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We investigate theoretically isothermal, incompressible, creeping Newtonian flows past a
sphere, under the assumption that the shear viscosity is pressure-dependent, varying
either linearly or exponentially with pressure. In particular, we consider the three-dimen-
sional flow past a freely rotating neutrally buoyant sphere subject to shear at infinity and
the axisymmetric flow past a sedimenting sphere. The method of solution is a regular per-
turbation scheme with the small parameter being the dimensionless coefficient which
appears in the expressions for the shear viscosity. Asymptotic solutions for the pressure
and the velocity field are found only for the simple shear case, while no analytical solutions
could be found for the sedimentation problem. For the former flow, calculation of the
streamlines around the sphere reveals that the fore-and-aft symmetry of the streamlines
which is observed in the constant viscosity case breaks down. Even more importantly,
the region of the closed streamlines around the sphere is absent. Last, it is revealed
that the angular velocity of the sphere is not affected by the dependence of the viscosity
on the pressure.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In most isothermal flows of Newtonian liquids, the shear viscosity is commonly assumed to be constant. However, the
viscosity of typical liquids begins to increase substantially with pressure when pressures of the order of 1000 atm are
reached (Denn, 2008; Rajagopal, Saccomandi, & Vergori, 2012; Renardy, 2003). In certain applications, the effect of the pres-
sure on the viscosity is much larger than that on the mass density, so that compressibility may be neglected but the viscosity
pressure dependence needs to be accounted for (Denn, 2008; Goubert, Vermant, Moldenaers, Göttfert, & Ernst, 2001). Hence,
the assumption of constant viscosity is valid only at low processing pressures and may introduce error when modeling flows
involving high pressures or a large pressure range, e.g. in polymer and food processing, pharmaceutical tablet manufacturing,
crude oil and fuel oil pumping, fluid film lubrication, microfluidics, and geophysics (Dealy & Wang, 2013; Le Roux, 2009;
Martinez-Boza, Martin-Alfonso, Callegos, & Fernández, 2011; Rajagopal et al., 2012). Due to the growing interest in applica-
tions of high pressure chemical and process technologies across a range of engineering fields, flows of fluids with pressure-
dependent viscosity as well as techniques for measuring the pressure dependence of the viscosity and the viscosity at high
pressure have received increased attention recently (Goubert et al., 2001; Park, Lim, Laun, & Dealy, 2008; Schaschke, 2010).
The pressure dependence of viscosity, however, is not only of industrial but also of great fundamental importance.
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Málek and Rajagopal (2007) reviewed different empirical equations proposed in the literature in order to describe experimen-
tal observations on the pressure-dependence of the viscosity. Barus (1893) proposed the following formula for the viscosity, g⁄:
g� ¼ g�0 exp d� p� � p�0
� �� �

ð1Þ
where d⁄ is the pressure-dependence coefficient, assumed to be constant, and g�0 is the viscosity at the reference pressure p�0.
It should be noted that throughout the text a superscript ⁄ denotes a dimensional quantity. Barus (1891) employed the fol-
lowing linear expression:
g� ¼ g�0 1þ d� p� � p�0
� �� �

ð2Þ
which is equivalent to Eq. (1) for small values of d⁄ and/or small pressure differences. As noted by Schaschke (2010), simple
models like the above may be used only for simple and small molecules and not for long chain molecules, such as polymers
and oil mixtures. Other formulae proposed in the literature, which better fit experimental results for complex fluids, can be
found in Málek and Rajagopal (2007).

The pressure-dependence of the viscosity in lubrication (Szeri, 1998), viscometric and other flows has been analyzed
mathematically by various investigators (Hron, Málek, & Rajagopal, 2001; Lanzendörfer & Stebel, 2011; Málek &
Rajagopal, 2007; Marušić & Pažanin, 2013; Renardy, 2003). Hron et al. (2001) studied various unidirectional and two-dimen-
sional flows of simple fluids with pressure-dependent viscosities and showed that unidirectional flows corresponding to
Couette or Poiseuille flow are possible only in special forms of the viscosity. Kalogirou, Poyiadji, and Georgiou (2011) com-
piled analytical solutions for internal, Poiseuille-type, steady flows. More specifically, these authors studied the unidirec-
tional plane, axisymmetric and annular Poiseuille flows of a Newtonian liquid assuming that the viscosity obeys Eq. (2).
Pruša, Srinivasan, and Rajagopal (2012) have recently investigated the role of pressure-dependent viscosity in measurements
with falling cylinder viscometers and showed that the error introduced by the application of the classical constant-viscosity
formula can be significant for some fluids. They also proposed a heuristic correction to that formula.

