the wall shear
stress versus the apparent shear rate, or, equivalently, the plot
of the pressure gradient versus the volumetric flow rate), which
exhibits a maximum and a minimum, and the fact that steady-
state solutions corresponding to the negative-slope regime of the
flow curve are unstable [18]. The transitions from the maximum
of the flow curve to the right positive-slope branch and from the
minimum to the left positive-slope branch lead to a limit cycle,
which describes the observed pressure and flow rate oscillations
in flow rate-controlled experiments [19].

Non-monotonicity of the flow curve can be obtained by a
non-monotonic slip law (adhesive failure) or by a non-monotone
constitutive equation (bulk failure). In the proposed explanations
involving slip, this is combined with either compressibility or
elasticity. The important role of slip in the stick-slip instability,
indicated by both indirect and direct wall slip measurements, is
also supported by the fact that only mechanisms involving slip
lead to self-sustained pressure oscillations and generate waves
on the extrudate surface. However, in addition to the experi-
mental evidence for the importance of the compressibility of the
melt in the reservoir, only the compressibility/slip mechanism
can lead to persistent pressure and flow rate oscillations between
the two stable branches of the flow curve. The periodic transi-
tions between a weak slip (or no-slip) and a strong slip at the
capillary wall (i.e. the jumps between the two branches of the
flow curve) which lead to the pressure and flow rate oscillations
are sustained by the compressibility of the melt in the reservoir.
This mechanism has been employed in various one-dimensional
phenomenological models describing the stick-slip instability
(see [20] and references therein) and in two-dimensional sim-
ulations of both Poiseuille and extrudate-swell flows (see [19]
and references therein).

Viscoelasticity may replace compressibility and, when com-
bined with non-monotonic slip, can act as a storage of elastic
energy generating self-sustained pressure oscillations and waves
on the extrudate surface in the stick-slip regime. Due to the
absence of compressibility, however, this mechanism cannot
generate jumps of the volumetric flow rate between the two sta-
ble branches of the flow curve and leads only to small-amplitude
small-wavelength distortions of the extrudate surface consis-
tent with sharkskin rather than with the stick-slip instability.
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Nevertheless, these may be superimposed to the much larger
oscillations caused by the compressibility/slip mechanism.

Georgiou and co-workers [15–17] explored the elasticity/slip
mechanism by solving numerically the axisymmetric Poiseuille
and extrudate-swell flows of an Oldroyd-B fluid with non-
monotonic slip at the wall. The stability of the one-dimensional
Poiseuille flow was investigated by means of linear stabil-
ity analysis and numerical time-dependent calculations, which
revealed the existence of unstable steady-state solutions in the
negative-slope regime of the flow curve. In the latter regime, self-
sustained pressure oscillations are observed, the amplitude and
the period of which increase with elasticity [15–17]. The numer-
ical solutions of the two-dimensional axisymmetric Poiseuille
and extrudate-swell flows showed the existence of a second
mode of periodicity in the axial direction and the generation
of small-amplitude waves on the extrudate surface [16].

Shore et al. [21–23] presented a phenomenological hydro-
dynamic model describing the Poiseuille flow of a Maxwell
fluid with slip at the wall. They assumed that the confor-
mation of polymers near the surface undergoes a first-order
transition as a function of the wall shear stress. This confor-
mational change produces stick-slip behavior and leads to a
multivalued shear stress/slip velocity curve. Using linear stabil-
ity analysis as well as numerical calculations of the linearized,
incompressible, two-dimensional momentum equations, they
demonstrated the existence of self-sustained oscillations, and
related the period of the latter to the sharkskin polymer extrusion
instability.

Black and Graham [24,25] demonstrated that the combina-
tion of elasticity with a monotonic slip model that takes into
account the normal stress dependence of the slip velocity leads
to short wavelength shear flow instabilities at sufficiently high
shear rates, which is also qualitatively consistent with experi-
mental observations of the sharkskin instability. They considered
the plane simple shear and Poiseuille flows of both the upper-
convected Maxwell and Phan-Thien-Tanner fluids and reported
that the scaling of the critical shear stress for instability with
modulus and molecular weight and of the distortion period
with polymer relaxation time are qualitatively consistent with
experimental observations of the sharkskin instability in linear
polyethylenes.

