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• The Newtonian Poiseuille flow in ducts of annular-sector or circular-sector cross-sections is considered.
• Navier slip is assumed to occur along the circular walls.
• A general analytical solution is derived for the above flow.
• The effects of the sector angle, the radii ratio and the slip number are analysed.
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a b s t r a c t

We consider the Newtonian Poiseuille flow in a duct the cross section of which is either a circular or
an annular sector assuming that Navier slip occurs either along both the cylindrical walls or only along
the outer cylindrical wall. A general analytical solution is derived and the results for the latter case are
discussed and the effects of the angle of the sector, the radii ratio and the slip number are analysed.
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1. Introduction

The classical Poiseuille, i.e. pressure-driven, flow in ducts of
various cross sections has regained interest in the past fewdecades,
due to its application in micro- and nanofluidics [1,2]. Such appli-
cations include micro- andmacro-fabrication technologies, micro-
electro-mechanical systems (MEMS), computer chips, chemical
separations, medical and biomedical procedures etc. Morini [3]
pointed out that the cross-sectional shape of a microchannel
strongly depends on the technology used to build it and that it is
possible to have microchannels of any cross-section. For example,
tubes of semi-circular cross section are used in hardmicromachin-
ing with isotropic etching [2]. Annular-sector ducts are applicable
tomulti-passage internally finned tubes [4] or ducts which need to
conform to a curved boundary [5].

Slip effects are also very important in microfluidic applica-
tions [1,6]. It is well established that even Newtonian liquids may
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exhibit slip [7]. Neto et al. [7] reviewed experimental studies of
wall slip of Newtonian liquids and discussed the effects of surface
roughness, wettability, and the presence of gaseous layers. Lauga
et al. [6] also reviewed experimental, numerical and theoretical
investigations on the subject of slip and pointed out the complex
behaviour at a liquid/solid interface, involving an interplay ofmany
physico-chemical parameters, including wetting conditions, shear
rate, pressure, surface charge, surface roughness, impurities and
dissolved gas. Slip is also observed in flows of rarefied gases in
microtubes [8].

Navier [9] proposed a linear slip law according to which the slip
velocity u∗

w , defined as the velocity of the fluid relative to that of the
wall, is proportional to the wall shear stress, τ ∗

w . Thus,

τ ∗

w = β∗u∗

w (1)

where β∗ is the slip coefficient, which varies in general with tem-
perature, normal stress and pressure, molecular parameters, and
the characteristics of the fluid/wall interface, e.g. the interaction
between the fluid and the solid surface and surface roughness [10].
The limiting case of no slip is recovered for β∗

→ ∞. It should
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Fig. 1. Cross section of the tube.

be noted that starred symbols denote dimensional quantities and
variables (symbols without stars correspond to dimensionless
quantities).

The slip coefficient is related to the extrapolation length, b∗,
which is defined as the characteristic length equal to the distance
that the velocity profile at the wall must be extrapolated linearly
to satisfy the no-slip boundary condition, by means of β∗

≡ η∗/b∗,
where η∗ is the viscosity [11]. Recently, Bolaños and Vernescu [12]
derived the Navier slip condition as the effective boundary condi-
tion in the limit of small roughness by combining homogenization
methods and boundary-layer techniques and provided a formula
for computing the slip length for various geometries and a theoret-
ical justification for the observed slip in micro- and nano-fluidics.

Many different extensions of Navier’s law have been proposed,
the most important of which are the generalizations to power-law
and dynamic slip equations. The reader is referred to the recent
review of Hatzikiriakos [11] for more details.

Analytical solutions of Poiseuille flow with wall slip exist only
for certain geometries including parallel plates, circular, annular,
elliptic, equilateral triangular, and rectangular ducts [5,13–15].
Recently, Wang [5] considered the flow in an annular-sector duct
with Navier slip along all walls. The solution of this flow problem
in the no-slip case has been derived by Sparrow et al. [4]. Wang [5]
derived a semi-analytical approximate solution using expansions
of eigenfunctions in the radial direction and boundary collocation
on the straight sides. The leading eigenvalues were calculated
using perturbation theory and approximate formulas for the higher
eigenvalues were used.

In the present work, we consider ducts the cross section of
which is either a circular or an annular sector (see Figs. 1 and 2) and
assume thatNavier slip occurs only along the outer cylindricalwall.
In other words, there is no slip along the straight sides and along
the inner cylindrical wall in the case of an annular sector. It should
be noted that this situationmay arise if thematerial of construction
or even the roughness of the outer cylindrical wall is different from
those of the other walls of the duct (see, e.g., [7,10]). This flow is
amenable to an exact analytical solutionwhich is derived below for
the sake of simplicity instead of the more general flow where slip
occurs along both cylindrical walls with different slip coefficients.
However, a brief derivation of the latter solution is also provided.

The governing equations are presented in Section 2. In Section 3,
the analytical solution is derived and its form in various interesting
special cases are also presented. The solution for the no-slip case
is presented in Section 3.1. Results regarding the angle of the cross
section, the radii ratio, and the slip coefficient are presented and
discussed in Section 4. Finally, the conclusions of the present work
are summarized in Section 5.

2. Governing equations

We consider the Poiseuille flow of a Newtonian fluid in an
infinitely long horizontal duct the cross section of which is an

Fig. 2. Geometry when γ = 0 (the tube cross section is a circular section).

