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a b s t r a c t 

Steady-state, isothermal, Poiseuille flows in straight channels and circular tubes of weakly 

compressible Newtonian fluids are considered. The major assumption is that both the mass 

density and the shear viscosity of the fluid vary linearly with pressure. The non-zero ve- 

locity components, the pressure, the mass density and viscosity of the fluid are repre- 

sented over the flow domain as asymptotic expansions in which the dimensionless isother- 

mal compressibility coefficient ɛ is taken as small parameter. A perturbation analysis is 

performed and asymptotic solutions for all variables are obtained up to first order in ɛ . 
The derived solutions, which hold for not necessarily small values of the dimensionless 

pressure-dependence coefficient, extend previous regular perturbation results and analyt- 

ical works in the literature for weakly compressible fluids with constant viscosity (solved 

with a regular perturbation scheme), for incompressible flows with pressure-dependent 

viscosity (solved analytically), as well as for compressible fluids with pressure-dependent 

viscosity (solved with double regular perturbation schemes). In contrast to the previous 

analytical studies in the literature, a non-zero wall-normal velocity is predicted at first or- 

der in ε, even at zero Reynolds number. A severe reduction of the volumetric flow-rate 

at the entrance of the tube/channel and multiplicity of solutions in the flow curves (vol- 

umetric flow-rate versus pressure drop) are also predicted. Last, it is shown that weak 

compressibility of the fluid and the viscosity pressure-dependence have competing effects 

on the mean friction factor and the average pressure difference required to drive the flow. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

The density and the viscosity of a fluid depend on both the temperature and the pressure. In certain cases, the depen-

dence of the viscosity on pressure may be much stronger than that of the density, e.g., with polymer melts ( Denn, 2008; Re-

nardy, 2003 ) and lubricants ( Rajagopal, 2006; Rajagopal, Saccomandi, & Vergori, 2012 ). This dependence becomes important

in many applications involving high pressures or a large pressure range, such as polymer and food processing ( Dealy & Wang,

2013 ), crude oil and fuel oil pumping ( Martinez-Boza, Martin-Alfonso, Callegos, & Fernández, 2011; Schaschke, Fletcher, &

Glen, 2013 ), fluid film lubrication ( Hamrock, Schmid, & Jaconson, 2004 ), microfluidics ( Silber-Li, Cui, Tan, & Tabeling, 2006 ),

filtration through porous media ( Fusi, Farina, & Rosso, 2015 ), certain geophysical flows ( Schoof, 2007; Stemmer, Harder, &

Hansen, 2006 ), and dense flows of dry granular materials ( Ionescu, Mangeney, Bouchut, & Roche, 2015 ). Experimental works
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concerning the determination of the pressure-dependence of viscosity using mostly modified capillary rheometers can be

found in the recent article by Li, Jiang, Wu, Yuan, and Li (2015) . 

In order to describe the pressure-dependence of the viscosity a linear law ( Barus, 1891, 1893; Renardy, 2003; Georgiou,

2003; Kalogirou, Poyiadji & Georgiou, 2011 ) is often used: 

η∗ = η∗
0 

[
1 + β∗( p ∗ − p ∗re f ) 

]
(1) 

where η∗ is the shear viscosity, p ∗ is the pressure, η∗
0 

is the viscosity at the reference pressure p ∗
re f 

, and β∗ is a positive

parameter often referred to as the viscosity-pressure-dependence coefficient. Throughout the text a superscript star indicates

a dimensional quantity; hence symbols without stars are dimensionless. In general, β∗ depends on the temperature, the

pressure, and the shear rate ( Gustafsson, Rajagopal, Stenberg, & Videman, 2015 ). In isothermal Newtonian flows β∗ is usually

assumed to be a constant. Its values are in the range of 10–70 GPa −1 for lubricants ( Kottke, Bair, & Winer, 2003; Tanner,

20 0 0 ), 10–50 GPa −1 for polymer melts ( Dealy & Wang, 2013; Denn, 2008; Kadjik & Van Den Brule, 1994; Tanner, 20 0 0 ),

and 10–20 GPa −1 for mineral oils ( Venner & Lubrecht, 20 0 0 ). Other expressions (such as the exponential law) resulting to

a better fitting of available experimental data on complex fluids at different pressures have been reviewed by Málek and

Rajagopal (2007) and by Housiadas (2015) . Both Eqs. (1) and ( 2 ) have been employed extensively in the literature for a

variety of simple flows which are important for both theoretical and experimental purposes; these include the flow due to

a suddenly accelerated plate or due to an oscillating plate ( Prusa, 2010; Srinivasan & Rajagopal, 2009 ), as well as well the

laminar flows in circular tubes and straight channels ( Housiadas 2015; Kalogirou et al., 2011; Poyiadji, Housiadas, Kaouri, &

Georgiou, 2015; Renardy, 2003 ). In all cases, viscosity pressure-dependence has been found to have a substantial effect on

the flow field and on features such as the skin friction factor and the pressure difference required to drive the flow. 

The mass density of a liquid is expected to change at high pressures, even under isothermal conditions. Hence, the mod-

eling of compressible flows is the subject of many works in the literature, especially in the case of complex fluids. A brief

survey, for both Newtonian and viscoelastic Maxwell-type fluids, and in the framework of non-equilibrium thermodynamics,

has been presented by Bollada and Phillips (2012) . For Newtonian compressible liquids, a linear equation of state relating

the mass density of the fluid to the total pressure is very often used (see, e.g., Venerus, 2006 ). 

ρ∗ = ρ∗
0 

[
1 + ε ∗( p ∗ − p ∗re f ) 

]
(2) 

where ρ∗
0 

is the mass density of the fluid at the reference pressure p ∗
re f 

and ɛ ∗ is the constant isothermal compressibility.

Eq. (2) has been used in numerical simulations of weakly compressible liquid flows in long tubes, such as waxy crude oil

( Vinay, Wachs, & Frigaard, 2006 ) and polymer extrusion ( Taliadorou, Georgiou, & Mitsoulis, 2008 ). 

