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A B S T R A C T

Analytical solutions are derived for the cessation of annular Poiseuille and Couette flows of a Newtonian fluid
in the presence of dynamic wall slip. We employ linear dynamic slip law involving a slip relaxation parameter,
which results in the appearance of the eigenvalue parameters in the boundary conditions and thus leads
to distinct Sturm–Liouville problems that differ from their static slip counterparts. The proper orthogonality
condition is derived and closed-form analytical solutions are obtained for both flows of interest. Representative
results are then presented and discussed. In agreement with previous reports for other flows with dynamic
wall slip, the present solutions show that wall slip slows down flow dynamics and this effect becomes more
pronounced as the slip-relaxation parameter is increased.
1. Introduction

The classical no-slip boundary condition dictates that fluid particles
adjacent to a solid boundary, i.e., a wall, adhere to it, attaining its
velocity. However, several experimental studies have demonstrated
that the no-slip condition is often violated in many flows of both simple
and complex fluids [1,2]. In such a case, the relative velocity of the
fluid particles with respect to that of the wall is called slip velocity. Wall
slip can have beneficial effects, such as reducing the required pressure
drop in microfluidic applications [1,3]. However, it can also cause
undesired instabilities in certain industrial flows [4,5]. Moreover, wall
slip can affect viscosity measurements in viscometric experiments, re-
sulting in inaccurate rheology data [6]. To account for wall slip, several
techniques, such as the Mooney method for capillary rheometers [7]
and the techniques proposed by Yoshimura and Prud’homme [8] for
circular Couette and parallel disk rheometers, are employed to obtain
reliable estimates of rheological parameters.

Wall slip has been the subject of extensive experimental, theoretical,
and numerical investigations. The slip velocity generally depends on
multiple factors, including the properties of the fluid, flow conditions
(such as shear and normal stresses, pressure, temperature), and char-
acteristics of the wall/fluid interface [2,9]. Navier’s law [10] assumes
a linear relationship between the slip velocity, 𝑢𝑤, and the wall shear
stress, 𝜏𝑤, and incorporates a single material parameter, 𝛽, to represent
all other contributing effects:

𝑢𝑤 =
𝜏𝑤
𝛽

(1)
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The special case of the no-slip boundary condition is recovered, when
the value of 𝛽 approaches infinity. Eq. (1) is static, which implies that
the slip velocity does not depend explicitly on the past behavior of the
fluid particles. More complex static slip equations have been proposed,
such as the power-law modification of Navier’s law, non-monotonic slip
equations, and equations that predict slip above a stress threshold [2].

In the present study, the focus is on dynamic slip equations that
are applicable to time-dependent flows and incorporate a relaxation
time parameter, denoted as 𝜆. The dynamic version of Eq. (1) takes
the following form [2]:

𝑢𝑤 + 𝜆
𝜕𝑢𝑤
𝜕𝑡

=
𝜏𝑤
𝛽

(2)

where 𝑡 is the time. It should be pointed out that in steady-state
flows, Eq. (2) is equivalent to the Navier slip Eq. (1). The presence of
the relaxation parameter implies that the development of slip velocity
depends on the past states of the wall shear stress. Dynamic wall slip
has been reviewed by Hatzikirakos [2]; see also [11].

The idea of a dynamic slip equation, i.e., a retarted slip boundary
condition was first introduced by Pearson and Petrie [12]. Malkin
and Patlazhan [13] note that the ‘retarded’ slip boundary conditions
become relevant at large shear rates, which is also supported by the
work of Kazatchkov and Hatzikiriakos [14], who proposed a multimode
dynamic slip model along with the Wagner constitutive equation to
simulate the stress response in start-up and large-amplitude oscillatory
shear experiments on a linear low-density polyethylene. In addition
to empirical models, it is worthwhile mentioning that dynamic slip
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Fig. 1. Geometry of annular Poiseuille flow; the flow is driven by a pressure gradient
𝐺 = (−𝜕𝑝∕𝜕𝑧).

equations have also been developed using a network kinetic theory
combined with Brownian dynamics to simulate the polymer/wall in-
terface [15] and using molecular dynamics simulations to study slip
at a solid–fluid boundary [16]. It should be noted that in the latter
work, Thalakkottor and Mohseni [16] pointed out that the resulting
dynamic slip equation concerned not only gas but also simple liquid
flows, i.e., Newtonian flows. More recently, Ebrahimi et al. [17] re-
ported that a dynamic slip equation with a (single) slip relaxation time
combined with the K-BKZ viscoelastic constitutive equation is needed to
adequately predict the experimental small-angle oscillatory shear and
step strain relaxation data on a polydisperse high-density polyethylene
melt at large shear deformations. Ebrahimi et al. reported the value 𝜆
= 0.224 s for the slip relaxation time [17].

Kaoullas and Georgiou [11] utilized standard separation of variables
to obtain analytical solutions for the start-up and cessation of Newto-
nian plane and axisymmetric Poiseuille and circular Couette flows with
dynamic wall slip. They noted that the eigenvalue parameter appears
in the boundary conditions, which produces a Sturm–Liouville problem
distinct from that found with the static Navier law, Eq. (1). The primary
finding is that dynamic wall slip damps the flow development even
more than static wall slip. Similarly, Abou-Dina et al. [18] arrived at
equivalent analytical solutions of the start-up Newtonian Couette flow
with dynamic wall slip along the fixed wall, using both separation of
variables and one-sided Fourier transform methods, and reached the
same conclusion.