So far, however, investigation of external flows with pressure-dependent viscosity are almost absent from the literature.
As far as we are aware, no analytical solutions exists, and only some limiting numerical results for the unbounded axisym-
metric flow past a sedimenting sphere in a power-law ambient fluid have been presented by Chung and Vaidya (2010).
Although in external inertialess flows, one does not expect very large variations of the pressure due to flow, the non-linearity
of the governing equations may be adequate to predict unexpected and new flow phenomena.

Of particular interest to the present work is the flow around a sphere, i.e. the simplest flow relevant to falling body type
viscometry. More specifically, we have chosen to study the influence of a pressure-dependent shear viscosity on the steady,
creeping, incompressible flow of a Newtonian liquid of mass density q�f past a rigid sphere of radius R⁄ and mass density q�s .
Two different cases are investigated. In the first case, the mass densities of the fluid and the sphere are assumed to be equal,
i.e. the sphere is neutrally buoyant, and shear is applied far from the sphere. In the second case, q�s > q�f but no shear is
applied, and thus the sphere sediments with a constant terminal velocity.

For a neutrally buoyant sphere under the influence of simple shear flow imposed far from the sphere, it is known that
non-linear effects, such as inertia or viscoelasticity, break the fore-and-aft symmetric configuration of the streamlines
around the sphere, in the plane which shear is applied. Indeed, Lin, Peery, and Schowalter (1970) and Subramanian and
Koch (2007), among others, have shown that the inclusion of the inertia terms into the governing equations destroys the
symmetry of the orbits of the fluid elements around the sphere. This may have important consequences for the heat transfer
around the spherical particle, as well for the bulk properties of suspensions of particulates (Subramanian & Koch, 2007).
D’Avino et al. (2008) and Housiadas and Tanner (2011) considered the case where the matrix fluid is a viscoelastic fluid
and showed that the fore-and-aft symmetry of the streamlines also then breaks down. In the present work, it is shown that
an alternative cause of the destruction of the streamline symmetry around a spherical particle is the non-linearity intro-
duced by the pressure dependence of the viscosity of the matrix fluid.

Recently, is has been demonstrated that for internal, fully developed, laminar flows in straight channels and circular tubes
the perturbation solution up to fourth order in d (for the definition of the dimensionless coefficient d see the subsequent sec-
tion) is an excellent approximation of the full, analytical solution (Poyiadji, Housiadas, Kaouri, & Georgiou, 2015). For the
problems under consideration, and for typical flow conditions, the dimensionless pressure-viscosity coefficient is a small
number, i.e. d� 1. Since the full, non-linear, governing equations cannot be solved analytically, we employed a regular per-
turbation scheme with the small number being the d coefficient.

The rest of the paper is organized as follows. In Section 2, the assumptions, governing equations and boundary conditions
are presented in dimensionless form. In Section 3, the solution procedure and the analytical solution up to first order is pre-
sented for the simple shear case. In the same section, the streamlines around the sphere are calculated and discussed. The
main conclusions are summarized in Section 4. Finally, in Appendix A, it is shown that no analytical solution can be found
with the proposed method for the two-dimensional flow past a sedimenting sphere.

2. Problem definition

The steady, creeping, isothermal flow around a sphere is considered. The ambient fluid is assumed to be Newtonian with
constant mass density q�f , and a variable shear viscosity g⁄, given by either one of Eqs. (1) and (2). A fixed spherical
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coordinate system ðr; h;/Þ with the origin at the centre of the sphere is used; the unit vectors are denoted by er, eh, eu. A
schematic representation of the flow is illustrated in the left panel in Fig. 1, where a Cartesian coordinate system (x,y,z)
is also shown for convenience. The z-axis is in the direction of gravity and shear is applied in the xy plane. The Cartesian
and spherical coordinates are connected through the standard relations x = rsin(h) cos(/), y = rsin(h)sin(/), and z = rcos(h).