Fig. 3. Boundary conditions of the flowwhenNavier slip occurs only along the outer
cylindrical wall.

annular sector defined by γ R∗
≤ r∗

≤ R∗ and 0 ≤ θ ≤ απ , where
(r∗, θ ) are the polar coordinates, R∗ is the outer radius, 0 < α < 2,
and 0 ≤ γ < 1. The geometry is illustrated in Fig. 1. When γ = 0
the cross section is a circular sector, as illustrated in Fig. 2. If, for
example, γ = 0 and α = 1, the cross section is semicircular.

Assuming that the flow is unidirectional, driven by a constant
pressure-gradient (−dp∗/dz∗) in the absence of gravity, the z-
component of the Navier–Stokes equation is simplified as follows

−
dp∗

dz∗
+ η∗

(
∂2u∗

∂r∗2 +
1
r∗

∂u∗

∂r∗
+

1
r∗2

∂2u∗

∂θ2

)
= 0 (2)

where u∗ is the axial velocity and the viscosity η∗ is constant
(Newtonian fluid).

The boundary conditions of the flow are illustrated in Fig. 3.
We assume that there is no-slip along the walls θ = 0, θ =

απ , and r∗
= γ R∗. At the outer cylindrical wall, r∗

= R∗, it is
assumed that slip occurs following Navier’s slip law. Given that
τ ∗
w = |η∗∂u∗/∂r∗|r∗=R∗ , boundary condition (1) can be written as
follows:

η∗
∂u∗

∂r∗
(R∗, θ ) + β∗u∗(R∗, θ ) = 0. (3)

It should be noted that this condition is compatiblewith the no-slip
boundary condition along the adjacent walls θ = 0 and θ = απ .

It is preferable to work with dimensionless equations. We thus
scale lengths by the outer radius of the tube, R∗, and the velocity by
(−dp∗/dz∗)R∗2/η∗. Therefore, the dimensionless form of the flow
problem is the following:

∂2u
∂r2

+
1
r

∂u
∂r

+
1
r2

∂2u
∂θ2 = −1, 0 < r < 1, 0 < θ < απ

u(r, 0) = u(r, απ ) = 0, 0 < r < 1

u(γ , θ ) =
∂u
∂r

(1, θ ) + Bu(1, θ ) = 0, 0 < θ < απ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4)
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Fig. 4. Boundary conditions of the flow when Navier slip occurs along both
cylindrical walls.

where B is the slip number defined by

B ≡
β∗

η∗R∗
. (5)

Again, the no-slip case corresponds to B → ∞.

3. Derivation of the solution

In order to use separation of variables we first need to ho-
mogenize the problem defined in (4). To that end we employ the
transformation

u(r, θ ) = −f (θ )r2 + w(r, θ ). (6)

It is easily verified that the partial differential equation (4)a and
boundary conditions (4)b are satisfied when

f (θ ) =
1
2
sin2 θ −

1
4
tan(απ ) sin(2θ ). (7)

Hence, the transformed problem reads:

∂2w

∂r2
+

1
r

∂w

∂r
+

1
r2

∂2w

∂θ2 = 0, 0 < r < 1, 0 < θ < απ

w(r, 0) = w(r, απ ) = 0, 0 < r < 1
w(γ , θ ) = f (θ )γ 2, 0 < θ < απ

∂w

∂r
(1, θ ) + Bw(1, θ ) = (B + 2)f (θ ), 0 < θ < απ

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (8)

We now seek a separated solution of the form:

w(r, θ ) =

∞∑
k=1

ck(r)ϕk(θ ). (9)

The Sturm–Liouville problem corresponding to problem (8) is the
following [16]:

φ′′(θ ) = λφ(θ ), 0 < θ < απ

φ(0) = φ(απ ) = 0

}
. (10)

The eigenvalues and eigenfunctions of the above problem are:

λk = −
k2

α2 , ϕk(θ ) =

√
2

απ
sin

(
kθ
α

)
, k = 1, 2, K . (11)

Substituting into the PDE of Eq. (8) we get the Euler equation:

c ′′

k (r) +
1
r
c ′

k(r) −
k2

α2r2
ck(r) = 0 (12)

the solution of which is

ck(r) = c1kr−k/α
+ c2krk/α. (13)

Therefore, for the satisfaction of boundary condition (8)c we re-
quire that

∞∑
k=1

(
c1kγ −k/α

+ c2kγ k/α) sin
(
kθ
α

)
= f (θ )γ 2. (14)

Bymultiplying Eq. (14) by sin(kθ/α) and integrating, one finds that

c1kγ −k/α
+ c2kγ k/α

=
2γ 2Ik
aπ

(15)

where Ik is the Fourier coefficient of f :

Ik ≡

∫ απ

0
f (θ ) sin

(
kθ
α

)
dθ = −

α3(1 − cos kπ )
k(k2 − 4α2)

. (16)

Therefore,

c1k =

(
2γ 2Ik
aπ

− c2kγ k/α
)

γ k/α (17)

and thus

w(r, θ ) =

∞∑
k=1

[(
2γ 2Ik
aπ

− c2kγ k/α
)

γ k/αr−k/α
+ c2krk/α

]
× sin

(
kθ
α

)
. (18)

The constant c2k is determined by applying the remaining bound-
ary condition, i.e. the slip boundary condition (8)d:
∞∑
k=1