It is the purpose of this work to derive analytical solutions of the
cessation of Newtonian annular Poiseuille and Couette flows in the
presence of dynamic wall slip following Eq. (2), which is linear. As
demonstrated below, the time-dependence in the boundary condition
leads to a more difficult mathematical problem to solve than its static
counterpart. The spatial problem is of Sturm–Liouville type where the
eigenvalue parameter appears in the boundary condition and thus,
the orthogonality condition of the corresponding spatial eigenfunctions
must be considered more carefully. In Section 2, we consider the an-
nular Poiseuille flow of a Newtonian fluid with dynamic wall slip. The
appropriate orthogonality condition for the spatial eigenfunctions is de-
rived and the full procedure for the solution is given. The implications
of the dynamic slip term in the slip equation are then discussed. The
annular Couette flow is solved analytically in Section 3. In Section 4,
the results for the annular Poiseuille and Couette flow are summarized.
Concluding remarks are provided in Section 5.

2. Annular Poiseuille flow

We consider the time-dependent, axial, incompressible, pressure-
driven flow of a Newtonian fluid in an infinitely long annular tube
of radii 𝜅𝑅 and 𝑅, where 0 < 𝜅 < 1 (Fig. 1). We employ cylindrical
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coordinates (𝑟, 𝜃, 𝑧), denote the pressure gradient by 𝐺 = (−𝜕𝑝∕𝜕𝑧),
and assume that gravity is negligible. Under these conditions the z-
component of the momentum equation is simplified as follows [19]:

𝜌
𝜕𝑢𝑧
𝜕𝑡

= 𝐺 + 𝜂 1
𝑟
𝜕
𝜕𝑟

(

𝑟
𝜕𝑢𝑧
𝜕𝑟

)

, (3)

where 𝑢𝑧 = 𝑢𝑧(𝑟, 𝑡) is the axial velocity, and 𝜌 and 𝜂 are, respectively,
the density and the viscosity of the fluid, both of which are assumed to
be constant.

In the present work we assume that wall slip occurs along the two
cylinders, i.e., at 𝑟 = 𝜅𝑅 and 𝑅, following the dynamic slip law given in
Eq. (2). Under the above assumptions and noting that the shear stress
is positive near the inner cylinder (𝑢𝑧 increases with the radial distance
𝑟) and negative near the outer one (𝑢𝑧 is decreasing), one obtains for
the two wall shear stresses:

𝜏𝑤1 = |

|

𝜏𝑟𝑧||𝑟=𝜅𝑅 = 𝜂
𝜕𝑢𝑧
𝜕𝑟

|

|

|

|𝑟=𝜅𝑅
, 𝜏𝑤2 = |

|

𝜏𝑟𝑧||𝑟=𝑅 = −𝜂
𝜕𝑢𝑧
𝜕𝑟

|

|

|

|𝑟=𝑅
. (4)

Thus, the boundary conditions at 𝑟 = 𝜅𝑅 and 𝑅 read:

𝑢𝑧(𝜅𝑅, 𝑡) + 𝜆
𝜕𝑢𝑧(𝑟, 𝑡)

𝜕𝑡
|

|

|

|𝑟=𝜅𝑅
=

𝜂
𝛽

𝜕𝑢𝑧(𝑟, 𝑡)
𝜕𝑟

|

|

|

|𝑟=𝜅𝑅

𝑢𝑧(𝑅, 𝑡) + 𝜆
𝜕𝑢𝑧(𝑟, 𝑡)

𝜕𝑡
|

|

|

|𝑟=𝑅
= −

𝜂
𝛽

𝜕𝑢𝑧(𝑟, 𝑡)
𝜕𝑟

|

|

|

|𝑟=𝑅

⎫

⎪

⎬

⎪

⎭

(5)

2.1. Steady-state solution

The steady-state annular Poiseuille flow solution, denoted by 𝑢𝑠𝑧(𝑟),
which serves as the initial condition of the flow cessation, is outlined
below. This is easily obtained by integrating the steady-state version of
Eq. (3) and applying the static (Navier) boundary conditions

𝑢𝑠𝑧(𝜅𝑅) =
𝜂
𝛽

𝑑𝑢𝑠𝑧
𝑑𝑟

|

|

|

|

|𝑟=𝜅𝑅

𝑢𝑠𝑧(𝑅) = −
𝜂
𝛽

𝑑𝑢𝑠𝑧
𝑑𝑟

|

|

|

|

|𝑟=𝑅

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(6)

If the maximum velocity occurs at 𝑟 = 𝜎𝑅, where 𝜅 < 𝜎 < 1, then 𝑢𝑠𝑧(𝑟)
can be written in the following form [20]:

𝑢𝑠𝑧(𝑟) =
𝐺𝑅2

4𝜂

[

1 + 2(1 − 𝜎2)
𝜂
𝛽𝑅

− 𝑟2

𝑅2
− 2𝜎2 ln

(𝑅
𝑟

)

]

, (7)

where

𝜎2 =
1 − 𝜅2 + 2(1 + 𝜅)𝜂∕(𝛽𝑅)

2[ln(1∕𝜅) + (1 + 1∕𝜅)𝜂∕(𝛽𝑅)]
(8)

It turns out that the slip velocities along the two cylinders are given by

𝑢𝑠𝑤1
= 𝑢𝑠𝑧(𝜅𝑅) =

𝐺𝑅
2𝜅𝛽

(𝜎2 − 𝜅2) (9)

and

𝑢𝑠𝑤2
= 𝑢𝑠𝑧(𝑅) =

𝐺𝑅
2𝛽

(1 − 𝜎2). (10)