The radius of the sphere, R⁄, is used to scale all lengths, and the quantity R� _c� is used to scale the velocity vector v⁄. The
viscosity is made dimensionless by g�0 and the pressure difference p� � p�0 is scaled by g�0 _c�. With these characteristic scales
and the aforementioned assumptions, the dimensionless governing equations in absence of any other external forces and
torques are written as follows:
Fig. 1.
sphere
r � v ¼ 0 ð3Þ
� rpþ gr2v þrg � _c ¼ 0 ð4Þ
where _c ¼ rv þ ðrvÞT is the rate of deformation tensor, and T denotes the transpose of a tensor. The dimensionless equa-
tions for the shear viscosity as a function of pressure are
g ¼ 1þ dp ð5Þ
and
g ¼ expðdpÞ ð6Þ
for the linear and the exponential (Barus) cases, respectively, where
d � d�g�0 _c� ð7Þ
The dimensionless flow domain is f1 6 r <1; 0 < h < p; 0 6 / < 2pg.
The no-slip and no-penetration conditions are assumed to hold at the surface of the sphere:
v ¼ X sinðhÞeh at r ¼ 1 ð8Þ
where X is the unknown angular velocity of the sphere, which is evaluated by means of the torque-free-condition:
Z
r¼1

er � ð�pIþ g _cÞ � erf gdS ¼ 0 ð9Þ
where I is the unit tensor.
Far from the sphere the velocity approaches a steady terminal value of the sphere and the pressure becomes equal to the

datum pressure which can be taken to be zero:
v ! vð1Þ ¼ yex; p! pð1Þ ¼ 0; at r !1 ð10Þ
In spherical coordinates, y = rsin(h)sin(/) and ex = sin(h)cos(/)er + cos(h)cos(/)eh � sin(/)eu; thus the velocity profile far
from the sphere, v(1), becomes:
vð1Þ ¼ r
4
ð1� cosð2hÞÞ sinð2/Þ

n o
er þ

r
4

sinð2hÞ sinð2/Þ
n o

eh þ � r
2

sinðhÞð1� cosð2/ÞÞ
n o

eu ð11Þ
Flow configuration and coordinate system. Left: A neutrally buoyant, freely rotating sphere under simple shear at infinity. Right: Sedimentation of a
in a stream with uniform velocity.
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3. Solution and discussion

Since the dimensionless pressure-viscosity coefficient is a small number, i.e. d� 1, a regular perturbation scheme is
employed as follows:
X ¼ X0 þ dX1 þ d2X2 þ d3X3 þ d4X4 þ Oðd5Þ; X 2 fv;p;g;Xg ð12Þ
Substituting expression (12) into the governing equations and collecting terms of the same order of magnitude, result in a
sequence of sets of partial differential equations. The zero-order problem corresponds to the creeping flow for a Newtonian
fluid with constant viscosity, i.e. g0 = 1:
r � v0 ¼ 0; �rp0 þr2v0 ¼ 0; r2p0 ¼ 0 ð13Þ

v r;0 ¼ vh;0 ¼ 0; v/;0 ¼ X0 sinðhÞ;
Z p

h¼0

Z 2p

/¼0

_cr/;0 sin2ðhÞdhd/ ¼ 0 at r ¼ 1 ð14Þ

v0ðr !1Þ ¼ yex; p0ðr !1Þ ¼ 0 ð15Þ
The solution of this (linear) problem can be derived with various methods (see, e.g., Leal, 2007):
p0 ¼ � 5
4r3 ð1� cosð2hÞÞ sinð2/Þ

v r;0 ¼ 1� cos 2hð Þð Þ sinð2/Þ r
4 1� 5

2r3 þ 3
2r5

� �
vh;0 ¼ sinð2hÞ sinð2uÞ r

4 1� 1
r5

� �
v/;0 ¼ � r

2 sinðhÞ 1� cosð2/Þ 1� 1
r5

� �� �

9>>>>=
>>>>;