The paper is organized as follows. We start by presenting the
timestepper approach for the continuation of solution branches
of limit cycles for large-scale systems. In Section 3, the equa-
tions governing the plane Poiseuille flow of an Oldroyd-B fluid
along with the non-monotonic slip equation are provided and
the steady-state solutions are discussed. In Section 4 the results
of the bifurcation analysis obtained through the timestepper
approach are presented and discussed. It is shown for the first
time that the loss of stability of steady-state solutions to sustained
oscillating ones takes place through a subcritical Hopf bifurca-
tion while the branch of stable periodic solutions loses stability
at a critical point of limit cycles. This combination implicates
the coexistence of stable steady states with stable and unstable
periodic solutions in a narrow range of values of flow rates that
can drive the system to abrupt loss of stability. Finally, Section
5 summarizes the conclusions.

2. Computations of periodic solutions with the
timestepper approach

Consider the continuous time, autonomous non-linear system

du

dt
= F (u, μ), (1)

where u denotes the state vector, accessible through measure-
ment, μ is a system parameter serving here as the bifurcation
parameter and F is a not explicitly available function. The ques-
tion is how to systematically construct bifurcation diagrams
of steady and periodic solutions and perform their stability
analysis. The answer comes from the concept of timestepping
[13,26–30]. Despite the fact that F is not explicitly available, we
still assume that we do have a simulator that, given the initial
state of the system (u(0), μ) reports the solution, the result of
the integration, after a given time horizon Th, i.e.

u(Th) = ΦTh (u(0), μ), (2)

where ΦTh is the temporal evolution operator of the system.
Eq. (2) defines a discrete input–output map, or as it usually

called a timestepper.
At an outer level, and depending on the task to be carried out

(such as the location of fixed points, the design of a feedback
controller and optimization), well established numerical anal-
ysis algorithms (such as the Newton–Raphson technique) can
be utilized to estimate “on demand” the required quantities, e.g.
residuals, Jacobians and Hessians [27–31]. The idea is simple:
the timestepper is called by the algorithm as a “black-box sub-
routine” from nearby appropriately perturbed initial conditions
and for relatively short times.

If a periodic oscillatory behavior is observed then one seeks
for solutions which satisfy

u(0) = u(T ), (3)

with T denoting the period of oscillation. Using T as sampling
time, periodic solutions can be computed as fixed points of the
mapping:

u − ΦT (u, μ) = 0 (4)

augmented by the so-called phase constraint (also called a pin-
ning condition)

g(u, μ, T ) = 0, (5)

which factors out the infinite members of the family of periodic
solutions. Actually the above condition enables the computation
of the unknown period T by breaking the translational time-
invariance of the problem. For example such a condition could
be the relation g(u(0), μ) ≡ ui(0)−c = 0 which “pins” ui, the i-
th element of the state vector u at t = 0 to a prescribed value c
or g(u(0), μ) ≡ (dui(0)/dt) = 0 which “pins” ui at t = 0 to be a
critical (minimum or maximum) point of ui or an integral-like
condition that takes into account the entire profile of the solution
[6].
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The tracing of the branches of periodic solutions can be
achieved using the linearized pseudo arc-length condition [3]:

N(u, μ, T ) = α · (u − u1) + β(μ − μ1)

+γ(T − T1) − δs = 0, (6a)

where

α ≡ (u1 − u0)T

δs
, β ≡ (μ1 − μ0)

δs
, γ ≡ (T1 − T0)

δs
(6b)

and δs is the pseudo arc-length continuation step. (u0,μ0, T0) and
(u1, μ1, T1), represent two already known periodic solutions. Eq.
(6) constrains the “next” periodic solution to lie on a hyperplane
perpendicular to the tangent of the bifurcation diagram at (u1,
μ1, T1), approximated through (α, β, γ), at a distance δs from it.
The computation of the periodic solutions can be obtained using
an iterative procedure like the Newton–Raphson technique [12].
The procedure involves the iterative solution of the following
linearized system:
⎡
⎢⎢⎣