Integrating 𝑢𝑠𝑧(𝑟) over the annulus cross-section yields the volumetric
flow rate

𝑄𝑠 = 𝜋𝐺𝑅4

8𝜂

{

1 − 𝜅4 + 4(1 + 𝜅3)𝐵 −
[1 − 𝜅2 + 2(1 + 𝜅)𝐵]2

ln(1∕𝜅) + (1 + 1∕𝜅)𝐵

}

(11)

where

𝐵 ≡ 𝜂
𝛽𝑅

(12)

is the dimensionless slip number.
Hereafter, we will work with the dimensionless equations, scaling

lengths by 𝑅, the velocity by the mean steady-state velocity, 𝑈 ≡
𝑄𝑠∕[𝜋(1 − 𝜅2)𝑅2], and time by 𝜌𝑅2∕𝜂. Dimensionless variables are
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denoted by stars. Thus, the dimensionless steady-state velocity is given
by

𝑢𝑠∗𝑧 (𝑟∗) =
2(1 − 𝜅2)

[

1 + 2(1 − 𝜎2)𝐵 − 𝑟∗2 − 2𝜎∗2 ln(1∕𝑟∗)
]

1 − 𝜅4 + 4(1 + 𝜅3)𝐵 −
[

1−𝜅2+2(1+𝜅)𝐵
]2

ln(1∕𝜅)+(1+1∕𝜅)𝐵

. (13)

he no-slip solution is recovered by setting 𝐵 = 0 (𝛽 → ∞).

.2. Flow cessation

In this section, we consider the flow cessation assuming that initially
𝑡∗ = 0) the velocity is the steady-state solution given by Eq. (13), and
he pressure gradient suddenly (𝑡∗ > 0) vanishes. The resulting initial
oundary value problem can be written as follows:

𝜕𝑢∗𝑧
𝜕𝑡∗

= 1
𝑟∗

𝜕
𝜕𝑟∗

(

𝑟∗
𝜕𝑢∗𝑧
𝜕𝑟∗

)

, 𝜅 ≤ 𝑟∗ ≤ 1, 𝑡∗ > 0

𝑢∗𝑧(𝜅, 𝑡) + 𝛬
𝜕𝑢∗𝑧(𝑟

∗, 𝑡∗)
𝜕𝑡∗

|

|

|

|

|𝑟∗=𝜅

= 𝐵
𝜕𝑢∗𝑧(𝑟

∗, 𝑡∗)
𝜕𝑟∗

|

|

|

|

|𝑟∗=𝜅

, 𝑡∗ ≥ 0

𝑢∗𝑧(1, 𝑡
∗) + 𝛬

𝜕𝑢∗𝑧(𝑟
∗, 𝑡∗)

𝜕𝑡∗
|

|

|

|

|𝑟∗=1

= −𝐵
𝜕𝑢∗𝑧(𝑟

∗, 𝑡∗)
𝜕𝑟∗

|

|

|

|

|𝑟∗=1

, 𝑡∗ ≥ 0

𝑢∗𝑧(𝑟
∗, 0) = 𝑢𝑠∗𝑧 (𝑟∗), 𝜅 ≤ 𝑟∗ ≤ 1

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

,

(14)

where

𝛬 ≡ 𝜆𝜂
𝜌𝑅2

(15)

is the dimensionless slip relaxation number.
The above problem is solved using standard separation of variables.

Letting

𝑢∗𝑧(𝑟
∗, 𝑡∗) = 𝑋(𝑟∗)𝑇 (𝑡∗), (16)

substituting into the governing partial differential equation (Eq. (14)𝑎),
nd separating variables, the solution takes the form

∗
𝑧(𝑟

∗, 𝑡∗) =
∞
∑

𝑛=1
𝐴𝑛𝑋𝑛(𝑟∗)𝑒−𝛼

2
𝑛 𝑡

∗
, (17)

where 𝑋𝑛, 𝛼𝑛, 𝑛 = 1, 2,… are the admissible eigenfunctions and the
corresponding eigenvalues. The eigenfunctions 𝑋𝑛 are given by

𝑋𝑛(𝑟∗) = 𝑍𝑛
0 (𝛼𝑛𝑟

∗) (18)

as the solutions of
[

𝑟∗𝑋′
𝑛(𝑟

∗)
]′ + 𝛼2𝑛𝑟

∗𝑋𝑛(𝑟∗) = 0. (19)

Here, the functions 𝑍𝑛
𝑖 , 𝑖 = 0, 1 are defined by means of

𝑍𝑛
𝑖 (𝑟

∗) = 𝐽𝑖(𝑟∗) + 𝛽𝑛𝑌𝑖(𝑟∗), 𝑖 = 1, 2, (20)

where 𝐽𝑖, 𝑌𝑖 are the 𝑖𝑡ℎ-order Bessel functions of the first and second
kind, respectively, and the constants 𝛽𝑛 are determined together with
𝛼𝑛 by applying the boundary conditions (Eq. (14)𝑏,𝑐). One finds that
(𝛼𝑛, 𝛽𝑛) are the solutions of the following algebraic system:

𝑋𝑛(𝜅)
(

1 − 𝛬𝛼2𝑛
)

= 𝐵𝑋′
𝑛(𝜅)

𝑋𝑛(1)
(

1 − 𝛬𝛼2𝑛
)