[(
B −

k
α

)(
2γ 2Ik
aπ

− c2kγ k/α
)

γ k/α
+

(
B +

k
α

)
c2k

]
× sin

(
kθ
α

)
= (B + 2)f (θ ). (19)

By means of the orthogonality of the eigenfunctions ϕk, we get:(
B −

k
α

)(
2γ 2Ik
aπ

− c2kγ k/α
)

γ k/α
+

(
B +

k
α

)
c2k

=
2(B + 2)Ik

απ
(20)

which gives:

c2k =
2Ik

[
B
(
1 − γ k/α+2

)
+ 2 +

k
α
γ k/α+2

]
απ

[
B
(
1 − γ 2k/α

)
+

k
α

(
1 + γ 2k/α

)] . (21)

Substituting into Eq. (18) and rearranging we get Eq. (22) given in
Box I. Therefore, the dimensionless velocity is given by Eq. (23)
given in Box II. Eq. (23) is a special case of the solution of the
more general flow where slip occurs along both cylindrical walls
with different slip coefficients, which is given in Section 3.2. Some
interesting special cases are considered below. The no-slip case
(B → ∞) is separately considered in Section 3.1. When γ = 0
(the cross section is a circular sector), Eq. (23) is simplified to

u(r, θ ) =

[
−

1
2
sin2 θ +

1
4
tan(απ ) sin(2θ )

]
r2 −

2α2(B + 2)
π

×

∞∑
k=1

(1 − cos kπ )rk/α

k(k2 − 4α2)(B + k/α)
sin

(
kθ
α

)
. (24)

When α = 1, we get Eq. (25) given in Box III. Finally, when α = 1
and γ = 0 (semicircular cross-section),

u(r, θ ) = −
r2

2
sin2 θ −

2(B + 2)
π

∞∑
k=1

(1 − cos kπ )rk sin (kθ)

k(k2 − 4)(B + k)
(26)

or

u(r, θ ) = −
1
2
sin2 θ r2 −

4(B + 2)
π

×

∞∑
i=1

r2i−1 sin[(2i − 1)θ ]

(2i − 3)(2i − 1)(2i + 1)(B + 2i − 1)
. (27)

As for the volumetric flow rate,

Q ≡

∫ απ

0

∫ 1

γ

u(r, θ )rdrdθ (28)
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Fig. 5. Velocity contours in the case of no slip for γ = 0 and various values of α: (a) α = 0.25; (b) α = 0.5; (c) α = 0.75; (d) α = 1; (e) α = 1.25; (f) α = 1.5; (g) α = 1.75;
(h) α = 1.95.
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Fig. 6. Velocity contours in the case of no slip for γ = 0.5 and various values of α: (a) α = 0.25; (b) α = 0.5; (c) α = 0.75; (d) α = 1; (e) α = 1.25; (f) α = 1.5; (g) α = 1.75;
(h) α = 1.95.
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Fig. 7. Velocity contours in the case of no slip for α = 1 and various values of γ : (a) γ = 0; (b) γ = 0.25; ( c) γ = 0.5; (d) γ = 0.75.

w(r, θ ) =
2

απ

∞∑
k=1

Ik
{[

B
(
1 − γ k/α−2

)
+

k
α

− 2γ k/α−2
]
γ k/α+2r−k/α

+
[
B
(
1 − γ k/α+2

)
+ 2 +

k
α
γ k/α+2

]
rk/α

}
B
(
1 − γ 2k/α

)
+

k
α

(
1 + γ 2k/α

) sin
(
kθ
α

)
. (22)

Box I.

u(r, θ ) =

[
−

1
2
sin2 θ +

1
4
tan(απ ) sin(2θ )

]
r2 −

2α2

π

∞∑
k=1

1 − cos(kπ )
k(k2 − 4α2)

×{[
B
(
1 − γ k/α−2

)
+

k
α

− 2γ k/α−2
]
γ k/α+2r−k/α

+
[
B
(
1 − γ k/α+2

)
+ 2 +

k
α
γ k/α+2

]
rk/α

}
B
(
1 − γ 2k/α

)
+

k
α

(
1 + γ 2k/α

) sin
(
kθ
α

)
.

(23)

Box II.

one gets

Q =
1
16

(tanαπ − απ)
(
1 − γ 4)

+
2α4

π

×

∞∑
k=1

(1 − cos kπ )2

k2(k2 − 4α2)2
[
B(1 − γ 2k/α) + k(1 + γ 2k/α)/α

]×{
(k + 2α)

[
B
(
2γ k/α+2

− γ 2k/α
− γ 4)

+ (k/α + 2) γ k/α+2
− kγ 4/α − 2γ 2k/α]

− (k − 2α)
[
B(1 − γ k/α+2) + 2 + kγ k/α+2/α

]
(1 − γ k/α+2)

}
.

(29)

When γ = 0,

Q =
1
16

(tanαπ − απ) −
2α4(B + 2)

π

×

∞∑
k=1

(1 − cos kπ )2

k2(k + 2α)2(k − 2α)(B + k/α)
(30)

and when α = 1

Q = −
π

16

(
1 − γ 4)

+
2
π

∞∑
k=1

(1 − cos kπ )2

k2(k2 − 4)2
[
B(1 − γ 2k) + k(1 + γ 2k)

]×{
(k + 2)

[
B
(
2γ k+2

− γ 2k
− γ 4)

+ (k + 2) γ k+2
− kγ 4

− 2γ 2k]
− (k − 2)

[
B(1 − γ k+2) + 2 + kγ k+2] (1 − γ k+2)

}
.