Eqs. (1) and ( 2 ) introduce nonlinearities into the continuity and momentum equations, even for steady state, isothermal,

laminar, creeping flow conditions, thus making the derivation of analytical solutions a very difficult task. Incompressible

Newtonian flows with pressure-dependent viscosity have been analyzed mathematically by various investigators (see, e.g., 

Housiadas, Georgiou, & Tanner, 2015; Huilgol & You, 2006 ; Rehor & Prusa, 2016 ; and Vasudevaiah & Rajagopal, 2005 ; and

references therein). Kalogirou et al. (2011) compiled analytical, two-dimensional, solutions for Poiseuille flows in a straight

channel, a circular tube, and an annulus with constant inner and outer radius for an incompressible Newtonian fluid ( ε ∗ = 0 )

obeying the linear Eq.(2) under the above-mentioned conditions. More recently, Housiadas et al. (2015) obtained perturba-

tion solutions of the unbounded creeping flow past a sphere of a Newtonian fluid under the assumption that the shear

viscosity varies either linearly or exponentially with pressure, taking the dimensionless pressure-viscosity coefficient as the

perturbation parameter. 

Analytical and numerical studies for compressible laminar flow of a Newtonian fluid in a tube have been conducted

by van den Berg, Seldam, and van der Gulik (1993) . Significant corrections to the volumetric flow-rate, compared to the

predictions of the classical Poiseuille law have been revealed. The origin of those corrections was the equation of the state,

i.e., from the equation that relates the mass density of the fluid to the total pressure. Analytical perturbation solutions for

weakly compressible Newtonian fluids in channels and tubes, with the isothermal compressibility coefficient serving as the

perturbation parameter, have been derived by Venerus and co-worker ( Venerus, 2006; Venerus & Bugajsky, 2010 ) as well as

by Taliadorou, Neophytou, and Georgiou (2009) . 

However, analytical studies that take into account both the compressibility and the viscosity pressure-dependence are

very scarce in the literature. Recently, Poyiadji et al. (2015) derived analytical solutions for steady axisymmetric and pla-

nar Poiseuille flows of weakly compressible isothermal Newtonian liquids, using Eqs. (1) –( 2 ) and a double regular asymp-

totic expansion for all the primary flow variables with small parameters the dimensionless pressure-viscosity coefficient,

β , and the dimensionless coefficient of compressibility, ɛ (for their definitions see Section 2 ). Assuming that ɛ ≈ β , they

derived solutions up to second order for both parameters and analyzed the combined effects of weak compressibility and

the pressure-dependent viscosity. 

In the present work, the solution of Poyiadji et al. (2015) is extended by relaxing the assumption of a small β; a regular

perturbation scheme is utilized in terms of ɛ only. By doing so, however, non-linear terms are retained into the govern-

ing equations while the solution reveals features of the flow not predicted by the double perturbation analysis. Thus, the

analytical solutions derived here are valid for small values of ɛ and any value of β . 
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Fig. 1. Geometrical flow configurations and coordinate systems: (a) circular tube; (b) straight channel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Problem formulation 

The steady, weakly compressible isothermal flow of a Newtonian fluid with pressure-dependent viscosity, and no external

forces or torques, is considered. Two flows are studied the geometries of which are sketched in Fig. 1: (a) the axisymmetric

Poiseuille flow in a circular tube of constant radius R ∗ and length L ∗ in cylindrical coordinates ( r ∗, z ∗); (b) the planar

Poiseuille flow in a straight channel (or slit) of height 2 R ∗ and length L ∗ in Cartesian coordinates ( z ∗, r ∗) centered at the

midplane. Thus, in both cases, z ∗ is along the main flow direction and r ∗ is along the transverse direction, perpendicular to

the wall. Under these assumptions, the mass and momentum equations can be written as follows: 

∇ 

∗ · ( ρ∗u 

∗) = 0 (3)

−∇ 

∗ p ∗ + ∇ 

∗ · τ∗ = 0 (4)

where u 

∗ is the velocity vector, τ∗ is the viscous extra-stress symmetric tensor given by 

τ∗ = η∗ ˙ γ∗
(5)

and ˙ γ∗
is the augmented rate-of-deformation tensor: 

˙ γ∗ = ∇ 

∗u 

∗ + ( ∇ 

∗u 

∗) T − 2 

3 

I ( ∇ 

∗ · u 

∗) (6)

The superscript T denotes the transpose, and I is the unit tensor. The shear viscosity η∗ and the mass density ρ∗ are

assumed to obey Eqs. (1) and ( 2 ), respectively. 

In order to follow a unified approach for both flow configurations and avoid unnecessary repetitions, an auxiliary pa-

rameter ξ is introduced such that ξ = 1 for the axisymmetric flow and ξ = 0 for the planar configuration. The governing

equations are rendered dimensionless scaling r ∗ by R ∗, z ∗ by L ∗, u ∗z by the mean velocity U ∗ at the tube/channel exit, u ∗r 
by U ∗R ∗/ L ∗, and p ∗ − p ∗

re f 
by (3 + 5 ξ ) η∗

0 L 
∗U 

∗/ R ∗2 . The mass density and the viscosity are scaled by ρ∗
0 and η∗

0 , respectively.

Thus, the dimensionless forms of the continuity equation, Eq. (3) , the two components of the momentum equation, ( Eq. 4 ),

the four non-zero components of the extra stress-tensor τ∗, Eq. (5) , the equation of state, Eq. (2) , and the equation for the

shear viscosity, Eq. (1) , become: 

∂( r ξρu r ) 

∂r 
+ 

∂( r ξρu z ) 

∂z 
= 0 (7)

−(3 + 5 ξ ) 
∂ p 

∂z 
+ a 2 

∂ τzz 

∂z 
+ a 

(
∂ τrz 

∂r 
+ ξ

τrz 

r 

)
= 0 (8)

−(3 + 5 ξ ) 
∂ p 

∂r 
+ a 2 

(
a 
∂ τrz 

∂z 
+ 

∂ τrr 

∂r 
+ ξ

τrr − τθθ

r 

)
= 0 (9)

τzz = η

[
4 

3 

∂ u z 

∂z 
− 2 

3 

(
∂ u r 

∂r 
+ ξ

u r 

r 

)]
(10a)

τrz = η

(
a 
∂ u r 

∂z 
+ 

1 

a 

∂ u z 

∂r 

)
(10b)

τrr = η

[
4 

3 

∂ u r 

∂r 
− 2 

3 

(
∂ u z 

∂z 
+ ξ

u r 

r 

)]
(10c)

τθθ = η

[
4 ξ

3 

u r 

r 
− 2 

3 

(
∂ u r 

∂r 
+ 

∂ u z 

∂z 

)]
(10d)
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ρ = 1 + εp (11) 