ð16Þ
The higher-order problems in the small parameter, d, are as follows:
r � vj ¼ 0; �rpj þr2vj þ f j ¼ 0; r2pj ¼ r � f j ð17Þ

v r;j ¼ vh;j ¼ 0; v/;j ¼ Xj sinðhÞ;
Z p

h¼0

Z 2p

/¼0
ðg _cruÞj sin2ðhÞdhd/ ¼ 0 at r ¼ 1 ð18Þ

vj ¼ pj ¼ 0 at r !1 ð19Þ
where fj is a vector which depends on all the lower-order solutions for the velocity and the pressure, i.e. fj = fj (vk,pk),
k = 0,1, . . . ,j � 1. In particular:
f1 ¼ p0r2v0 þrp0 � _c0

f2 ¼ p0 frp0 � _c0 þr2v1

� 	
þ f

p2
0

2
þ p1


 �
r2v0 þrp0 � _c1 þrp1 � _c0

f3 ¼ p0 f rp0 � _c1 þrp1 � _c0ð Þ þ r2v2

h i
þ f

p2
0

2
þ p1


 �
rp0 � _c0 þr2v1

� 	
þ f

p3
0

6
þ p0p1


 �
þ p2

� 
r2v0

þrp0 � _c2 þrp1 � _c1 þrp2 � _c0

f4 ¼ p0 f rp0 � _c2 þrp1 � _c1 þrp2 � _c0ð Þ þ r2v3

h i
þ f

p2
0

2
þ p1


 �
rp0 � _c1 þrp1 � _c0 þr2v2

� 	

þ f
p3

0

6
þ p0p1


 �
þ p2

� 
rp1 � _c0 þr2v1

� 	
þ f

p4
0

24
þ p2

0p1 þ p2
1

2
þ p0p2


 �
þ p3

� 
r2v0

þrp0 � _c3 þrp1 � _c2 þrp2 � _c1 þrp3 � _c0
In the above expressions, f = 0 with the linear and f = 1 with the exponential formula for the viscosity.
In order to find the solutions for the linear problems given in Eqs. (17)–(19), a solution procedure which is very similar to

that previously described by Housiadas and Tanner (2014) is followed. In particular, the primary flow variables in the gov-
erning equations at order O(dj), j ¼ 1;2;3;4 are assumed to be as follows:
Xj ¼

XMj=2

m¼0

XMj

n¼0

½XjðrÞ�ðmÞn e2im/ cosðnhÞ; X ¼ v r;p

XMj

m¼0

XMj

n¼1

½XjðrÞ�ðmÞn e2im/ sinðnhÞ; X ¼ vh;v/

8>>>>><
>>>>>:

ð20Þ
where Mj = 2(j + 1), and ½XjðrÞ�ðmÞn are functions of the radial distance, r, that have to be determined. Expression (20), which is
valid even for j = 0, is substituted in the governing equations, and then the following steps are performed for each wavenum-
ber in the /-angle, m:
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(i) Solve the continuity equation, i.e. the first one in (17), to find v/, j.
(ii) Solve the Poisson equation, i.e. the third one in (17), to find pj.

(iii) Solve the radial component of the momentum equation, i.e. the second one in (17), to find vr,j.
(iv) Solve the azimuthal component of the momentum equation, i.e. the second one in (17), to find vh,j.

In step (i) the azimuthal component of the velocity is found algebraically, while in steps (ii), (iii) and (iv) the differential
equations are solved together with the appropriate boundary conditions (18) and (19). Following this procedure, the solu-
tions to the first-, second- and third-order problems are calculated and only the zero Fourier mode in the /-angle for the
fourth-order problem (which is the only Fourier mode that is required for the calculation of the angular velocity of the
sphere).