= −𝐵𝑋′
𝑛(1)

}

(21)

or
𝑍𝑛

0 (𝜅𝛼𝑛)
(

1 − 𝛬𝛼2𝑛
)

= −𝐵𝛼𝑛𝑍𝑛
1 (𝜅𝛼𝑛)

𝑍𝑛
0 (𝛼𝑛)

(

1 − 𝛬𝛼2𝑛
)

= 𝐵𝛼𝑛𝑍
𝑛
1 (𝛼𝑛)

}

. (22)

Therefore, the velocity is given by

𝑢∗𝑧(𝑟
∗, 𝑡∗) =

∞
∑

𝑛=1
𝐴𝑛𝑋𝑛(𝑟∗)𝑒−𝛼

2
𝑛 𝑡

∗
=

∞
∑

𝑛=1
𝐴𝑛𝑍

𝑛
0 (𝛼𝑛𝑟

∗)𝑒−𝛼
2
𝑛 𝑡

∗
. (23)

Once the constants 𝐴𝑛 are calculated, all other quantities of interest,
such as the two slip velocities, the shear stress 𝜏 , and the volumetric
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𝑟𝑧
flow rate 𝑄 are easily obtained. For example, the latter two quantities
are given by

𝜏∗𝑟𝑧(𝑟
∗, 𝑡∗) =

𝜕𝑢∗𝑧
𝜕𝑟∗

(𝑟∗, 𝑡∗) = −
∞
∑

𝑛=1
𝐴𝑛𝛼𝑛𝑍

𝑛
1 (𝛼𝑛𝑟

∗)𝑒−𝛼
2
𝑛 𝑡

∗ (24)

nd

∗(𝑡∗) = 2
1 − 𝜅2 ∫

1

𝜅
𝑢∗𝑧(𝑟

∗, 𝑡∗)𝑟∗𝑑𝑟∗

= 2
1 − 𝜅2

∞
∑

𝑛=1

𝐴𝑛
𝛼𝑛

[

𝑍𝑛
1 (𝛼𝑛) − 𝜅𝑍𝑛

1 (𝛼𝑛𝜅)
]

𝑒−𝛼
2
𝑛 𝑡

∗
. (25)

The constants 𝐴𝑛 are determined by imposing the initial condition
Eq. (14)𝑑) and employing the proper orthogonality condition. In the
ase of dynamic wall slip (𝛬 ≠ 0) the resulting Sturm–Liouville problem
iffers from that for the static case. To derive the proper orthogonality
ondition, we employ the technique of Anderson and Thomas [11,21].
ultiplying Eq. (19) by 𝑋𝑘, 𝑘 = 1, 2,… and integrating over the interval

𝜅, 1) we have

∫

1

𝜅
[𝑟∗𝑋′

𝑛(𝑟
∗)]′𝑋𝑘(𝑟∗)𝑑𝑟∗ + 𝛼2𝑛 ∫

1

𝜅
𝑟∗𝑋𝑛(𝑟∗)𝑋𝑘(𝑟∗)𝑑𝑟∗ = 0. (26)

ntegrating the first integral by parts, we obtain

′
𝑛(1)𝑋𝑘(1) − 𝜅𝑋′

𝑛(𝜅)𝑋𝑘(𝜅) − ∫

1

𝜅
𝑟∗𝑋′

𝑛(𝑟
∗)𝑋′

𝑘(𝑟
∗)𝑑𝑟∗

+ 𝛼2𝑛 ∫

1

𝜅
𝑟∗𝑋𝑛(𝑟∗)𝑋𝑘(𝑟∗)𝑑𝑟∗ = 0. (27)

nterchanging 𝑛 and 𝑘 and subtracting the resulting equation from
q. (27) yield:
[

𝑋′
𝑛(1)𝑋𝑘(1) −𝑋′

𝑘(1)𝑋𝑛(1)
]

− 𝜅
[

𝑋′
𝑛(𝜅)𝑋𝑘(𝜅) −𝑋′

𝑘(𝜅)𝑋𝑛(𝜅)
]

+ (𝛼2𝑛 − 𝛼2𝑘)∫

1

𝜅
𝑟∗𝑋𝑘(𝑟∗)𝑋𝑛(𝑟∗)𝑑𝑟∗ = 0. (28)

ubstitution of the boundary conditions of Eq. (21) into Eq. (28) yields

𝛼2𝑛 − 𝛼2𝑘)

{

𝛬
𝐵

[

𝑋𝑛(1)𝑋𝑘(1) + 𝜅𝑋𝑛(𝜅)𝑋𝑘(𝜅)
]

+∫

1

𝜅
𝑟∗𝑋𝑛(𝑟∗)𝑋𝑘(𝑟∗)𝑑𝑟∗

}

= 0. (29)

The right term of Eq. (29) is not zero only when 𝑘 = 𝑛. Its value defines
a norm of the eigenfunction 𝑋𝑛(𝑟∗), denoted here by 𝑁𝑛:

𝑛 =
𝛬
𝐵

[

𝑋2
𝑛 (1) + 𝜅𝑋2

𝑛 (𝜅)
]

+ ∫

1

𝜅
𝑋2

𝑛 (𝑟
∗)𝑟∗𝑑𝑟∗. (30)

Therefore, one obtains:

𝛬
𝐵

[

𝑋𝑛(1)𝑋𝑘(1) + 𝜅𝑋𝑛(𝜅)𝑋𝑘(𝜅)
]

+ ∫

1

𝜅
𝑋𝑛(𝑟∗)𝑋𝑘(𝑟∗)𝑟∗𝑑𝑟∗ = 𝑁𝑛𝛿𝑛𝑘, (31)

here 𝛿𝑛𝑘 denotes Kronecker’s delta. Eq. (31) is the appropriate orthog-
nality condition for the problem of Eq. (14) [11].