I − ∂ΦT

∂u
− ∂ΦT

∂μ
− ∂ΦT

∂T

∂g

∂u

∂g

∂μ

∂g

∂T

a β γ

⎤
⎥⎥⎦

⎡
⎣ δu

δμ

δT

⎤
⎦ = −

⎡
⎣ u − ΦT (u, μ)

g(u, μ, T )

N(u, μ, T )

⎤
⎦ (7)

Note that for the computation of the sub-Jacobian ∂�T/∂u and
the derivatives ∂�T/∂μ, ∂�T/∂T, no explicit evolution equations
are required. Their approximation can be achieved numerically
by calling the timestepper at appropriately perturbed values of
the corresponding unknowns. The above framework enables the
temporal simulator to converge to both stable and unstable peri-
odic solutions and trace their locations, i.e. to fulfill tasks that
the simulator was not explicitly designed for [14,27–30].

However, the above approach turns to be computationally
inefficient especially for large-scale problems. An alternative
approach is to solve (4) and (5) at each Newton step with a
matrix-free iterative solver, such as the Newton-Generalized
Minimum Residual (Newton-GMRES) method [12] (see also
Fig. 1). The advantage of using GMRES is that the explicit
calculation and storage of the Jacobian is not required. Only
matrix-vector multiplications are needed which can be per-
formed at low cost by calling the timestepper from nearby initial
conditions allowing the estimation of the action of the lineariza-
tion of a map ΦTh on known vectors, since

D ΦTh (u) · q ≈ ΦTh (u + εq) − ΦTh (u)

ε
, (8)

where ε is a small and appropriately chosen scalar. At step j is
the algorithm minimizes the residual

R ≡ u − ΦTh (u, μ) (9)

by producing an orthonormal basis {q1, q2,. . ., qj} of the Krylov
subspace Kj spanned by {q1, DΦTh (u) · q1, . . . , DΦTh (u)j−1 ·
qj−1}. The projection of DΦTh (u) on Kj is represented in the
basis Vj ≡ {qj} by the upper Hessenberg matrix:

Hj = VT
j DΦTh (u)Vj (10)

whose elements are the coefficients hij.

Fig. 1. Computation of fixed points using the timestepper approach and
GMRES.

Alternative algorithms, such as the Recursive Projection
Method of Shroff and Keller [13], and other Newton–Picard
methods, such as the ones presented by Lust et al. [26], can also
be used to compute in an efficient manner both steady states
and periodic solutions and construct their bifurcation diagrams.
These algorithms use the timestepper to approximate iteratively
the slow stable or unstable eigenspace of DΦTh (u) which is
assumed to be of low dimension. Newton’s method is imple-
mented on the slow eigenspace to accelerate the convergence
to the fixed point, while Picard iteration (time integration) is
applied on the complement of that subspace to eliminate the fast
dynamics of the mapping given by Eq. (2).

Having calculated the periodic solution and its period T, the
dynamic behavior of the particular system can be described by
the stroboscopic/Poincaré map: the system trajectories are not
recorded continuously in time, but only once every period. Under
this representation solutions appear stroboscopically as fixed
points of the mapping �T under which u∗ = �T(u∗, μ). For a
fixed value of the bifurcation parameter μ is the equation of
motion in a neighborhood of a fixed point can be described
by the linear Poincaré mapping: ũk+1 = DΦT (u)ũk, where
ũ = u − u∗. The eigenvalues (Floquet multipliers) of the matrix
D�T (the monodromy matrix) determine the local stability of
the system. Again, the leading Floquet multipliers can be esti-
mated using an ad hoc matrix-free iterative eigensolver such as
the Arnoldi procedure [32,33] or delivered as a byproduct of the
Newton–Picard iterations.