The analytical solution at first order in d is the same for both the linear and exponential formulas for the viscosity, and has
the following form:
p1 ¼ p½0�1 ðr; hÞ þ p½4�1 ðr; hÞ cosð4/Þ
v r1 ¼ v ½0�r1 ðr; hÞ þ v ½4�r1 ðr; hÞ cosð4/Þ
vh1 ¼ v ½0�h1ðr; hÞ þ v ½4�h1ðr; hÞ cosð4/Þ
v/1 ¼ v ½4�/1ðr; hÞ sinð4/Þ

9>>>>>=
>>>>>;

ð21Þ
where [X](m) denotes the m-Fourier mode of X in the /-angle which depends on r and h:
v ½0�r1 ¼
ð1� rÞ2

21504r6 �5ð�243þ 212rð2þ rÞÞ � 36½25ð�3þ 4rð2þ rÞÞ� cosð2hÞ þ 525½9þ 4rð2þ rÞ� cosð4hÞf g

v ½4�r1 ¼ �
25ðr � 1Þ2ð9þ 8r þ 4r2Þ sin4ðhÞ

128r6

v ½0�h1 ¼
ðr � 1Þ ð90� 785rÞ þ 105ð6þ rÞ cosð2hÞð Þ sinð2hÞ

1792r6

v ½4�h1 ¼
15ð1� rÞð6þ rÞ cosðhÞ sin3ðhÞ

64r6

v ½4�/1 ¼
15ð1� rÞð6þ rÞ cosðhÞ sin3ðhÞ

64r6

p½0�1 ¼
19740þ r2ð�12600� 567r þ 760r3Þ

10752r8 þ
5 �364þ r2ð280� 21r þ 24r3Þ
� �

10752r8 cosð2hÞ

þ
105 20þ r2ð�40� 21r þ 40r3Þ

� �
10752r8 cosð4hÞ

p½4�1 ¼
5 �20þ 40r2 þ 21r3 � 40r5
� �

sin4ðhÞ
64r8
-4 -3 -2 -1 0 1 2 3 4
-2

-1

0

1

2

4 3 2 1

<

>

<
<

>
>

Y

X

-4 -3 -2 -1 0 1 2 3 4
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

> 2 >3
1

4b

4a

< >

Y

X

Fig. 2. Streamlines on the shear plane for a neutrally buoyant sphere for d = 0 (top) and d = 0.1 (bottom).
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The analytical solutions at higher orders are too long to be given here. They can be provided however upon request to the
authors.

A main quantity of interest is the angular velocity of the sphere. From Eq. (17) one gets X0 = �1/2, while from the higher
order solutions we find Xj ¼ 0; j ¼ 1;2;3;4. Therefore, the rotation of the sphere is exclusively due to the rotation of the
ambient fluid at infinity and is not affected by the viscosity pressure dependence (up to fourth order in d for both the linear
and the exponential cases).

It is also worthy to investigate the effect of the pressure-dependent viscosity on the streamlines. On the xy-shear plane,
the streamlines are obtained by solving numerically the following initial value problem:
Fig. 3.
d = 0.1.
dx
dt
¼ vx � cosð/Þv rðr;p=2;/Þ � sinð/Þv/ðr;p=2;/Þ

dy
dt
¼ vy � sinð/Þv rðr;p=2;/Þ þ cosð/Þv/ðr;p=2;/Þ

xð0Þ ¼ x0; yð0Þ ¼ y0

ð22Þ
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Viscosity (a), and pressure (b) contours on the shear plane, x � y, for a neutrally buoyant sphere and a fluid which follows the Barus formula with
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where (x0,y0) is the initial position of any massless fluid element at an arbitrary inception of time (t = 0), vr (r,p/2,/) and
v/(r,p/2,/) are constructed up to O(d3), and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, / = tan�1(x,y). The integration of Eq. (22) is done using a 4th–

5th order accurate Runge–Kutta–Fehlberg method with an error control tolerance 10�14 in order to achieve the maximum
numerical accuracy. The results for constant viscosity (d = 0) are shown in Fig. 2(a) (see also Leal, 2007, Housiadas & Tanner,
2011). The fore-and-aft and up-and-down symmetry is clearly seen. Also, the streamlines away from the sphere are open,
which means that fluid elements at initial positions for which the distance from the y-axis is larger than a critical distance
yc = yc(x) are only slightly affected by the presence of the sphere. However, fluid elements initially at y < yc are trapped close
to the sphere. For instance, a fluid element which starts at a point (�1.5,0) follows the closed black trajectory labeled with an
1. Similarly, fluid elements which starting positions (�2,0), (�3,0) and (�4,0) follow the trajectories labeled with 2, 3 and 4,
respectively.