By applying the initial condition (Eq. (14)𝑑), Eq. (17) yields:

𝑠∗
𝑧 (𝑟∗) =

∞
∑

𝑛=1
𝐴𝑛𝑋𝑛(𝑟∗). (32)

ultiplying the above equation by 𝑋𝑘(𝑟∗)𝑟∗ and integrating from 𝜅 to
yields

∫

1

𝜅
𝑢𝑠∗𝑧 (𝑟∗)𝑋𝑘(𝑟∗)𝑟∗𝑑𝑟∗ =

∞
∑

𝑛=1
𝐴𝑛 ∫

1

𝜅
𝑋𝑛(𝑟∗)𝑋𝑘(𝑟∗)𝑟∗𝑑𝑟∗. (33)

ultiplying Eq. (32) by 𝑋𝑘(𝑟∗) also leads to

(𝑟∗) = 𝑢𝑠∗𝑧 (𝑟∗)𝑋𝑘(𝑟∗) =
∞
∑

𝑛=1
𝐴𝑛𝑋𝑛(𝑟∗)𝑋𝑘(𝑟∗). (34)

alculating 𝑓 (1) + 𝜅𝑓 (𝜅), we obtain:

𝑠∗
𝑧 (1)𝑋𝑘(1) + 𝜅𝑢𝑠∗𝑧 (𝜅)𝑋𝑘(𝜅) =

∞
∑

𝐴𝑛
[

𝑋𝑛(1)𝑋𝑘(1) + 𝜅𝑋𝑛(𝜅)𝑋𝑘(𝜅)
]

. (35)

𝑛=1
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Fig. 2. Geometry of annular Couette flow; the flow is driven by the motion of the
inner cylinder.

Adding now the last equation multiplied by 𝛬∕𝐵 to Eq. (33), we have
∞
∑

𝑛=1
𝐴𝑛

{

𝛬
𝐵

[

𝑋𝑛(1)𝑋𝑘(1) + 𝜅𝑋𝑛(𝜅)𝑋𝑘(𝜅)
]

∫

1

𝜅
𝑋𝑛(𝑟∗)𝑋𝑘(𝑟∗)𝑟∗𝑑𝑟∗

}

= 𝛬
𝐵

[

𝑢𝑠∗𝑧 (1)𝑋𝑘(1) + 𝜅𝑢𝑠∗𝑧 (𝜅)𝑋𝑘(𝜅)
]

+ ∫

1

𝜅
𝑢𝑠∗𝑧 (𝑟∗)𝑋𝑘(𝑟∗)𝑟∗𝑑𝑟∗, (36)

which, by means of Eqs. (30) and (31), gives

𝐴𝑛 =
𝛬
𝐵

[

𝑢𝑠∗𝑧 (1)𝑋𝑛(1) + 𝜅𝑢𝑠∗𝑧 (𝜅)𝑋𝑛(𝜅)
]

+ ∫ 1
𝜅 𝑢𝑠∗𝑧 (𝑟∗)𝑋𝑛(𝑟∗)𝑟∗𝑑𝑟∗

𝛬
𝐵

[

𝑋2
𝑛 (1) + 𝜅𝑋2

𝑛 (𝜅)
]

+ ∫ 1
𝜅 𝑋2

𝑛 (𝑟∗)𝑟∗𝑑𝑟∗
. (37)

Recalling Eq. (18), we have:

𝐴𝑛 =
𝛬
𝐵

[

𝑢𝑠∗𝑧 (1)𝑍𝑛
0 (𝛼𝑛) + 𝜅𝑢𝑠∗𝑧 (𝜅)𝑍𝑛

0 (𝛼𝑛𝜅)
]

+ ∫ 1
𝜅 𝑢𝑠∗𝑧 (𝑟∗)𝑍𝑛

0 (𝛼𝑛𝑟
∗)𝑟∗𝑑𝑟∗

𝛬
𝐵

[

𝑍𝑛2
0 (𝛼𝑛) + 𝜅𝑍𝑛2

0 (𝛼𝑛𝜅)
]

+ ∫ 1
𝜅 𝑍𝑛2

0 (𝛼𝑛𝑟∗)𝑟∗𝑑𝑟∗
.

(38)

After some algebra, one gets:

𝐴𝑛 =
4(1 − 𝜅2)(1 − 𝛬𝛼2𝑛 )

𝛼3𝑛
{

1 − 𝜅4 + 4(1 + 𝜅3)𝐵 − [1−𝜅2+(1+𝜅)𝐵]2
ln(1∕𝜅)+(1+1∕𝜅)𝐵

}

×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛬𝛼4𝑛
[

2𝐵(1 − 𝜎2)𝑍𝑛
1 (𝛼𝑛)

−𝜅
{

2𝐵(1 − 𝜎2) + 1 − 𝜅2 − 2𝜎2 ln(1∕𝜅)
}

𝑍𝑛
1 (𝜅𝛼𝑛)

]

+2(1 − 𝛬𝛼2𝑛 )
[

2 + 𝐵(1 − 𝜎2)𝛼2𝑛 ][𝑍
𝑛
1 (𝛼𝑛) − 𝜅𝑍𝑛

1 (𝜅𝛼𝑛)
]