3. Plane Poiseuille flow of an Oldroyd-B fluid

In the Oldroyd-B model the extra stress tensor T is decom-
posed into a viscoelastic part, T1, and a purely viscous part, as
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Fig. 2. Geometry and boundary conditions in plane Poiseuille flow of an
Oldroyd-B fluid with slip at the wall.

follows:

T = T 1 + η2[∇v + (∇v)T] (11)

where η2 is a viscosity parameter, v is the velocity vector, �v is
the velocity-gradient tensor and T denotes the transpose (not to
be confused with the period in the previous section). The tensor
T1 is defined by

T1 + λ

[
∂T1

∂t
+ v · ∇T1 − (∇v)T · T1 − T1 · ∇v

]

= η1[∇v + (∇v)T], (12)

where λ is the relaxation time and η1 is another viscosity param-
eter. The shear viscosity is given by η1 + η2

We consider the one-dimensional plane Poiseuille flow of an
Oldroyd-B fluid with slip at the wall. The geometry of the flow
is shown in Fig. 2. Scaling the lengths by the channel half-width
H, the velocity vector by a characteristic velocity V, the pressure
and the stress components by (η1 + η2)V/H, and the time by H/V,
the dimensionless x-momentum equation takes the form:

Re
∂vx

∂t
= −∇P + ∂T

xy
1

∂y
+ η2

∂2vx

∂y2 , (13)

Fig. 3. Flow curve for A1 = 1, A2 = 15 and A3 = 100.

Fig. 4. Critical eigenvalues of the steady-state Jacobian matrix at (a) Q = 0.413
and (b) Q = 0.414. The transition of the two complex eigenvalues from the left
real plane to the right plane indicates the existence of a supercritical Hopf point.

where −�P denotes the dimensionless pressure gradient, Re is
the Reynolds number,

Re = ρVH

η1 + η2
(14)

and ρ is the density. The only nonzero component of T1 is the
xy-component for which one gets:

T
xy
1 + We

∂T
xy
1

∂t
= (1 − η2)

∂vx

∂y
, (15)

where We is the Weissenberg number defined by

We = λV

H
(16)

As shown in Fig. 2, along the symmetry plane (y = 0) the
velocity gradient is zero. Along the wall (y = 1), slip is assumed
to occur following a slip law of the general form σw = F (vw),
where σw is the wall shear stress

σw =
(

T
xy
1 + η2

∂vx

∂y

)∣∣∣∣
y=1

(17)

and vw is the slip velocity.
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In steady state, the solution of the system of Eqs. (13) and
(15) is:

vx(y) = vw − 1

2
∇P(1 − y2) (18)

and

T
xy
1 (y) = η1∇P y (19)

so that

T xy = T
xy
1 + η2

dvx

dy
= ∇P y (20)

(the viscosities η1 and η2 are dimensionless and η1 + η2 = 1).
As noted by Fyrillas et al. [17], in the case of time-dependent

flow with fixed volumetric flow rate, the integration of Eq. (13)
over the channel cross-section reveals that:

−∇P(t) = F (vw(t)) ∀t (21)

In other words, when it is plotted as a function of vw, the
time-dependent pressure gradient follows the graph of F (vw).

Fig. 5. Critical eigenvalues of the steady-state Jacobian matrix at (a) Q = 0.521
and (b) Q = 0.522. The transition of two complex eigenvalues from the right real
plane to the left one indicates the existence of a subcritical Hopf point.

Fig. 6. Evolution of (a) the slip velocity and (b) the pressure gradient when the
unstable steady-state solution at Q = 0.449 is perturbed by setting Q = 0.45.

Fig. 7. Bifurcation diagram of stable/unstable steady and periodic solutions for
the plane Poiseuille flow of an Oldroyd-B fluid with non-monotonic slip at the
wall. The solid line corresponds to stable and the dashed line to unstable steady
states. The solid line with black circles corresponds to stable limit cycles, while
the dashed line with open circles corresponds to unstable ones. In the case of
limit cycles, the maximum value of the pressure gradient during one period is
plotted. The inset is a blow up of the bifurcation diagram in the neighborhood
of the turning point of limit cycles.
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Fig. 8. Dominant Floquet multipliers for the determination of the periodic solu-
tion stability: (a) the leading Floquet multiplier has modulus less than one
indicating a stable periodic solution (Q = 0.5364); (b) the leading multiplier
has modulus greater than one which means that the periodic solution is unstable
(Q = 0.5364). There is always a trivial Floquet multiplier equal to one.