η = 1 + βp (12) 

In the above equations three dimensionless numbers appear. The aspect ratio of the tube/channel, a , the dimensionless

compressibility number, ɛ , and the viscosity pressure-dependence number, β , respectively defined by: 

a ≡ R 

∗

L ∗
, ε ≡ (3 + 5 ξ ) ε ∗η∗

0 L 
∗U 

∗

R 

∗2 
, β ≡ (3 + 5 ξ ) β∗η∗

0 L 
∗U 

∗

R 

∗2 
(13) 

The system of Eqs. (7) –( 12 ) closes with appropriate auxiliary conditions. Along the axis of symmetry, symmetry conditions

are applied: 

∂ u z 

∂r 
(0 , z) = u r (0 , z) = 0 , 0 ≤ z ≤ 1 (14)

Also, no-slip and no-penetration are imposed along the wall(s): 

u r (1 , z) = u z (1 , z) = 0 , 0 ≤ z ≤ 1 (15)

Moreover, the pressure datum is set at the tube/channel exit, 

p(1 , 1) = 0 (16) 

and the dimensionless mass flow-rate at the outlet plane is unity: ∫ 1 

0 

(2 r) 
ξρ(r, 1) u z (r, 1) dr = 1 (17) 

3. Solution 

Under the assumption that the compressibility number ɛ is small, the primary flow variables can be expressed as asymp-

totic power series in ε: 

X = X 0 + ε X 1 + ε 2 X 2 + O ( ε 3 ) (18) 

where X ∈ { p, u r , u z , ρ , η, τ rr , τ rz , τ zz , τ θθ }. Substituting the above expansions into the governing equations and collect-

ing terms of the same order, a sequence of systems of partial differential equations at each order O ( ε j ) , j = 0 , 1 , 2 , . . . is

derived along with the corresponding boundary conditions. The zero-order equations have been solved analytically for all

the primary flow variables and for both planar and axisymmetric configurations ( Kalogirou et al., 2011 ). The velocity profile

is unidirectional ( u r0 = 0 , u z0 � = 0 ) and depends only on the wall-normal coordinate, while the pressure, the shear viscosity,

and the extra-stress components are two-dimensional. The solution can be written concisely as follows: 

u z0 (r) = − 3 + 5 ξ

(αβ) 
2 λ

ln ( ̂  p 0 (r)) (19) 

p 0 (r, z) = 

1 

β

(
ˆ p 0 (r) e λβ(1 −z) − 1 

)
(20) 

η0 (r, z) = 

ˆ p 0 (r) e λβ(1 −z) (21) 

In the above expressions ˆ p 0 is given by 

ˆ p 0 (r) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

I 0 (αβλr) 

I 0 (αβλ) 
, axisymmetric 

cosh (αβλr) 

cosh (αβλ) 
, planar 

(22) 

where I 0 is the modified Bessel function of zero order, and λ is the root of ∫ 1 

0 

(2 r) 
ξ

ln ( ̂  p 0 (r)) dr = − (αβ) 
2 λ

3 + 5 ξ
(23) 

Eq. (23) results from Eq. (17) at zero order. It cannot be solved analytically; however, it is straightforward to obtain the

following asymptotic solutions: 

λas = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 + 

B 

2 

12 

+ 

B 

4 

96 

+ 

11 B 

6 

7680 

+ 

169 B 

8 

829440 

+ O ( B 

10 ) , axisymmetric 

1 + 

B 

2 

+ 

11 B 

4 

+ 

533 B 

6 

+ 

5231 B 

8 

+ O ( B 

10 ) , planar 

(24) 
5 175 23625 606375 
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Fig. 2. (a) The root of Eq. (23) in the axisymmetric flow as a function of the modified pressure-viscosity coefficient B = α β; (b) The absolute error of the 

asymptotic value of λ predicted by Eq. (24) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where B ≡ αβ is a modified dimensionless pressure-viscosity coefficient. In Fig. 2 a the exact solution for λ in the case

of axisymmetric flow calculated numerically solving Eq. (23) is compared with the asymptotic solutions calculated from

Eq. (24) up to O ( B k ), k = 2 , 4 , 6 , 8 . Clearly, the asymptotic expression up to O ( B 8 ) is an excellent representation of the exact

solution up to B = aβ ≈ 1 . 8 , which is well-above the range of interest for practical applications. Fig. 2 b shows the absolute

errors | λ − λas | versus B ; as the order of approximation increases the absolute error drops, indicating the accuracy and

consistency of λas . Thus, the parameter λ can be calculated either from Eq. (23) or from Eq. (24) since in the range of ε and

β for which the perturbation solution is valid, the difference between the exact and the asymptotic expressions is negligible.

The equations at first order in ε have been solved and the complete solutions for all the primary flow variables up to

O ( ɛ ) are given below. Whenever quantities that cannot be calculated analytically appear, high-order asymptotic expressions

are provided; these expressions are excellent approximations of the corresponding exact quantities up to B ≡ αβ ≈ 1. 

3.1. Axisymmetric flow 

In the axisymmetric case (ξ = 1) the solutions for u r = u r (r, z) , p = p(r, z) and u z = u z (r, z) are: 

u r ≈ ε ̂  u r1 e 
λβ(1 −z) (25)

p ≈ ˆ p 0 e 
λβ(1 −z) − 1 

β
+ ε ̂  p 0 e 

λβ(1 −z) 

{
(1 − z) /β − a 2 λ(1 − r 2 ) / 2 + a 2 λ ϕ(r; 1) 

2 − λ−1 − ϕ(0 ; 3) 
+ 

ˆ p 0 h e λβ(1 −z) − h (1) 

}
(26)

u z ≈ −8 ln ( ̂  p 0 ) 

B 

2 λ
+ ε 

{ 

4 

[
(1 − r 2 ) − ϕ(r; 1) + ln ( ̂  p 2 0 ) / (Bλ) 

2 
]

β
(
2 − λ−1 − ϕ(0 ; 3) 

) + 

e λβ(1 −z) 

λβ

(
ˆ p 0 ln ( ̂  p 8 0 ) 

B 

2 
+ 

ˆ u r1 

r 
+ 

ˆ u 

′ 
r1 

)} 

(27)

where ϕ(r; k ) := 

∫ 1 
r (2 s ) k 

I 2 
1 
(aλβs ) 