−2𝐵𝛼2𝑛
[

(1 − 𝜎2)𝑍𝑛
1 (𝛼𝑛) − (𝜎2 − 𝜅2)𝑍𝑛

1 (𝜅𝛼𝑛)
]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

{

𝐵𝛼2𝑛
[

(𝐵 + 2𝛬)𝑍𝑛2
1 (𝛼𝑛) + 𝜅(𝛬 − 𝜅𝐵)𝑍𝑛2

1 (𝜅𝛼𝑛)
]

+(1 − 𝛬𝛼2𝑛 )
2 [𝑍𝑛2

1 (𝛼𝑛) − 𝜅2𝑍𝑛2
1 (𝜅𝛼𝑛)

]

} (39)

The special cases for static (Navier) slip (𝛬 = 0) and no-slip (𝛬 = 𝐵
= 0) are easily deduced. It should be pointed out, however, that (𝛼𝑛, 𝛽𝑛)
are different, since the eigenvalue problem in Eq. (22) is modified
accordingly.

3. Annular Couette flow

We now consider the annular Couette flow, i.e., the flow between
two coaxial cylinders of infinite length and radii 𝜅𝑅 and 𝑅, caused by
the axial motion of the inner cylinder (see Fig. 2).

3.1. Steady-state solution

The steady-state solution when the pressure gradient is zero and
the inner cylinder moves at a constant speed 𝑉 is easily found by
integrating the steady-state version of Eq. (3) and determining the
integration constants by imposing the boundary conditions
{

𝑢𝑧(𝜅𝑅) = 𝑉 − 𝑢𝑤1 , (40)
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𝑢𝑧(𝑅) = 𝑢𝑤2
where the two slip velocities, 𝑢𝑠𝑤1 and 𝑢𝑠𝑤2, obey the static version of
Eq. (2), i.e., the Navier-slip law. Since the velocity is a decreasing
function of the radial distance, the shear stress (𝜏𝑠𝑟𝑧 = 𝜂𝑑𝑢𝑠𝑧∕∕𝑑𝑟) is
negative everywhere in the flow domain, and thus Eq. (40) takes the
form:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑠𝑧(𝜅𝑅) = 𝑉 +
𝜂
𝛽

𝑑𝑢𝑠𝑧
𝑑𝑟

|

|

|

|

|𝑟=𝜅𝑅

𝑢𝑠𝑧(𝑅) = −
𝜂
𝛽

𝑑𝑢𝑠𝑧
𝑑𝑟

|

|

|

|

|𝑟=𝑅

. (41)

It turns out that the steady-state velocity and the volumetric flow rate
are given by:

𝑢𝑠𝑧(𝑟) =
𝐵 + ln(𝑅∕𝑟)

(1 + 1∕𝜅)𝐵 + ln(1∕𝜅)
𝑉 (42)

and

𝑄𝑠 =
𝜋(1 − 𝜅2)𝑅2𝑉

[

1 + 2𝐵 − 2 ln(1∕𝜅)∕(1∕𝜅2 − 1)
]

2
[

(1 + 1∕𝜅)𝐵 + ln(1∕𝜅)
] , (43)

respectively.

3.2. Flow cessation

Here, we assume that at 𝑡∗ = 0 the velocity is given by the steady-
state solution and then, for 𝑡∗ > 0, the inner cylinder stops moving. We
work with dimensionless equations, scaling the velocity by the initial
speed 𝑉 of the inner cylinder and lengths and time as in Section 2. The
resulting boundary value problem is identical to that in Eq. (14), where
now

𝑢𝑠∗𝑧 (𝑟∗) =
𝐵 + ln(1∕𝑟∗)

(1 + 1∕𝜅)𝐵 + ln(1∕𝜅)
. (44)

Since the inner cylinder is fixed for 𝑡∗ > 0, the velocity near the inner
cylinder increases with the radial distance and thus the signs of the
shear stress near the two walls are the same as in the annular Poiseuille
flow. Consequently, the resulting eigenvalue problem is also the same
(Eq. (22)) and so are the Fourier modes 𝛼𝑛. The dimensionless velocity
and volumetric flow rate are given by Eqs. (23) and (25), respectively.
Only the constants 𝐴𝑛 differ, for which one finds that

𝐴𝑛 =
−2𝜅 (1 − 𝛬)𝑍𝑛

1 (𝜅𝛼𝑛)

𝛼𝑛

{

𝐵𝛼2𝑛
[

(𝐵 + 2𝛬)𝑍𝑛2
1 (𝛼𝑛) + 𝜅(2𝛬 − 𝜅𝐵)𝑍𝑛2

1 (𝜅𝛼𝑛)
]

+(1 − 𝛬𝛼2𝑛 )
2 [𝑍𝑛2

1 (𝛼𝑛) − 𝜅2𝑍𝑛2
1 (𝜅𝛼𝑛)

]

}
. (45)

The special cases of Navier slip (𝛬 = 0) and no-slip (𝛬 = 𝐵 = 0) are
easily recovered from the above general solution.