(31)

When α = 1 and γ = 0 (semicircular cross-section),

Q = −
π

16
−

2(B + 2)
π

∞∑
k=1

(1 − cos kπ )2

k2(k + 2)2(k − 2)(B + k)
(32)

or

Q = −
π

16
−

8(B + 2)
π

×

∞∑
i=1

1
(2i − 1)2(2i + 1)2(2i − 3)(B + 2i − 1)

. (33)
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Fig. 8. Volumetric flow rate (a) andmean velocity (b) versusα for γ = 0 and various
values of the slip number.

3.1. The no-slip case

In this subsection, some special solutions for the no-slip case

are provided for convenience. When B → ∞, Eq. (23) is reduced

to

u(r, θ ) =

[
−

1
2
sin2 θ +

1
4
tan(απ ) sin(2θ )

]
r2

−
2α2

π

∞∑
k=1

1 − cos(kπ )
k(k2 − 4α2)(1 − γ 2k/α)

×
[(
1 − γ k/α−2) γ k/α+2

× r−k/α
+

(
1 − γ k/α+2) rk/α] sin(

kθ
α

)
(34)

and the volumetric flow rate is given by

Fig. 9. Volumetric flow rate (a) and mean velocity (b) versus αfor γ = 0.5 and
various values of the slip number.

Q =
1
16

(tanαπ − απ)
(
1 − γ 4)

+
2α4

π

∞∑
k=1

(1 − cos kπ )2

k2(k2 − 4α2)2(1 − γ 2k/α)

×

[
(k + 2α)

(
2γ k/α+2

− γ 2k/α
− γ 4)

− (k − 2α)
(
1 − γ k/α+2)2] .

(35)

Although equivalent, the above expressions are considerably sim-
pler than the expressions derived by Sparrow et al. [4], who were
the first to solve the Poiseuille flow in an annular-sector duct with
no slip along the walls. The latter authors introduced a coordinate
transformation tomap the annular sector into a rectangular region
which simplifies the mathematical problem but results in a longer
expansion, the convergence of which is extremely slow.

When γ = 0, Eq. (34) is simplified as follows:

u(r, θ ) =

[
−

1
2
sin2 θ +

1
4
tan(απ ) sin(2θ )

]
r2

−
2α2

π

∞∑
k=1

1 − cos(kπ )
k(k2 − 4α2)

rk/α sin
(
kθ
α

)
(36)
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Fig. 10. Volumetric flow rate (a) andmean velocity (b) versus the slip number B for
γ = 0 and various values of α. The dashed line corresponds to the axisymmetric
Poiseuille flow with slip at the wall.

and

Q =
1
16

(tanαπ − απ) −
2α4

π

∞∑
k=1

(1 − cos kπ )2

k2(k + 2α)2(k − 2α)
. (37)

For α = 1, we get:

u(r, θ ) = −
1
2
sin2 θ r2 −

2
π

∞∑
k=1

1 − cos(kπ )
k(k2 − 4)(1 − γ 2k)

×
[(
1 − γ k−2) γ k+2r−k

+
(
1 − γ k+2) rk] sin (kθ) (38)

and

Q = −
π

16

(
1 − γ 4)

+
2
π

∞∑
k=1

(1 − cos kπ )2

k2(k2 − 4)2(1 − γ 2k)

×

[
(k + 2)

(
2γ k+2

− γ 2k
− γ 4)

− (k − 2)
(
1 − γ k+2)2] . (39)

Fig. 11. Volumetric flow rate (a) andmean velocity (b) versus the slip number B for
γ = 0.5 and various values of α. The dashed line corresponds to the axisymmetric
annular Poiseuille flowwith slip along the outer cylinder and no-slip along the inner
one.

Finally, when α = 1 and γ = 0 (semicircular cross-section),

u(r, θ ) = −
1
2
sin2 θ r2 −

2
π

∞∑
k=1

1 − cos(kπ )
k(k2 − 4)

rk sin (kθ) (40)

or

u(r, θ ) = −
1
2
sin2 θ r2 −

4
π

∞∑
i=1

r2i−1 sin [(2i − 1)θ ]
(2i − 3)(2i − 1)(2i + 1)

. (41)

The latter solution has also been derived by Alassar [17]. The
volumetric flow rate is given by

Q = −
π

16
−

2
π

∞∑
k=1

(1 − cos kπ )2

k2(k + 2)2(k − 2)
(42)

or

Q = −
π

16
−

8
π

∞∑
i=1

1
(2i − 1)2(2i + 1)2(2i − 3)

. (43)

By means of partial fractions, it can then be shown that Q =

π/8 − 1/π , a result also reported in [15].
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Fig. 12. Velocity contours for various values of the slip number: (a) axisymmetric Poiseuille flow; (b) flow in a tube with α = 1.99 and γ = 0.
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Fig. 13. Velocity contours for various values of the slip number: (a) annular Poiseuille flow with γ = 0.5; (b) flow in a tube with α = 1.99 and γ = 0.5.
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Fig. 14. Velocity contours for α = 0.5, γ = 0 and various values of the slip number B: (a) B = ∞ (no slip); (b) B = 10 (weak slip); (c) B = 1 (moderate slip); (d) B = 0.1
(strong slip).