I 2 
0 
(aλβs ) 

ds has been defined for compactness, ˆ p 0 is given by Eq. (22) , and h = h (r) is an auxiliary

function given in terms of ˆ p 0 and ˆ u r1 . Thus, the solution ( 25 )– (27) is fully determined if ˆ u r1 = ˆ u r1 (r) is known. The or-

dinary differential equation for ˆ u r1 and the accompanying boundary conditions and auxiliary functions are provided in the

Appendix. No analytical solution could be derived for ˆ u r1 , however suitable high-order asymptotic expressions for ˆ u r1 (r) ,

h ( r ), ϕ( r ; 1), and ϕ(0; 3) are: 

ˆ u r1 (r) ≈ −5 r 3 (1 − r 2 ) 
2 

36 

B 

2 

(
1 + 

138 − 47 r 2 

960 

B 

2 + 

1337 − 1134 r 2 + 507 r 4 

46080 

B 

4 

+ 

172 822 − 238 851 r 2 + 17 3376 r 4 − 41 697 r 6 

27 648 0 0 0 

B 

6 

)
(28)
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Fig. 3. Contour plots for the axisymmetric flow with ε = 0.2, α = 0.1, and β = 1.5: (a) Axial velocity; (b) Radial velocity; (c) Pressure. 

 

 

 

 

 

 

 

 

 

 

 

h (r) ≈ 1 

β2 

(
−1 + 

13 − 12 r 2 

36 

B 

2 + 

69 − 16 r 2 

1152 

B 

4 + 

99 − 166 r 2 + 282 r 4 − 138 r 6 

6912 

B 

6 

+ 

71 453 − 272 088 r 2 + 558 270 r 4 − 4 4 4 0 0 0 r 6 + 120 195 r 8 

19 906 560 

B 

8 

)
(29) 

ϕ(r; 1) ≈ (1 − r 2 ) B 

2 

8 

(
1 + r 2 − r 4 

6 

B 

2 + 

1 + r 2 − 31 r 4 + 33 r 6 

1152 

B 

4 + 

1 + r 2 − 52 r 4 + 108 r 6 − 57 r 8 

11520 

B 

6 

)
(30) 

ϕ(0 ; 3) ≈ B 

2 

3 

(
1 − B 

2 

48 

− B 

4 

2880 

− B 

6 

46080 

)
(31) 

It is interesting to notice that ˆ u r1 (r) , h ( r ) β2 , ϕ( r ; 1) and ϕ(0; 3) are functions of the modified pressure-viscosity coefficient

B ≡ a β . These asymptotic expressions also show that the transverse velocity, u r , is of O ( B 2 ɛ ), i.e., much smaller than the first

correcting term for the velocity along the main flow direction, u z , which is of O ( ɛ ). 
Contour plots of the axial and radial velocity components and the pressure for a fluid with ε = 0 . 2 , β = 1 . 5 , and a = 0 . 1

are given in Fig. 3 . First, it can be seen that the magnitude of the radial velocity is much smaller that the axial velocity.

Also, u r is larger closer to the entrance of the tube as it should be expected due to the exponential decrease of u r with

the distance from the inlet plane (see Eq. (25) ). Consequently, the closer to the entrance the larger the deviation from the

simple parabolic profile. Recall that the parabolic profile for an incompressible Newtonian fluid with variable viscosity (i.e.,

u r = 0 and u z = u z (r) ) corresponds to straight contour lines parallel to the axis of symmetry of the tube. Indeed, Fig. 3 b

shows that the contours of u z are significantly curved towards the horizontal axis, indicating that the fluid moves faster

close to the axis of symmetry and towards the exit of the tube, and slower close to the entrance and towards the wall. On

the other hand, the pressure contours are practically straight lines vertical to the wall; thus the fluid compressibility does

not have a significant effect on the variation of the pressure along the radial direction. 
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3.2. Planar flow 

For the planar case (ξ = 0) the solution is given by: 

u r ≈ ε ̂  u r1 e 
λβ(1 −z) (32)

p ≈ ˆ p 0 e 
λβ(1 −z) − 1 

β
+ ε ̂  p 0 e 

λβ(1 −z) 

{
λa [ 1 − z + a ( r tanh (Bλr) − tanh (Bλ) ) ] 

3 tanh (Bλ) − 2 B 

+ 

ˆ p 0 h e λβ(1 −z) − h (1) 

}
(33)

u z ≈ −3 ln ( ̂  p 0 ) 

B 

2 λ
+ ε 

{
3 ( tanh (Bλ) − r tanh (Bλr) ) + ln ( ̂  p 3 0 ) / (Bλ) 

β( 3 tanh (Bλ) − 2 B ) 
+ 

e λβ(1 −z) 

λβ

(
ˆ p 0 ln ( ̂  p 3 0 ) 

B 

2 
+ 

ˆ u 

′ 
r1 

)}
(34)

where ˆ p 0 is given by Eq. (22) and high-order asymptotic expressions for ˆ u r1 and h are: 

ˆ u r1 (r) ≈ −11 r (1 − r 2 ) 
2 

40 

B 

2 

(
1 + 

173 − 85 r 2 

770 

B 

2 + 

5793 − 7190 r 2 + 3965 r 4 

83 160 

B 

4 

+ 

7 435 723 − 16 839 665 r 2 + 16 836 225 r 4 − 5 021 275 r 6 

320 166 0 0 0 

B 

6 

)
(35)

h (r) ≈ 1 

β2 

(
−1 + 

11 − 10 r 2 

15 

B 

2 + 

359 − 126 r 2 + 35 r 4 

1260 

B 

4 + 

13761 − 17790 r 2 + 34125 r 4 − 17500 r 6 

94500 

B 

6 

+ 

225311 − 614515 r 2 + 1492755 r 4 − 1324785 r 6 + 394350 r 8 

3 118 500 

B 

8 

)
(36)

As in the axisymmetric case, ˆ u r1 and h β2 are functions of B and the wall normal velocity is of O ( B 2 ɛ ). The results for

the primary flow variables (axial and transversal velocity components, and the pressure) are very similar to those for the

axisymmetric flow in a circular tube (not shown here though). 