4. Results and discussion

The Fourier modes corresponding to the analytical solutions derived
in this work are easily determined solving the system (22), starting from
the first mode, marching along the positive real axis, and calculating all
encountered modes till a desired number 𝑁 is reached. Our numerical
experiments revealed that using 𝑁 = 1000 terms of the solution in
Eq. (23) was sufficient to ensure series convergence for times greater
than 10−6. However, when 𝑡∗ < 10−6, 𝑢∗𝑧(𝑟

∗, 𝑡∗) does not differ much
from the initial steady-state solutions in Eqs. (13) and (44) for the
Poiseuille and Couette flows, respectively. Results have been obtained
for a range of values of all three flow parameters, i.e., the radii ratio 𝜅,
the slip parameter 𝐵, and the slip relaxation parameter 𝛬.

The numerical codes used to compute the analytical solutions have
also been checked against the predictions of a naïve fully-explicit
finite-difference scheme. As an example, in Fig. 3, the analytical and
numerical solutions for both the annular Poiseuille and Couette flows
obtained for 𝜅 = 0.5, 𝐵 = 0.1, and 𝛬 = 0.05 compare quite well. In
particular, the solutions for the annular Couette flow (Fig. 3(b)) are
indistinguishable at all time steps.
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Fig. 3. Comparison of the analytical solutions (solid lines) with the numerical predictions (dashed lines) of a fully-explicit finite difference scheme in the case of cessation of (a)
annular Poiseuille flow and (b) Couette flow with dynamic wall slip when 𝜅 = 0.5, 𝐵 = 0.1, and 𝛬 = 0.05. The velocity profiles at 𝑡∗ = 0, 0.01, 0.02, 0.05, 0.1, 0.2, and 0.4 are
shown. The red (top) profiles are the initial steady-state solutions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Fig. 4. Evolution of the velocity in cessation of annular Poiseuille flow with Navier slip when 𝜅 = 0.5: (a) 𝐵 = 0 (no slip; 𝑡∗ = 0, 0.01, 0.02, 0.05, 0.1); (b) 𝐵 = 0.1 (moderate
slip; 𝑡∗ = 0, 0.01, 0.02, 0.05, 0.1, 0.2); (c) 𝐵 = 1 (strong slip; 𝑡∗ = 0, 0.05, 0.1, 0.2, 0.4, 0.8). The red (top) profile is the initial steady-state solution. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Evolution of the velocity in cessation of annular Poiseuille flow with dynamic wall slip when 𝐵 = 0.1 (moderate slip) and 𝜅 = 0.5: (a) 𝛬 = 0 (Navier slip); (b) 𝛬 = 0.02;
(c) 𝛬 = 0.05. The velocity profiles at 𝑡∗ = 0, 0.01, 0.02, 0.05, 0.1, and 0.2 are shown. The red (top) profile is the initial steady-state solution. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
4.1. Annular Poiseuille flow

The evolution of the velocity in the case of Navier slip (𝛬 = 0) is first
presented for comparison purposes. For this case, it is well known that
the velocity profiles tend to become flatter and flow cessation becomes
slower, as wall slip becomes stronger [9]. Fig. 4 shows results for the
evolution of the velocity, obtained for 𝜅 = 0.5 and three indicative slip
numbers corresponding to no (𝐵 = 0), moderate (𝐵 = 0.1), and strong
(𝐵 = 1) slip. The effect of the slip relaxation parameter on the evolution
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of the velocity is illustrated in Figs. 5 and 6, where results with 𝛬
= 0, 0.02, and 0.05 are shown for 𝐵 = 0.1 and 𝐵 = 1, respectively;
Figs. 5a and 6a are thus identical to Figs. 4b and c. In agreement with
the literature [9,11,18], the evolution of the velocity becomes slower as
𝛬 is increased. When slip is strong, e.g., in Fig. 6 (𝐵 = 1), the velocity
profiles become rather flat, cessation is much slower, and the effect of 𝛬
is not so pronounced. In other words, dynamic wall slip is not important
when slip is very strong.
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Fig. 6. Evolution of the velocity in cessation of annular Poiseuille flow with dynamic wall slip when 𝐵 = 1 (strong slip) and 𝜅 = 0.5: (a) 𝛬 = 0 (Navier slip; 𝑡∗ = 0, 0.05, 0.1, 0.2,
0.4, 0.8); (b) 𝛬 = 0.02 (𝑡∗ = 0, 0.05, 0.1, 0.2, 0.4, 0.8); (c) 𝛬 = 0.05 (𝑡∗ = 0, 0.05, 0.1, 0.2, 0.4, 0.8). The red (top) profile is the initial steady-state solution. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Evolution of the volumetric flow rate in cessation of annular Poiseuille flow with dynamic wall slip when 𝜅 = 0.5 and 𝛬 = 0 (Navier slip), 0.01, and 0.02: (a) 𝐵 = 0.01
(weak slip); (b) 𝐵 = 0.1 (moderate slip); (c) 𝐵 = 1 (strong slip). The red dashed line corresponds to the no-slip case.
Fig. 8. Evolution of the velocity in cessation of annular Poiseuille flow with dynamic wall slip when 𝐵 = 0.1 (moderate slip) and 𝜅 = 0.1: (a) 𝛬 = 0 (Navier slip); (b) 𝛬 = 0.02;
(c) 𝛬 = 0.05. The velocity profiles at 𝑡∗ = 0, 0.02, 0.05, 0.1, 0.2 and 0.5 are shown. The red (top) profile is the initial steady-state solution. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
The combined effects of the slip and relaxation numbers on the
evolution of the flow are illustrated in Fig. 7, where the calculated
volumetric flow rates for different values of the two parameters are
plotted. One observes that the evolution of 𝑄∗(𝑡∗) becomes slower when
𝐵 or 𝛬 are increased and that the effect of 𝛬 is more pronounced when
slip is weak (Fig. 7(b)) or moderate (Fig. 7(c)).