The volumetric flow rate Q is given by

Q = vw − 1

3
∇P = vw + 1

3
F (vw) (22)

Let us consider here the arbitrary non-monotonic slip equa-
tion used by Georgiou and co-workers [15,34] and others [20]:

σw = A1

(
1 + A2

1 + A3v2
w

)
vw (23)

where A1, A2 and A3 are dimensionless parameters. The non-
monotonic flow curve for A1 = 1, A2 = 15 and A3 = 100 is shown
in Fig. 3.

The linear stability of the steady-state solutions to infinites-
imal one-dimensional antisymmetric disturbances at fixed
volumetric flow rate has been studied by Fyrillas et al. [17].
The stability of the basic solutions has been found to depend
on three parameters: η2, F ′(v∗

w), where v∗
w is the steady-state

slip velocity, and the elasticity number E = We/Re. Unstable
solutions exist only when F ′(v∗

w) is negative and above the
marginal stability curve of −F ′(vw) versus E for a given
value of η2. The flow is stable for a Newtonian fluid (η2 = 1)

and destabilizes as η2 is decreased and/or E is increased
[17].

4. Timestepper based bifurcation and stability analysis

Second-order central finite differences are used for the
numerical approximation of the vx and T

xy
1 spatial derivatives

(partial derivatives with respect to y) and a fully implicit (Euler
backward difference) scheme is applied for time integration. The
one-dimensional domain is discretized with N = 801 equidistant
nodes and the time step is fixed to dt = 10−5. In the computations
we use the same set of parameters as that employed by Fyrillas et
al. [17]: Re = 1, We = 0.1, η2 = 0.1, A1 = 1, A2 = 15 and A3 = 100.

The determination of critical points which initiate regions of
instability was performed with timestepper based linear stability
analysis. In order to characterize the stability of a steady-state
solution u*, the critical eigenvalues of the steady-state Jacobian
matrix, i.e. the eigenvalues with maximum real part, are sought.
The steady-state solution satisfies the relation:

R(u∗, μ) ≡ u∗ − ΦTh (u∗, μ) = 0 (24)

where Th is the time horizon of the “black-box” timestepper.
The eigenvalues σi of the matrix

∂R

∂u

∣∣∣∣
(u∗,μ)

= I − ∂ΦTh

∂u

∣∣∣∣
(u∗,μ)

(25)

where I is the identity matrix, can be obtained from the applica-
tion of the Arnoldi eigensolver using MATLAB’s eigs function.
Arnoldi’s algorithm operates in a matrix-free context which can
be used to estimate the most critical eigenvalues. The eigenval-
ues κi of the Jacobian matrix (∂ΦTh/∂u)

∣∣
(u∗,μ)of the discrete

map (2) are related to the eigenvalues λi of the Jacobian matrix
(∂F/∂u)|(u∗,μ) of the continuous problem (1) as κi = exp (λiTh).

A steady-state solution is stable when all eigenvalues λi have
negative real part and unstable when at least one eigenvalue has
positive real part. In our computation the time horizon of the
time stepper was chosen to be Th = 10−3 while in our differ-
ence approximation of the matrix-product operations we used
perturbations of the order of 10−6.

Fig. 9. The period T of limit cycles as a function of the volumetric flow rate.
The solid line corresponds to stable and the dashed one to unstable limit cycles.
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Fig. 10. Evolution of the pressure gradient and the slip velocity starting from the unstable periodic solution for Q = 0.530 (dashed line) and perturbing the volumetric
flow rate to (a) Q = 0.531 (the system evolves towards a stable steady state) and (b) Q = 0.529 (the system evolves towards a stable limit cycle).