4. Results and discussion 

In this section the analytical solutions are discussed with the emphasis put on quantities relevant to internal pressure-

driven flows, i.e., the volumetric flow-rate Q , the average pressure drop required to drive the flow p̄ (where the overbar

means averaging in the wall normal direction), and the mean (along the main flow direction) Darcy friction factor ˆ f , which

are defined as follows: 

Q(z) ≡
∫ 1 

0 

(2 r) 
ξ

u z (r, z) dr (37)

p̄ ≡
∫ 1 

0 

(2 r) 
ξ

[ p(r, z = 0) − p(r, z = 1) ] dr (38)

ˆ f ≡ Re 

8(3 + ξ ) 

∫ 1 

0 

D f (z) dz = − a 

3 + ξ

∫ 1 

0 

τrz (1 , z) dz (39)

where D f is the local Darcy friction factor, and Re is the Reynolds number: 

D f (z) ≡ 8 | τ ∗
rz ( R 

∗, z ∗) | 
ρ∗

0 
U 

∗2 
, Re ≡ ρ∗

0 U 

∗R 

∗

η∗
0 

(40)

Alternatively, ˆ f can be calculated from the momentum equation along the main flow direction, Eq. (8) , as follows: 

ˆ f = p̄ − a 2 

3 + 5 ξ
τ̄zz (41)

Here the operator  is defined by  f := f (z = 0) − f (z = 1) . For incompressible unidirectional Newtonian flow, namely at

zero-order in ε, Q 0 (z) = 1 and τ̄zz0 = 0 . Thus, the volumetric flow-rate is constant, and the mean Darcy friction factor

simply represents the dimensionless average pressure drop required to drive the flow, i.e., ˆ f 0 = p̄ 0 , where 

p̄ 0 = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

2( e λβ − 1) 

αβ2 λ

I 1 (αβλ) 

I 0 (αβλ) 
, axisymmetric 

( e λβ − 1) 

αβ2 λ
tanh (αβλ) , planar 

(42)

As expected, the limit of p̄ as β goes to zero is unity. 
0 
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4.1. Axisymmetric flow 

Using the analytical solution at zero- and first-order in ε, one can derive the following expressions: 

Q(z) = 1 + 

ε 

β

{
1 + 

8 e λβ(1 −z) q 1 
B 

2 λ

}
(43) 

p̄ = p̄ 0 + ε 

{
2(1 − e λβ ) 

aλβ

I 1 (Bλ) 

I 0 (Bλ) 
h (1) + ( e 2 λβ − 1) �1 

+ 

1 (
2 − λ−1 − ϕ(0 ; 3) 

)(
2(1 − e λβ ) 

λβ2 

I 2 (Bλ) 

I 0 (Bλ) 
+ 

2 e λβ

aλβ2 

I 1 (Bλ) 

I 0 (Bλ) 
+ a 2 λ( e λβ − 1) G 1 

)} 

(44) 

ˆ f = p̄ 0 + ε 

{ 

2 

λβ2 
(
2 − λ−1 − ϕ(0 ; 3) 

)(
( e λβ − 1) 

(
1 − I 2 1 (Bλ) 

I 2 
0 
(Bλ) 

)
+ 

2 + e λβ (λβ − 2) 

aβλ

I 1 (Bλ) 

I 0 (Bλ) 

)

+ 

1 − e λβ

λβ2 

[
1 + β2 h (1) + e βλ(1 − β2 h (1)) 

B 

I 1 (Bλ) 

I 0 (Bλ) 
+ 

1 + e λβ

8 λ
ˆ u 

′′ 
r1 (1) 

]}
(45) 

where I k is the modified Bessel function of k -order, h (1) is found from Eq. (29) at r = 1, ˆ u ′′ 
r1 

(1) from Eq. (28) , and the

quantities �1 , G 1 , q 1 are defined as follows: 

�1 ≡
1 ∫ 

0 

2 r ̂  p 2 0 (r) h 2 (r) dr , G 1 ≡
1 ∫ 

0 

2 r 

[ ( 

1 ∫ 
r 

(
ˆ p ′ 0 (s ) 

ˆ p 0 (s ) 

)2 

ds 

) ] 

ˆ p 0 (r ) dr, q 1 ≡
1 ∫ 

0 

2 r ̂  p 0 (r ) ln ( ̂  p 0 (r )) dr (46) 

High-order asymptotic expressions for �1 , G 1 , and q 1 are: 

�1 ≈ 1 

β2 

(
−1 + 

4 B 

2 

9 

− 35 B 

4 

1152 

+ 

25 B 

6 

6912 

+ 

89 B 

8 

1990656 

− 6707 B 

10 

26542080 

)

G 1 ≈ B 

2 

20 

(
1 − 29 B 

2 

168 

+ 

5 B 

4 

4032 

− 271 B 

6 

3548160 

)

q 1 ≈ B 

2 

8 

(
−1 + 

B 

2 

12 

+ 

B 

4 

288 

+ 

B 

6 

2880 

)
(47) 

It is also interesting to report here the limits of equations ( 43 )– (45) as β and ɛ go to zero. One can find: 

lim 

ε→ 0 
Q(z) = 1 , lim 

β→ 0 
Q(z) = 1 − ε(1 − z) 

lim 

ε→ 0 
p̄ = lim 

ε→ 0 

ˆ f = 1 + 

β

2 

, lim 

β→ 0 
p̄ = lim 

β→ 0 

ˆ f = 1 − ε 

2 

(48) 

The simple expressions given by Eq. (48) reveal that compressibility reduces the volumetric flow-rate throughout the tube

(which is expected), as well as the skin friction factor and the pressure difference required to drive the flow, while the

pressure-dependent viscosity has the opposite effect, namely it increases the skin friction factor and the required pressure

difference (of course the volumetric flow-rate remains constant). Hence, these are competing effects, which for suitable

values of the ɛ , β may counterbalance each other. 