Fig. 15. Velocity contours for α = 1, γ = 0 and various values of the slip number B: (a) B = ∞ (no slip); (b) B = 10 (weak slip); (c) B = 1 (moderate slip); (d) B = 0.1
(strong slip).
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Fig. 16. Velocity contours for α = 1.5, γ = 0 and various values of the slip number B: (a) B = ∞ (no slip); (b) B = 10 (weak slip); (c) B = 1 (moderate slip); (d) B = 0.1
(strong slip).

3.2. The solution when non-uniform slip occurs along both cylindrical
walls

In this subsection, we consider the more general flow where
Navier slip is allowed to occur along both the cylindrical walls with
different slip coefficients, β∗

1along the outer wall and β∗

2 along the
inner one (γ > 0), as illustrated in Fig. 4.

Using the same scales as before, the dimensionless flow prob-
lem to be solved is:

∂2u
∂r2

+
1
r

∂u
∂r

+
1
r2

∂2u
∂θ2 = −1, 0 < r < 1, 0 < θ < απ

u(r, 0) = u(r, απ ) = 0, 0 < r < 1

∂u
∂r

(γ , θ ) − B2u(γ , θ ) = 0, 0 < θ < απ

∂u
∂r

(1, θ ) + B1u(1, θ ) = 0, 0 < θ < απ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(44)

where the two slip numbers are defined by Bi ≡ β∗

i /(η
∗R∗), i =

1, 2. It should be noted that when B2 → ∞ the flow studied in the
main paper is recovered. If instead B1 → ∞, the solution where
slip occurs only along the inner cylindrical wall is obtained. Finally,
by setting B1 = B2 = B, the same slip law is applied along both the
walls.

Following the same steps as abovewe find the following expres-
sion for w(r, θ ):

w(r, θ ) =

∞∑
k=1

⎡⎣ 2
aπ (B2γ − 2)γ Ik −

(
B2 −

k
αγ

)
γ k/αc2k

B2 +
k

αγ

× γ k/αr−k/α
+ c2krk/α

⎤⎦ sin
(
kθ
α

)
(45)

where

c2k =

2Ik
{
B1

[
1 −

(B2γ−2)
(B2γ+k/α)γ

k/α+2
]

+ 2 +
k
α

(B2γ−2)
(B2γ+k/α)γ

k/α+2
}

απ

{
B1

[
1 −

(B2γ−k/α)
(B2γ+k/α)γ

2k/α
]

+
k
α

[
1 +

(B2γ−k/α)
(B2γ+k/α)γ

2k/α
]} . (46)

Substituting Eq. (46) into Eq. (45) and simplifying we get Eq. (47)
given in Box IV. Therefore, the dimensionless velocity is given by
Eq. (48) given in Box V. It is readily verified that if B2 → ∞ then
Eq. (23) is recovered. If instead B1 → ∞ (no slip along the outer
cylindrical wall), we have:

u(r, θ ) =

[
−

1
2
sin2 θ +

1
4
tan(απ ) sin(2θ )

]
r2

−
2α2

π

∞∑
k=1

[1 − cos(kπ )] sin(kθ/α)

k(k2 − 4α2)
(
1 −

B2γ−k/α
B2γ+k/α γ 2k/α

)×

[
B2γ

(
1 − γ k/α−2

)
− 2 +

k
α
γ k/α−2

B2γ + k/α
γ k/α+2r−k/α

+

(
1 −

B2γ − 2
B2γ + k/α

γ k/α+2
)
rk/α

]
.

(49)
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u(r, θ ) = −
r2

2
sin2 θ −

2
π

∞∑
k=1

1 − cos(kπ )
k(k2 − 4)

×{[
B
(
1 − γ k−2

)
+ k − 2γ k−2

]
γ k+2r−k

+
[
B
(
1 − γ k+2

)
+ 2 + kγ k+2

]
rk

}
B
(
1 − γ 2k

)
+ k

(
1 + γ 2k

) sin (kθ) .

(25)

Box III.

w(r, θ ) =
2

απ

∞∑
k=1

Ik sin(kθ/α)

B1

(
1 −

B2γ−k/α
B2γ+k/α γ 2k/α

)
+

k
α

(
1 +

B2γ−k/α
B2γ+k/α γ 2k/α

)×

{
B2γ

[
B1

(
1 − γ k/α−2

)
+

k
α

− 2γ k/α−2
]
− 2

(
B1 +

k
α

)
+

k
α
(B1 + 2)γ k/α−2

B2γ + k/α
γ k/α+2r−k/α

+

[
B1

(
1 −

B2γ − 2
B2γ + k/α

γ k/α+2
)

+ 2 +
k(B2γ − 2)

α(B2γ + k/α)
γ k/α+2

]
rk/α

}
.