The application of linear stability analysis to the steady-state
solutions indicated the existence of a Hopf point at a volumetric
flow rate Q ≈ 0.4135 from which a branch of stable limit cycle
solutions emerges. The critical eigenvalues λi of the Jacobian
matrix are depicted in Fig. 4, where the transition of two complex
eigenvalues from the left real plane to the right plane can be seen.
A second, Hopf point was computed at Q ≈ 0.5215 (see Fig. 5),
from which a branch of unstable limit cycles emerges, as will
be discussed below. It should be pointed out that the two Hopf
points correspond to the same critical value of −F ′(v∗

w) (i.e.
about 0.384) at which the flow for η2 = 1 and E = 10 becomes
linearly unstable. The timestepper approach calculations agree
well with the linear stability analysis results provided by Fyrillas
et al. [17]. The basic difference is that in the present work the
stability analysis is carried out numerically by exploiting the
numerical integrator of the governing system of equations.

The existence of periodic solutions at the parametric region
specified by the two Hopf points can also be proven by executing
transient simulations of slightly perturbed (unstable) steady-
state solutions [17]. In Fig. 6, we show the evolution of the slip
velocity and the pressure gradient when the steady-state solu-
tion computed at Q = 0.449 is perturbed by setting Q = 0.45. The
solution becomes practically periodic after one oscillation. It is
clear that elasticity acts as the storage of elastic energy leading to
self-sustained oscillations in the unstable regime (i.e. the region
between the two Hopf points). The abrupt changes in the slip
velocity correspond to jumps from weak to strong slip and vice
versa. As discussed in Section 3, the time-dependent pressure
gradient oscillations along the graph of the slip function F (v∗

w).
The local minima are due to the fact that as −∇P(t) oscillates to
the left, it passes not only the left Hopf point but also the maxi-

mum of the slip function and it thus decreases slightly reaching
a local minimum after which it starts moving to the right. The
explanation for the local maxima is similar. Other transient sim-
ulations have also been carried out in the neighborhoods of the
Hopf points where the perturbed unstable steady-state solutions
demonstrate initially an oscillatory behavior which ultimately
converges to (stable) limit cycle solutions.

In order to perform a more comprehensive study of the peri-
odic solutions which “live” in the parametric region marked
by the two Hopf points, the periodic solution branch is traced
by applying a pseudo arc-length continuation algorithm, as
described in Section 2. The continuation algorithm enables the
possibility of tracing both stable and unstable periodic solutions.
The volumetric flow rate Q is treated as the continuation param-
eter and in our computations the phase constraint (5) has the
following form [26]:

∂uref

∂t

∣∣∣∣∣
t=0

· (u − uref) = 0. (26)

This condition minimizes the phase shift of the sought solu-
tion u with respect to a reference solution uref, e.g. the computed
periodic solution at a previous parameter value.

The complete bifurcation diagram of steady-state and peri-
odic solutions (stable and unstable) is depicted in Fig. 7, where
the pressure gradient is plotted as a function of the volumetric
flow rate Q. The solid line corresponds to stable steady states,
the dashed one to unstable steady states, the solid line with full
circles to stable periodic solutions, and the dashed line with open
circles to unstable periodic solutions. The circles correspond to
the maximum value of the periodic pressure gradient. A branch
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Fig. 11. Phase portraits of slip velocity vs. the viscoelastic stress component
T

xy

1

∣∣
y=0.5

. The application of a small perturbation to the unstable limit cycle

(dashed line) obtained at Q = 0.530 leads to: (a) a stable steady state when the
volumetric flow rate is perturbed to 0.531 and (b) a stable periodic solution when
the volumetric flow rate is set to 0.529.

of stable periodic solutions is initiated at the first Hopf point
(Q ≈ 0.4135). The parametric study revealed that stable periodic
solutions also exist beyond the right Hopf point (Q ≈ 0.5125) up
to a critical turning point at Q ≈ 0.5364 which marks the onset
of unstable periodic solutions. The local stability of the periodic
solutions was determined from the Floquet multipliers of the
monodromy matrix D�T, which were computed by a matrix-
free eigensolver (Arnoldi). As predicted from the theory, there
is always a Floquet multiplier equal to one, which corresponds to
a phase shift along the periodic solution. The periodic solution is
stable if all the other Floquet multipliers have modulus smaller
than one and unstable if there exists at least one Floquet mul-
tiplier with modulus greater than one. In Fig. 8 the dominant
Floquet multipliers are shown and one can see the transition
of the leading eigenvalue in the outer region specified by the
complex unit circle.