In Fig. 4 , the volumetric flow-rates at the entrance of the circular tube, Q (0), in both the flow configurations with ε = 0 . 2

and various values of the aspect ratio are plotted versus β and B. The results have been derived using Eq. (43) and 

(a) the exact (numerical) values for λ and for the quantity q 1 , 

(b) the asymptotic expression λas given by Eq. (24) , and the asymptotic series for q 1 , given by the last expression in

Eq. (47) . In this case, the formula for Q (0) reduces to: 

Q(0) ≈ 1 + 

ε 

β

{
1 + 

e β λas 

λas 

(
−1 + 

B 

2 

12 

+ 

B 

4 

288 

+ 

B 

6 

2880 

)}
(49) 

For the sake of comparison, the results for the planar configuration are also shown (in this case, Q (0) is given by Eq. (50) in

the following subsection). First, it is clear that the asymptotic and exact values for Q (0)are indistinguishable; this indicates

that Eq. (50) is an excellent approximation of Eq. (43) . Second, it appears that when Q (0) is depicted as a function of β
the effect of the aspect ratio a is negligible. Third, the results for the two flow configurations are practically the same (the

differences are not visible). Last, and most importantly, the effect of the viscosity-pressure-dependence coefficient β on the

volumetric flow-rate at the entrance of the tube is dramatic; recall that for an incompressible fluid, i.e., for ε = 0 , Q(0) = 1 ,
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Fig. 4. Volumetric flow rate at the inlet for both the planar (dots) and axisymmetric (solid lines) configurations with ε = 0.2 and various aspect ratios: (a) 

versus β; (b) versus B = α β . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

while for a compressible fluid with constant viscosity ( β= 0), Q(0) = 1 − ε. In particular, Q (0) decreases monotonically with

β resulting in zero flow-rate at β ≈ 2.63. The plot of the volumetric flow-rate at the entrance of the tube/channel versus the

modified pressure-dependence coefficient B in Fig. 4 b is also very interesting. In this case, the effect of the aspect ratio is

clear; as a is increased Q (0) drops sharply and vanishes eventually and thus the analytical solution is valid for lower values

of B . For instance, when a = 0 . 1 , Q (0) vanishes at a critical value B cr ≈ 0.27, while for a = 0 . 05 and 0.02, the values of B cr

are roughly 0.13 and 0.053, respectively. 

Eq. (43) can also provide an upper limit of validity of the analytical solution in terms of the compressibility number.

Indeed, the solution has a physical meaning only when the volumetric flow-rate at the entrance of the tube is positive,

i.e., Q (0) > 0. By solving Q(0) = 0 a critical value for ɛ , ɛ cr , can be found. Obviously, when ɛ ≥ ɛ cr the solution is not valid.

Results for ɛ cr as a function of the modified coefficient B ≡ a β are given in Fig. 5 , for both flow configurations and various

aspect ratios ( a = 0.1, 0.01, and 0.001). Note that the results for the two flow configurations are indistinguishable. We observe

that ɛ cr drops fast as B is increased. For example, ε cr ≈ 10 −5 for a short channel/tube with a = 0 . 1 and β = B/a ≈ 10 . 6 , while

for a = 0 . 01 and 0.001 one finds β = B/a ≈ 14 . 1 . 

In Fig. 6 a, ˆ f and p̄ for ε = 0 . 2 and three aspect ratios a = 0 . 1 , 0 . 05 , and 0.02 are plotted as functions of B = aβ (only

results for B < B cr are shown). Both quantities increase with B reaching a maximum beyond which they decrease sharply.

These maxima are due to the competing effects of compressibility and viscosity pressure-dependence. Note that in incom-

pressible flow 

ˆ f and p̄ would increase monotonically with β until solution is lost ( Kalogirou et al., 2011 ). On the other

hand, weak compressibility reduces ˆ f and p̄ . Depending on the magnitudes of ɛ and β , one effect may dominate the other.

From Eq. (41) , we also see that ˆ f and p̄ are not identical although their values are very close; some minor differences can

be observed only for a short tube ( a = 0 . 1 ) and for high values of the modified dimensionless pressure-viscosity coefficient

B . The effect of the aspect ratio becomes less pronounced when plotting the same quantities versus β , which was also the

case with the volumetric flow-rate in Fig. 4. 

4.2. Planar flow 

The expressions for the volumetric flow rate, the average pressure drop, and the Darcy friction factor in the cased of

planar flow are as follows: 

Q(z) = 1 + 

ε 

β

{
1 + 

3 e λβ(1 −z) 

B 

3 λ2 cosh (Bλ) 

(
2 tan 

−1 ( e Bλ) − π

2 

− sinh (Bλ) 
)}

(50)

p̄ = p̄ 0 + ε 

{
a 

3 tanh (Bλ) − 2 B 

(
tanh (Bλ) 

Bλβ

[
e λβ (βλ − 1) + 1 

]
+ 

e λβ − 1 

βcosh 

2 
(Bλ) 

)

+ 

tanh (Bλ) 

Bλ
(1 − e λβ ) h (1) + ( e 2 λβ − 1) �0 

}
(51)
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Fig. 5. Critical value of the dimensionless compressibility parameter above which the solution is not valid for both the planar and the axisymmetric flows 

and various aspect ratios. 

Fig. 6. Average pressure drops p̄ (dashed with symbols) and mean Darcy friction factors ˆ f (solid lines) in axisymmetric flow with ε = 0.2 and various 

aspect ratios: (a) versus B = α β; (b) versus β . 
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Fig. 7. The volumetric flow rate at the entrance of the channel (planar flow) for ε = 0.2 and various aspect ratios. 

 

 

 

 

 

 

 

ˆ f = p̄ 0 + ε 

{
tanh (Bλ) 

2 Bλβ2 
(1 − e λβ ) 

(
1 + β2 h (1) + e λβ (1 − β2 h (1)) 

)
+ 

1 − e 2 λβ

6 β2 λ2 
ˆ u 

′′ 
r1 (1) 

+ 

(
1 + e λβ (λβ − 1) 

)
sinh (2 Bλ) + 2 Bλ( e λβ − 1) 

2 λβ2 cosh 

2 
(Bλ) [ 3 tanh (Bλ) − 2 B ] 

} 

(52)

In Eq. (51) , �0 is given as: 

�0 ≡ −cosh 

2 
(Bλ) 

3 (λβ) 
2 

ˆ u 

′′ 
r1 (1) + 

tanh (Bλ) 

4 Bλβ2 

(
1 

3 

− 3 cosh (2 Bλ) 

2 

)
+ 

1 

6 cosh 

2 
(Bλ) 

(
7 a 2 λ

3 

− 17 

4 β2 

)

+ 

2 a 2 Bλ

3 cosh (Bλ) 

∫ 1 

0 
( 5 + 6 cosh (2 Bλr) ) sinh (Bλr) ̂  u r1 (r) dr (53)

Also, h (1)is found by evaluating Eq. (36) at r = 1, ˆ u r1 (r) and ˆ u ′′ r1 (1) are calculated from Eq. (35) , while the integral which

appears in Eq. (53) is approximated very accurately by: ∫ 1 

0 
( 5 + 6 cosh (2 Bλ r) ) sinh (Bλ r) ̂  u r1 (r) dr ≈ − 121 

525 

B 

3 − 8789 

47250 

B 

5 − 3559 

27720 

B 

7 (54)