(47)

Box IV.

u(r, θ ) =

[
−

1
2
sin2 θ +

1
4
tan(απ ) sin(2θ )

]
r2

−
2α2

π

∞∑
k=1

[1 − cos(kπ )] sin(kθ/α)

k(k2 − 4α2)
[
B1

(
1 −

B2γ−k/α
B2γ+k/α γ 2k/α

)
+

k
α

(
1 +

B2γ−k/α
B2γ+k/α γ 2k/α

)]×

{
B2γ

[
B1

(
1 − γ k/α−2

)
+

k
α

− 2γ k/α−2
]
− 2

(
B1 +

k
α

)
+

k
α
(B1 + 2)γ k/α−2

B2γ + k/α
γ k/α+2r−k/α

+

[
B1

(
1 −

B2γ − 2
B2γ + k/α

γ k/α+2
)

+ 2 +
k(B2γ − 2)

α(B2γ + k/α)
γ k/α+2

]
rk/α

}
.

(48)

Box V.

All terms involving the slip number B2 vanish when γ = 0 to yield
the classical no-slip solution for the circular-sector duct.

4. Results and discussion

We first consider the case of no-slip along all walls. Representa-
tive results are illustrated in Figs. 5–7. In Figs. 5 and 6, the velocity
contours for respectively γ = 0 (circular sector) and 0.5 (annular
sector) are plotted for various values of α. In Fig. 7, we plotted the
velocity contours for a fixed angle (α = 1) and various values of
γ . It should be noted that in all the contour figures of this paper, 9
equidistant contours (ranging from 0.1umax to 0.9umax, umax being
the maximum velocity) are plotted.

The volumetric flow rate increases as α is increased or as γ is
reduced, as expected. The effect of the angle parameter α in the
case the cross section is a circular sector (γ = 0) can be seen
in Fig. 8, where the volumetric flow rate Q and the mean (cross-
sectionally averaged) velocity, defined by

um ≡
Q

απ (1 − γ 2)/2
(50)

are plotted for four values of the slip number B, corresponding to no
(B = ∞), weak (B = 10), moderate (B = 1), and strong (B = 0.1)
slip. As expected, the volumetric flow rate and the mean velocity

increase with slip and with the opening angle parameter α. We
have also compared the volumetric flow rates in the case of no-
slip (B = ∞) in both Figs. 8 and 9 with the analytical solution
derived by Sparrow et al. [4]. The two solutions are equivalent but
the convergence of the latter is very slow, e.g. for a 6-significant-
digit accuracy up to 10000 termsmay be needed instead of around
50.

Similar results have been obtained for the casewhere the cross-
section of the duct is an annular sector; as an example, Fig. 9 shows
results with γ = 0.5. In this case, however, the volumetric flow
rate and themean velocity aremuch lower than their counterparts
for γ = 0.

The effect of slip on the volumetric flow rate and the mean
velocity is illustrated in Figs. 10 and 11 for γ = 0 (circular sector)
and γ = 0.5 (annular sector), respectively, and various values
of the angle parameter α. Again both Q and umincrease as α is
increased or as slip is enhanced. As slip becomes stronger, both
quantities tend to an asymptotic value reaching a plateau. This is
not the case with the classical axisymmetric Poiseuille flow where
there is no inner cylindrical wall. In this case, the velocity and the
volumetric flow rate are given by

u =
1
4

(
1 +

2
B

− r2
)

(51)
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Fig. 17. Slip velocity for α = 1, γ = 0 and various values of the slip number B.

and

Q =
π

8

(
1 +

4
B

)
. (52)

It is clear that in the limit of infinite slip (B → 0), the volumetric
flow rate also becomes infinite and the velocity becomes uni-
form. The dashed lines in Fig. 10 correspond to the axisymmetric
Poiseuille flow. Comparing the velocity contours of the axisymmet-
ric Poiseuille flow with the results for a circular sector with α =

1.99 (i.e. for almost full circle) in Fig. 12 is instructive. The velocity
contours of the axisymmetric Poiseuille flow look the same but
they actually correspond to different velocity values in the interval
[1/(2B), 1/4 + 1/(2B)]. It is clear that the difference between the
minimum and maximum values of the velocity is constant which
explains the fact that the velocity contours look identical. In the
case of the circular sector (Fig. 12b) the minimum velocity is zero
due to the no-slip boundary condition on parts of the boundary and

the maximum velocity, which occurs at an angle θ = aπ/2 due to
symmetry, moves towards the outer wall as slip is enhanced. In
the limit of infinite slip the maximum velocity coincides with the
maximum slip velocity.

The results in Fig. 11 for the case of an annular sector with
γ = 0.5 are similar, with the volumetric flow rate and the mean
velocity being much lower. The dashed lines correspond to the
axisymmetric annular Poiseuille flow with slip along the outer
cylinder and no-slip along the inner cylinder. The velocity and the
volumetric flow rate in this case are given by

u = −
1
4

(
r2 − γ 2)

+
B(1 − γ 2) + 2

4 [1 + B ln(1/γ )]
ln

(
r
γ

)
(53)

and

Q =
π

8

{
B(1 − γ 2) + 2
1 + B ln(1/γ )

[
2 ln(1/γ ) − 1 + γ 2]

− (1 − γ 2)2
}

. (54)

Due to the no-slip boundary condition, the volumetric flow rate
also reaches a plateau. As B goes to zero the velocity derivative
at the outer wall tends to become zero (zero shear stress) but
the velocity cannot become uniform. The velocity contours for the
axisymmetric annular flow and the flow in a duct of an annular-
sector cross-section are compared in Fig. 13 for various values of
the slip number. The velocity contours in annular Poiseuille flow
are denser near the two cylinders in the case of no-slip (B =

∞) and the maximum velocity occurs in an intermediate radial
distance. The velocity maximum moves towards and eventually
reaches the outer cylinder as slip is enhanced. A similar trend is
observed in the case of the annular sector (Fig. 13b) but only far
from the two planar walls of the duct where the no-slip condition
applies thus ‘‘pushing’’ the velocity contours towards the outer
cylinder where slip occurs. It is clear that the greater the distance
from the planar walls the stronger is the slip observed along the
outer cylindrical wall.