The results for other values of the radii ratio 𝜅 are quite similar.
The damping effect of the slip relaxation parameter on the velocity
evolution for 𝜅 = 0.1 and 𝐵 = 0.1 (moderate slip) is shown in Fig. 8
and the combined effects of 𝐵 and 𝛬 on the volumetric flow rate are
illustrated in Fig. 9.

4.2. Annular couette flow

The evolution of the velocity in the case of no or Navier wall slip
is illustrated in Fig. 10, where results for 𝛬 = 0 and 𝐵 = 0, 0.1 and 1
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are shown. As expected, the initial steady-state velocity profile tends to
become flat and cessation is damped as wall slip becomes stronger. It is
also clear that initially only the flow adjacent the inner cylinder of the
annular tube is affected. The inner slip velocity 𝑢𝑤1 is initially much
bigger than 𝑢𝑤2. As the phenomenon is developed the difference be-
tween the two slip velocities diminishes, as they both tend to zero, and
the velocity distribution tends to become flatter and more ‘symmetric’
around 𝑟∗ = (1 + 𝜅)∕2.

The effect of the slip relaxation parameter is illustrated in Fig. 11,
where results for 𝐵 = 0.1 (moderate slip) and different values of 𝛬 are
shown. Again, cessation is slowed down and the velocity distribution
tends to become flat near the inner cylinder. The evolution of the two
slip velocities in the three cases of Fig. 11 is shown in Fig. 12. Since the
inner cylinder has stopped and slip velocity is defined as the relative
velocity of the fluid with respect to that of the solid boundary, 𝑢∗𝑤1
is unity initially and decreases more rapidly than 𝑢∗ . The difference
𝑤2
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Fig. 9. Evolution of the volumetric flow rate in cessation of annular Poiseuille flow with dynamic wall slip when 𝜅 = 0.1 and 𝛬 = 0 (Navier slip), 0.01, 0.05: (a) 𝐵 = 0.01 (weak
slip); (b) 𝐵 = 0.1 (moderate slip); (c) 𝐵 = 1 (strong slip). The red dashed line corresponds to the no-slip case.

Fig. 10. Evolution of the dimensionless velocity in cessation of annular Couette flow with Navier slip when 𝜅 = 0.5: (a) 𝐵 = 0 (no slip; 𝑡∗ = 0, 0.0001, 0.0005, 0.001, 0.002,
0.005, 0.01, 0.02, 0.05, 0.1); (b) 𝐵 = 0.1 (moderate slip; same times as in (a)); (c) 𝐵 = 1 (strong slip; 𝑡∗ = 0, 0.001, 0.01, 0.1, 0.2, 0.4, 0.8). The red (top) profile is the initial
steady-state solution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Evolution of the dimensionless velocity in cessation of annular Couette flow with dynamic wall slip when 𝜅 = 0.5 and 𝐵 = 0.1: (a) 𝛬 = 0 (Navier slip); (b) 𝛬 = 0.02;
(c) 𝛬 = 0.05. The velocity profiles at 𝑡∗ = 0, 0.0001, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, and 0.1 are shown. The red (top) profile is the initial steady-state solution.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Evolution of the two slip velocities 𝑢∗𝑤1 (solid blue) and 𝑢∗𝑤2 (dashed red) in cessation of annular Couette flow when 𝜅 = 0.5 and 𝐵 = 0.1: (a) 𝛬 = 0 (Navier slip); (b) 𝛬
= 0.02; (c) 𝛬 = 0.05.
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Fig. 13. Evolution of the two slip velocities 𝑢∗𝑤1 (solid blue) and 𝑢∗𝑤2 (dashed red) in cessation of annular Couette flow when 𝜅 = 0.1 and 𝐵 = 0.1: (a) 𝛬 = 0 (Navier slip); (b) 𝛬
= 0.02; (c) 𝛬 = 0.05.
Fig. 14. Evolution of the dimensionless volumetric flow rate in cessation of annular Couette flow with dynamic wall slip when 𝜅 = 0.5 and 𝛬 = 0 (Navier slip), 0.005, 0.01: (a)
𝐵 = 0.01 (weak slip); (b) 𝐵 = 0.1 (moderate slip); (c) 𝐵 = 1 (strong slip). The red dashed line corresponds to the no-slip case.
between the two slip velocities eventually diminishes as they both
decay to zero. The merging of the two slip velocities becomes slower
when 𝜅 is small, as in Fig. 13, where results for 𝜅 = 0.1 and 𝐵 = 0.1
are shown.

Finally, the evolution of the volumetric flow rate for 𝜅 = 0.5 and
various values of 𝐵 and 𝛬 is shown in Fig. 14. It can be observed that
effect of the relaxation parameter is important only when slip is weak
or moderate.

5. Conclusion

Analytical solutions have been developed for the cessation of an-
nular Poiseuille and Couette flows of a Newtonian fluid with dynamic
wall slip. The solutions show that assuming the same slip law applies
along both cylinders of the annulus, the two solutions share the same
Fourier modes, with the only difference being in the initial condition.
Results for radii ratios 𝜅 = 0.5 and 𝜅 = 0.1 demonstrate that cessation is
damped by the slip and relaxation parameters, consistent with previous
studies in the literature for other flows [11,18]. It has also been shown
that the effect of the slip relaxation parameter is insignificant when slip
is strong.
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