The volumetric flow-rates at the entrance of the channel for three values of the aspect ratio are shown in Fig. 7 as

functions of the average pressure drop. Each curve has been constructed by fixing a and ɛ , then varying β from zero up to

the value at which Q (0)becomes zero, and calculating Q (0) from Eq. (50) with z = 0, and p̄ from Eq. (51) . Note that different
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values of β correspond to different fluids flowing in channels with the same dimensions. These flow curves give information

on the pressure difference required to drive the flow and the resulting volumetric flow-rate at the inlet. Interestingly, p̄

increases while Q (0) decreases with β , which is a compressibility effect. However, at a critical value of β a turning point

appears beyond which p̄ and Q (0) are decreasing. As a result, for a given value of p̄ , two values of Q (0) are possible, the

lower of which corresponds to a fluid with a stronger viscosity pressure-dependence (i.e., with a higher value of β). 

5. Conclusions 

New asymptotic solutions for the steady, planar and axisymmetric, Poiseuille flows of weakly compressible Newtonian

fluids with viscosity and mass density that depend linearly on the pressure have been obtained. All the primary flow vari-

ables are perturbed in terms of the dimensionless compressibility number ɛ , and the solution is found up to the first order

in ε. The main features of the derived solutions are the following: 

(a) All the primary flow variables (velocity, pressure, and viscous stresses) are fully two-dimensional 

(b) The wall normal velocity is generated due to the combined effect of compressibility and viscosity pressure-

dependence. 

(c) The average pressure drop, p̄ , required to drive the flow increases with viscosity pressure-dependence and decreases

with compressibility. 

(d) The behaviour of the mean Darcy friction factor, ˆ f , is similar to that of p̄ . However, ˆ f deviates slightly from p̄ due

to the compressibility which generates the extra-stress τ̄zz . 

(e) A dramatic reduction of the volumetric flow at the entrance of the tube/channel is predicted as the dimensionless

viscosity pressure-dependence coefficient β is increased. 

(f) For a given value of p̄ , two volumetric flow-rates at the inlet of the channel/tube are possible the higher of which

corresponds to a fluid with a lower β . 

The solutions derived here may be useful for the design and control of fluid transport in channels and tubes and other

processes involving high pressures at which compressibility and viscosity pressure-dependence effects are important. They 

may also be used to study various heat transfer problems which are of significance in a variety of practical and industrial

applications. 
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Appendix 

Double perturbation expansions 

The solutions derived in this paper can be expanded as power series in β resulting in double perturbation series for all

the flow variables. Assuming that β and ε are of similar magnitude, i.e. β ≈ ɛ , and keeping terms of order 1, ɛ , β , ɛ β and β2 

suitable double perturbation expansions are derived. In both geometrical flow configurations, the radial velocity component

is zero (recall that u r = O (ε β2 a 2 ) ). The expressions for the other variables follow. 

Axisymmetric flow 

u z ≈ 2(1 − r 2 ) 

{
1 + 

(aβ) 
2 

48 

(1 − 3 r 2 ) − ε(1 − z) + εβ

(
a 2 (11 + 3 r 2 ) 

72 

− (1 − z) 
2 

2 

)}

p ≈ (1 − z) + β

(
(1 − z) 

2 

2 

− a 2 (1 − r 2 ) 

4 

)
+ β2 (1 − z) 

(
(1 − z) 

2 

6 

− a 2 (2 − 3 r 2 ) 

12 

)

+ ε 

[
− (1 − z) 

2 

2 

+ 

a 2 (1 − r 2 ) 

12 

+ β(1 − z) 

(
−2 (1 − z) 

2 

3 

+ 

a 2 (31 − 24 r 2 ) 

36 

)]

Q(z) ≈ 1 − ε(1 − z) + εβ

(
− (1 − z) 

2 

2 

+ 

a 2 

6 

)

p̄ ≈ 1 + 

β

2 

+ β2 

(
1 

6 

− a 2 

24 

)
− ε 

2 

+ εβ

(
−2 

3 

+ 

19 a 2 

36 

)

ˆ f ≈ 1 + 

β

2 

+ β2 

(
1 

6 

− a 2 

24 

)
− ε 

2 

+ εβ

(
−2 

3 

+ 

7 a 2 

36 

)
The above expressions are identical to those derived by Poyiadji et al. (2015) . 
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Planar flow 

u z ≈ 3 

2 

(1 − r 2 ) 

{
1 + 

(aβ) 
2 

30 

(1 − 5 r 2 ) + ε 

[
−(1 − z) + β

(
− (1 − z) 

2 

2 

+ 

a 2 (23 + 5 r 2 ) 

60 

)]}

p ≈ (1 − z) + 

β

2 

(
(1 − z) 

2 − a 2 (1 − r 2 ) 
)

+ β2 (1 − z) 

(
(1 − z) 

2 

6 

+ 

a 2 (−3 + 5 r 2 ) 

10 

)

+ ε 

[
− (1 − z) 

2 

2 

+ 

a 2 (1 − r 2 ) 

6 

+ β(1 − z) 

(
−2 

3 

(1 − z) 
2 + 

a 2 (27 − 20 r 2 ) 

15 

)]

Q(z) ≈ 1 − ε(1 − z) + εβ

(
− (1 − z) 

2 

2 

+ 

2 a 2 

5 

)

p̄ ≈ 1 + 

β

2 

+ β2 

(
1 

6 

− 2 a 2 

15 

)
− ε 

2 

+ εβ

(
−2 

3 

+ 

61 a 2 

45 

)

ˆ f ≈ 1 + 

β

2 

+ β2 

(
1 

6 

− 2 a 2 

15 

)
− ε 

2 

+ εβ

(
−2 

3 

+ 

7 a 2 

15 

)

Again, the above expressions are the same as those found by Poyiadji et al. (2015) . 