Similar observations can be made for other values of the open-
ing angle parameter α and the radii ratio γ . In Figs. 14–16 we
plotted the velocity contours for γ = 0 (circular sector) and
α = 0.5, 1, and 1.5, respectively. The maximum velocity occurs
at the plane θ = aπ/2 and moves towards the cylindrical wall as

Fig. 18. Velocity contours for α = 1, γ = 0.5 and various values of the slip number B: (a) B = ∞ (no slip); (b) B = 10 (weak slip); (c) B = 1 (moderate slip); (d) B = 0.1
(strong slip).
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Fig. 19. Slip velocity for α = 1, γ = 1/2 and various values of the slip number B.

slip becomes stronger. Fig. 17 shows the slip velocities for various
values of B and α = 1, i.e. for a semicircular cross-section; the
velocity contours corresponding to Fig. 17 are those of Fig. 15. The
results for annular-sector cross-sections are quite similar. As an
example, we show in Fig. 18 the velocity contours for γ = 0.5, α =

1 and various values of the slip number. The corresponding slip
velocities are shown in Fig. 19.When comparing the present results
with those ofWang [5] for the flowwhere Navier slip applies along
all the walls, we note that in the latter case the velocity tends to
become more uniform as slip becomes stronger. This is not the
case when slip applies only along some walls; the velocity tends
to become plug only near boundaries where slip occurs.

An important quantity in the study of internal fully-developed
flow is the Poiseuille number, Po, which represents the ratio be-
tween pressure and viscous forces. This is defined as the product
of the Fanning friction factor

f ≡
D∗

h

2ρ∗u∗2
m

(
−

dp∗

dz∗

)
(55)

and the Reynolds number

Re ≡
ρ∗u∗

mD
∗

h

η∗
(56)

where ρ∗ is the fluid density andD∗

h is the hydraulic (or equivalent)
diameter of the duct [4,17]. The latter is defined by

D∗

h ≡
4A∗

P∗
(57)

where A∗ and P∗ are the dimensionless cross-sectional area and the
wetted perimeter, respectively [18]. In terms of the dimensionless
variables used in the present work, the Poiseuille number is given
by Wang [5]

Po ≡
8A3

P2Q
(58)

where

A =
απ

2
(1 − γ 2) and P = 2(1 − γ ) + απ (1 + γ ) (59)

and therefore

Po ≡
α3π3(1 − γ 2)3

[2(1 − γ ) + απ (1 + γ )]2Q
. (60)

In Fig. 20, we plotted the Poiseuille numbers of the no-slip case
versus the opening angle of the annular sector for γ = 0.05, 0.5

Fig. 20. Poiseuille numbers versus the opening angle of the angular sector for three
values of the radii ratio γ in the absence of slip. The red circles correspond to values
provided by Sparrow et al. [4].

Fig. 21. Poiseuille numbers versus the slip number for various values of the opening
angle parameter, i.e. α = 0.5, 1, 1.5, and 1.99: (a) γ = 0 (circular sector); (b)
γ = 0.5 (angular sector); the curve for α = 1.5 lies between the curves for α = 1
and 1.99.
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and 0.95. The red circles correspond to results tabulated by Spar-
row et al. [4]; to avoid crowdedness, we have not considered all the
values of γ used by the latter authors. The agreement is very good;
however, it should be noted that there are some minor differences
which are presumably due partly to the limited available compu-
tational tools in the early sixties and partly to the more complex
expression obtained by Sparrow et al. [4] for the volumetric flow
rate.

In Fig. 21 we plotted the calculated Poiseuille numbers for γ =

0 (circular sector, Fig. 20a) and 0.5 (angular sector, Fig. 20b) versus
the slip number for various values of the opening angle parameter
α (0.5, 1, 1.5 and 1.99). We observe that slip dramatically reduces
the Poiseuille number, an observation also made by Wang [5] for
the casewhere slip occurs along all thewalls. The calculated values
agree with values provided in the literature. For example, in the
case where α = γ = 0.5 and B → ∞ (no slip), the Poiseuille
number is Po = 16.129 which agrees well with the values of Shah
and London [19] and Wang [20]. As already mentioned, when the
cross-section is semicircular (α = 1, γ = 0) the volumetric flow
rate in the absence of slip is Q = π/8 − 1/π ; in this case, Eq. (60)
yields

Po ≡
8π4

(π + 2)2(π2 − 8)
; 15.7668 (61)

a result also reported by Wang et al. [2].

5. Conclusions

Wehave derived the analytical solution of Newtonian Poiseuille
flow in ducts whose cross-sections are annular or circular sectors,
allowing Navier slip to occur along the outer cylindrical wall. Some
special cases as well as the more general case where slip occurs
along both the cylindrical walls have also been examined. The
effects of the opening angle, the radii ratio and the slip num-
ber on the velocity contours, the volumetric flow rate, and the
Poiseuille number have beendiscussed. Thepresent solutions com-
pare favourably with available results in the literature. These can
be useful in studies of flows inmicrofluidic devices [21,22] but also
in applications of polymer extrusion through annular dies [13].