The computed periodic solutions lose their stability at
Q ≈ 0.5364. A focus on the turning point of periodic solutions
is shown at the inset of Fig. 7. The emerging (relatively) steep
branch of unstable periodic solutions joins the steady-state solu-
tion branch at the second subcritical Hopf point (Q ≈ 0.5215).
This implies the coexistence of stable equilibria with stable and
unstable periodic solutions in a narrow range of volumetric flow

rates for Q in [0.5215, 0.5364]. This range is more clearly seen
in Fig. 9, where the period of both stable (solid) and unstable
(dashed) limit cycles is plotted versus the volumetric flow rate.
Transient simulations of slightly perturbed unstable limit cycles
can lead to either stable steady states or stable periodic solutions
as shown in Fig. 10, where the two possibilities when starting
with the unstable limit cycle for Q = 0.530 are illustrated: when
the volumetric flow rate is slightly perturbed to Q = 0.531, the
solution evolves to the corresponding steady state (Fig. 10a);
when Q is set to 0.529 instead, the system reaches the corre-
sponding stable periodic solution (Fig. 10b). The trajectories of
the above solutions are shown in Fig. 11, where the phase por-
traits of the slip velocity versus the viscoelastic stress T

xy
1

∣∣
y=0.5

are plotted.

5. Conclusions

The timestepper approach has been employed for the stabil-
ity and bifurcation analysis of the plane Poiseuille flow of an
Oldroyd-B fluid with non-monotonic slip at the wall. The effec-
tiveness of the method in determining the regimes of instability
has been demonstrated for given values of the elasticity num-
ber and the Newtonian viscosity. Unstable steady-states exist in
the negative-slope regime of the flow curve in a range of volu-
metric flow rates defined by two Hopf bifurcation points. The
existence of both stable and unstable periodic solution branches
has been determined by means of a pseudo arc-length continu-
ation algorithm treating the imposed volumetric flow rate as the
bifurcation parameter.

In the linearly unstable regime between the two Hopf points,
there exist only stable periodic solutions, i.e. self-sustained oscil-
lations of the pressure gradient, the velocity, and the shear stress
at fixed volumetric flow rate. The most interesting finding of
this work is the coexistence of stable equilibria and both sta-
ble and unstable periodic solutions in a narrow range of flow
rates beyond the linearly unstable regime, i.e. the right Hopf
bifurcation point is a subcritical one.
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[29] J. Möller, O. Runborg, P.G. Kevrekidis, K. Lust, I.G. Kevrekidis, Effec-
tive equations for discrete systems: a timestepper based approach, Int. J.
Bifurcation Chaos 15 (2005) 975–996.

[30] I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg, C.
Theodoropoulos, Equation-free multiscale computation: enabling micro-
scopic simulators to perform system-level tasks, Commun. Math. Sci. 1
(2003) 715–762.

[31] G. Cybenko, Just in time learning and estimation, in: S. Bittani, G. Picci
(Eds.), Identification, Adaptation, Learning, Springer, NATO ASI, 1996,
pp. 423–434.

[32] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester
University Press, Oxford-Manchester, 1992.

[33] K.N. Christodoulou, L.E. Scriven, Finding leading modes of a viscous free
surface low: an asymmetric generalized problem, J. Sci. Comp. 3 (1998)
355.

[34] G.C. Georgiou, M.J. Crochet, Compressible viscous flow in slits, with slip
at the wall, J. Rheol. 38 (1994) 639–654.