Auxiliary functions 

The auxiliary function h = h (r) which appears in the analytical solution ( Eqs. (26) –( 27 ) for the axisymmetric case, and

Eq. (33) for the planar case) is given in terms of ˆ p 0 and ˆ u r1 : 

h (r) = 

a 2 ˆ p 0 

(3 + 5 ξ ) 
(

ˆ p ′ 2 0 − (aλβ ˆ p 0 ) 
2 
)

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ˆ u 

′′′ 
r1 + 

(
2 ξ

r 
+ 

ˆ p ′ 0 
ˆ p 0 

)
ˆ u 

′′ 
r1 + 

( 

3 ( aλβ) 
2 − ξ

r 2 
+ 

ξ ˆ p ′ 0 
r ˆ p 0 

− 2 

ˆ p ′ 2 0 

ˆ p 2 
0 

) 

ˆ u 

′ 
r1 

+ 

(
ξ

r 3 

(
1 − r ̂  p ′ 0 

ˆ p 0 
+ 3 (aλβr) 

2 

)
− 3 ( aλβ) 

2 
ˆ p ′ 0 
ˆ p 0 

)
ˆ u r1 

+ 

3 + 5 ξ

3 

[ 

λ2 ˆ p 2 0 

(
3 + 11 ln ( ̂  p 0 ) 

)
+ 

5 ̂

 p ′ 2 0 

(
2 + ln ( ̂  p 0 ) 

)
( aβ) 

2 
ˆ p 0 

] 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

The full ordinary differential equation (ODE) for ˆ u r1 is: 

ˆ u 

(4) 
r1 

(r) + g 3 (r ) ̂  u 

(3) 
r1 

(r ) + g 2 (r ) ̂  u 

′′ 
r1 (r ) + g 1 (r ) ̂  u 

′ 
r1 (r ) + g 0 (r ) ̂  u r1 (r ) = g(r) (A1)

where 

g(r) = 

(3 + 5 ξ ) λ2 ˆ p ′ 0 
c 2 ˆ p 2 

0 
− ˆ p ′ 2 

0 

{
−c 2 ˆ p 2 0 (11 + 10 ln ( ̂  p 0 ))+ 

4 ̂

 p ′ 2 0 (6 + 7 ln ( ̂  p 0 )) 

3 

+ 

ˆ p ′ 4 0 (9 + 2 ln ( ̂  p 0 )) 

3 c 2 ˆ p 2 
0 

+ 

2 ξ ˆ p 0 ̂  p ′ 0 (13 + 16 ln ( ̂  p 0 )) 

3 r 

}

g 0 (r) = −c 2 
(

c 2 + 

2 ̂

 p ′ 2 0 

ˆ p 2 
0 

)
+ 

ξ

r 3 ( c 2 ˆ p 2 
0 

− ˆ p ′ 2 
0 
) 

{
− c 2 (3 + 4 c 2 r 2 ) ̂  p 2 0 

r 
+ 2 c 2 (2 + 3 c 2 r 2 ) ̂  p 0 ̂  p ′ 0 + 

(1 − 2 c 2 r 2 ) ̂  p ′ 2 0 

r 
− 2 ̂

 p ′ 3 0 

ˆ p 0 

}

g 1 (r) = −2 c 2 ˆ p ′ 0 
ˆ p 0 

+ 

ξ

r 2 ( c 2 ˆ p 2 
0 

− ˆ p ′ 2 
0 
) 

{
c 2 (3 + 4 c 2 r 2 ) ̂  p 2 0 

r 
− 4 c 2 ˆ p 0 ̂  p ′ 0 −

(1 + 6 c 2 r 2 ) ̂  p ′ 2 0 

r 
+ 

2 ̂

 p ′ 3 0 

ˆ p 0 

}

g 2 (r) = 4 c 2 − 2 ̂

 p ′ 2 0 

ˆ p 2 
0 

+ 

ξ

r 

{
1 

r 
+ 

4 ̂

 p ′ 0 
ˆ p 0 

− 2 c 2 ˆ p 0 (2 ̂

 p 0 + r ̂  p ′ 0 ) 
r( c 2 ˆ p 2 

0 
− ˆ p ′ 2 

0 
) 

}

g 3 (r) = 2 

ˆ p ′ 0 
ˆ p 0 

+ 

2 ξ

r 

{
2 − c 2 ˆ p 2 0 

c 2 ˆ p 2 
0 

− ˆ p ′ 2 
0 

}
and c ≡ B λ has been used for convenience. Eq. (A1) is a fourth-order, non-homogeneous, ordinary differential equation with

non-constant coefficients, accompanied by the homogeneous boundary conditions: 

ˆ u r1 (0) = 

ˆ u r1 (1) = 

ˆ u 

′ 
r1 (1) = 0 , and 

ˆ u 

′′ 
r1 (0) = 0 for ξ= 0 

lim 

r→ 0 

(
ˆ u 

′ 
r1 (r) 

r 
− ˆ u r1 (r) 

r 2 
+ 

ˆ u 

′′ 
r1 (r) 

)
= 0 for ξ= 1 
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Fig. 8. (a) Numerical and asymptotic solutions for ˆ u r1 in planar flow with α = 0.1 and β = 10 (a rather extreme value to exaggerate the differences); (b) 

The absolute error of the asymptotic solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, given the complexity of functions g , g 0 , g 1 , g 2 , and g 3 , it cannot be solved analytically; it can be solved numeri-

cally though for any value of β , or asymptotically for small values of β . Both numerical and asymptotic solutions (see Section

3 ) have been calculated for ˆ u r1 = ˆ u r1 (r) and h = h (r) . In order to determine the accuracy and validity of the asymptotic so-

lution, Eq. (A1) has been solved numerically for different aspect ratios, a , and pressure-dependent coefficients, β . In general,

the asymptotic solution for ˆ u r1 is an excellent approximation of the exact solution up to B ≈ 1. Fig. 8 shows numerical re-

sults for ˆ u r1 in the case of planar flow. A short channel with a = 0.1 and a fluid with very large pressure-viscosity coefficient,

β = 10 , have been chosen (resulting to B = 1) so that the radial velocity is exaggerated in order to test the accuracy of the

asymptotic solution. It is seen that ˆ u r1 , which vanishes at r = 0 and r = 1 due to the symmetry and no-penetration conditions

respectively, is always negative and passes through a minimum at r ≈ 0.75. The absolute error between the asymptotic and

numerical solution, | E |, is presented as a function of the radial distance r in Fig. 8 b. It is seen that | E | exhibits similar behav-

ior with ˆ u r1 . Numerical results for B < 1 confirm that | E | drops close to machine accuracy, clearly indicating the robustness

and validity of the asymptotic solution for ˆ u r1 . 
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