However, the fore-aft symmetry breaks in the cases for which d > 0. For instance, for a fluid following the Barus law with
d = 0.1, a fluid element at an initial position (�1.5,0) follows the trajectory labeled 1, ending up at minus infinity, as seen in
Fig. 2(b). A simpler trajectory is observed for initial positions (�3,0) and (�4,0), but eventually the fluid elements reach plus
infinity. Therefore, it appears that any kind of non-linearity which is caused either by inertia (Lin et al., 1970; Subramanian &
Koch, 2006), or by viscoelasticity (D’Avino et al., 2008, Housiadas & Tanner, 2011), or due to variations of the viscosity on the
pressure, destroys the fore-and-aft symmetry. Even more importantly, there exists no region of closed streamlines around
the sphere. Indeed, all calculations showed that all fluid elements no matter close to the sphere are, and irrespectively of
the magnitude of d, eventually will reach plus or minus infinity. Of course, the required time of course depends on d; the
larger d the faster the transition of the fluid elements away from the sphere. It is also seen in Fig. 2(b) that as the distance
from the x-axis increases (see for instance the trajectories for fluid elements which start at positions (�3.5,0.5) and
(3.5,�0.5), labeled as 4a and 4b, respectively), the influence of the viscosity variations due to pressure diminishes, and grad-
ually the streamlines tend to those for constant viscosity.

The viscosity and pressure contours for a neutrally buoyant sphere and a fluid which follows the Barus formula with
d = 0.1 are illustrated in Fig. 3. In particular, at h = p/2, i.e. at the shear plane (x,y), on which the third component of the veloc-
ity vector (vz = 0 in the Cartesian coordinates, or vh = 0 in the spherical coordinates) is zero, the viscosity contours are seen in
Fig. 3(a); one is reminded here, that x corresponds to the main flow direction, and y corresponds to the gradient direction. It
is seen that viscosity contours with values larger than unity are observed in the second (lower-right) and fourth (upper-left)
quadrature, while contours with values less that unity are observed in the first (upper-right) and third (lower-left) quadra-
ture. Thus, the viscosity is minimized along the first principal axis of the rate of strain tensor (i.e. at x = y), and is maximized
along the second principal axis (i.e. at x = �y). This is a consequence of the pressure distribution around the sphere. Indeed,
Fig. 3(b) shows that the pressure contours are qualitatively the same with the viscosity contours, namely larger than unity in
the second and fourth quadrature and less than unity is the first and the third one.

The behavior predicted in Fig. 3 may be important for complex fluids like non-colloidal hard-sphere suspensions. A region
of lower viscosity in the vicinity of one of the two main principal axes can cause the ambient liquid to flow faster in that
region, and slower in the vicinity of the other principal axis, resulting in alignment of the particles in the suspension. Con-
sequently, anisotropic microstructure of the particle distribution in the suspending fluid can be observed; the anisotropic
microstructure is known to be responsible for non-zero values for the bulk (average) first- and second- normal stress differ-
ences, even in the case of a Newtonian matrix fluid.

4. Conclusions

We have studied the unbounded creeping flow past a sedimenting sphere for which the ambient fluid is Newtonian with
shear viscosity depending either linearly or exponentially on the total pressure. The governing equations are solved analyt-
ically using a regular perturbation scheme with the small parameter being the dimensionless viscosity-pressure coefficient.
It is shown that a solution exists only for the simple (three-dimensional) shear case, while no solution could be found for the
sedimentation (axisymmetric) case.

The analytical solution reveals that for a neutrally buoyant sphere, the non-linearity of the governing equations, due to
the pressure-dependence of the viscosity, destroys the fore-and-aft symmetry of the streamlines around the sphere which
are observed in the constant viscosity, inertialess case. Moreover, the closed region of streamlines is eliminated. These fea-
tures are of importance in the rheology of particulate suspensions, in heat transfer around spherical particles, and in high
pressure viscosity measurements with falling body type viscometers (Pruša et al., 2012; Schaschke, 2010; Subramanian &
Koch, 2006). Last, the angular velocity of the sphere remains the same as for the constant viscosity, inertialess case.

As explained in Appendix A, it is not possible to derive analytical solutions for the two-dimensional flow past a sediment-
ing sphere, using the technique described above.