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] H.A. Stone, A.D. Stroock, A. Ajdari, Engineering flows in small devices: Mi-
crofluidics toward a lab-on-a-chip, Annu. Rev. FluidMech. 36 (2004) 381–411.

[2] C.Y. Wang, Y.H. Liu, C.C. Chang, Analytical solution of electro-osmotic flow in
a semicircular microchannel, Phys. Fluids 20 (2008) 063105.

[3] G.I. Morini, Single-phase convective heat transfer in microchannels: a review
of experimental results, Int. J. Thermal Sci. 43 (7) (2004) 631–651.

[4] E.M. Sparrow, T.S. Chen, V.K. Johnson, Laminar flow and pressure drop in
internally finned annular ducts, Int. J. Heat Mass Transfer 7 (1964) 583–585.

[5] C.Y. Wang, Slip flow in an annular sector duct using radial eigenfunctions,
Theoret. Appl. Mech. Lett. 4 (2014) 032002.

[6] E. Lauga, M.P. Brenner, H.A. Stone, Microfluidics: The no-slip boundary condi-
tion, in: C. Tropea, A.L. Yarin, J.F. Foss (Eds.), Handbook of Experimental Fluid
Dynamics, Springer, Heidelberg, 2007, pp. 1219–1240.

[7] C. Neto, D.R. Evans, E. Bonaccurso, H.J. Butt, V.S.J. Craig, Boundary slip in
Newtonian liquids: a review of experimental studies, Rep. Progr. Phys. 68
(2005) 2859–2897.

[8] F. Shapirov, V. Seleznev, Data on internal rarefied gas flows, J. Phys. Chem. Ref.
Data 27 (1998) 657–706.

[9] C.L.M.H. Navier, Sur les lois du mouvement des fluides, Mé. L’Acad. Sci. L’Inst.
France 6 (1827) 389–440.

[10] M.M. Denn, Extrusion instabilities and wall slip, Annu. Rev. Fluid Mech. 33
(2001) 265–287.

[11] S.G. Hatzikiriakos, Wall slip of molten polymers, Prog. Polym. Sci. 37 (2012)
624–643.

[12] S.J. Bolaños, B. Vernescu, Derivation of the Navier slip and slip length for
viscous flows over a rough boundary, Phys. Fluids 29 (2017) 057103.

[13] C.Y. Wang, Slip flow in ducts, Can. J. Chem. Eng. 81 (2003) 1058–1061.
[14] G.C. Georgiou, G. Kaoullas, Newtonian flow in a triangular duct with slip at the

wall, Meccanica 48 (2013) 2577–2583.
[15] Y. Damianou, G.C. Georgiou, Viscoplastic Poiseuille flow in a rectangular duct

with wall slip, J. Non-Newton. Fluid Mech. 214 (2014) 88–105.
[16] J.D. Logan, Applied Mathematics, third ed., John Wiley & Sons, Inc., Hoboken,

New Jersey, 2006.
[17] R. Alassar, Hagen–Poiseuille flow in tubes of semi-circular cross-sections,

Proceedings of the 4th International Conference on Modeling, Simulation and
Applied Optimization (ICMSAO), Kuala Lumpur, Malaysia, 19-21 April, 2011.

[18] S.W. Churchill, Viscous Flows–the Practical Use of Theory, Butterworths,
Boston, MA, 1988.

[19] R.K. Shah, A.L. London, Laminar Flow Forced Convection in Ducts, Academic
Press, New York, 1978.

[20] C.Y.Wang, Analytical solution for forced convection in a semi-circular channel
filled with a porous medium, Transp. Porous Media 73 (2008) 369–378.

[21] J. Jang, Y.H. Kim, Gaseous slip flow of a rectangular microchannel with non-
uniform slip boundary conditions, Microfluid. Nanofluid. 9 (2010) 513–522.

[22] E.M. Languri, K. Hooman, Slip flow forced convection in a microchannel with
semi-circular cross-section, Int. Commun. Heat Mass Transfer 38 (2011) 139–
143.

http://refhub.elsevier.com/S0997-7546(18)30227-9/sb1
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb1
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb1
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb2
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb2
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb2
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb3
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb3
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb3
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb4
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb4
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb4
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb5
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb5
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb5
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb6
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb6
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb6
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb6
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb6
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb7
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb7
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb7
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb7
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb7
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb8
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb8
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb8
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb9
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb9
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb9
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb10
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb10
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb10
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb11
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb11
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb11
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb12
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb12
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb12
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb13
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb14
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb14
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb14
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb15
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb15
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb15
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb16
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb16
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb16
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb18
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb18
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb18
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb19
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb19
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb19
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb20
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb20
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb20
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb21
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb21
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb21
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb22
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb22
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb22
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb22
http://refhub.elsevier.com/S0997-7546(18)30227-9/sb22

	Newtonian Poiseuille flow in ducts of annular-sector cross-sections with Navier slip
	Introduction
	Governing equations
	Derivation of the solution
	The no-slip case
	The solution when non-uniform slip occurs along both cylindrical walls

	Results and discussion
	Conclusions
	Conflict of interest
	References