Appendix A. The simple sedimentation problem (i.e. in absence of shear)

We investigate here the existence of solutions for the simple sedimentation problem (in absence of shear); the flow con-
figuration and the coordinate system are illustrated on the right panel in Fig. 1. In this case, the mass density of the sphere q�s
is greater than the mass density of the fluid, and thus the sphere sediments with a constant velocity U⁄. Using U⁄ to scale the
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velocity vector, R⁄ to scale all distances, and g�0U�=R� to scale the pressure, the dimensionless governing equations are the
continuity equation (Eq. (3)) and the momentum balance:
�rpþ gr2v þrg � _cþ Stez ¼ 0; ðA1Þ
where St � q�f g�R�2
� 	

=ðg�0U�Þ is the Stokes number. By means of the modified pressure P � p � Stz, Eq. (A1) takes the follow-
ing form:
�rP þ gr2v þrg � _c ¼ 0 ðA2Þ
The dimensionless equation for the shear viscosity is g = 1 + ez + dP in the linear case and g = exp (ez + dP) in the exponential
case (Barus formula), where e � Std ¼ d�q�f g�R�. The boundary conditions for this problem are v(r = 1) = 0, v(r ?1) = �ez,
P(r ?1) = 0.

Following the perturbation scheme, described in Section 3, in terms of d, the zero-order equations O(d0) are
r � v0 ¼ 0; �rP0 þ g0r2v0 þ egfez � _c0 ¼ 0; �r2P0 þ 2eez � r2v0 ¼ 0 ðA3Þ
The boundary conditions are v0(r = 1) = 0, v0 (r ?1) = �ez, P0(r ?1) = 0. In Eq. (A3), the zero-order viscosity is g0 = 1 + ez
and g = exp(ez) for the linear (f = 0) and exponential (f = 1) cases, respectively. These lowest-order expressions actually
reflect the effect of the hydrostatic pressure on the shear viscosity of the fluid. In Eq. (A3),rg0 = egfez,rrg0 = ezeze2gff have
been taken into account. Obviously, for the linear case rg0 = eez, rrg0 = 0, while for the exponential case rg0 = eeezez,
rrg0 = e2eezezez.

We explored a variety of methods to solve Eq. (A3) analytically. However, we could not find a solution. A further attempt
to consider a second perturbation scheme with the small parameter being e, did not work as well. In particular, if we assume
that:
X0 ¼ X0;0 þ eX0;1 þ e2X0;2 þ Oðe3Þ; X0 ¼ v0; P0;g0 ðA4Þ
and substitute in Eq. (A3) and the boundary conditions, the O(e0) problem is the following:
r � v0;0 ¼ 0; �rP0;0 þ g0;0r2v0;0 ¼ 0; r2P0;0 ¼ 0 ðA5Þ
v0;0ðr ¼ 1Þ ¼ 0; v0;0ðr !1Þ ¼ �ez; P0;0ðr !1Þ ¼ 0 ðA6Þ
where g0,0 = 1. The solution of Eqs. (A5) and (A6) (with v/, 0 = 0 and no-dependence on the azimuthal angle /) is the well-
known two-dimensional solution of steady creeping Newtonian flow past a sedimenting sphere (Leal, 2007):
P0 ¼ p0 � St r cosðhÞ ¼ 3
2r2 cosðhÞ

v r;0 ¼ �1þ 3
2r � 1

2r3

� �
cosðhÞ

vh;0 ¼ 1� 3
4r � 1

4r3

� �
sinðhÞ

9>=
>; ðA7Þ
The O(e1) governing equations and accompanying boundary conditions are:
r � v0;1 ¼ 0; �rP0;1 þr2v0;1 þ zrP0;0 þ ez � _c0;0 ¼ 0; �r2P0;1 þ 2ez � rP0;0 ¼ 0 ðA8Þ
v0;1ðr ¼ 1Þ ¼ v0;1ðr !1Þ ¼ 0; P0;1ðr !1Þ ¼ 0 ðA9Þ
In fact, Eqs. (A8) and (A9) are the O(d0e1) governing equations. However, there is no solution of these equations since not all
of the required (homogeneous) boundary conditions can be satisfied.
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