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Abstract

We consider the application of the method of fundamental solutions to isotropic elastostatics problems in three

space dimensions. The displacements are approximated by linear combinations of the fundamental solutions of the

Cauchy–Navier equations of elasticity, which are expressed in terms of sources placed outside the domain of the

problem under consideration. The final positions of the sources and the coefficients of the fundamental solutions are

determined by enforcing the satisfaction of the boundary conditions in a least squares sense. The applicability of the

method is demonstrated on two test problems. The numerical experiments indicate that accurate results can be obtained

with relatively few degrees of freedom. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The method of fundamental solutions (MFS) is a method for the solution of certain elliptic boundary value

problems, which may be viewed as an indirect boundary element method. In the MFS, the solution is approximated by

a set of fundamental solutions of the governing equations which are expressed in terms of sources located outside the

domain of the problem. The unknown coefficients in the linear combination of the fundamental solutions and the final

locations of the sources are determined so that the boundary conditions are satisfied in a least squares sense. The

method is relatively easy to implement, it is adaptive in the sense that it takes into account sharp changes in the solution

and/or in the geometry of the domain and can easily incorporate difficult boundary conditions [10]. A survey of the

MFS and related methods over the last thirty years may be found in Ref. [4].

The charge simulation method (CSM), which is a boundary method related to the MFS in which the sources are

fixed, has been already used for the solution of two- and three-dimensional elastostatics problems. Burgess and

Mahajerin [3], Patterson and Sheikh [9] and Redekop [11] solved two-dimensional elastostatics problems. Redekop and

Cheung [12] solved three-dimensional elastostatics problems and Redekop and Thompson [13] employed the CSM for

the solution of axisymmetric elastostatics problems. More recently, the MFS has been used for the solution of two-

dimensional [2] and axisymmetric [6] elastostatics problems.

The objective of this paper is to formulate the MFS for the solution of three-dimensional isotropic linear elastic

problems. The applicability of the method is demonstrated on various test cases. The governing equations and the MFS

formulation are discussed in Section 2. The numerical results are presented in Section 3, and the conclusions are

summarized in Section 4.

Computers and Structures 80 (2002) 365–370

www.elsevier.com/locate/compstruc

*Corresponding author. Tel.: +357-2-892214; fax: +357-2-339061.

E-mail address: andreask@ucy.ac.cy (A. Karageorghis).

0045-7949/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0045-7949 (01 )00174-2



2. Governing equations and the MFS formulation for isotropic problems

In the absence of body forces, the governing equations of equilibrium for a homogeneous isotropic linear elastic

solid are the Cauchy–Navier equations. Using the indicial tensor notation in terms of the displacements ui, i ¼ 1; 2; 3,
the Cauchy–Navier equations, in a bounded three-dimensional domain X of the solid, take the dimensionless form

ðk þ lÞuk;ki þ lui;kk ¼ 0 [5], where k and l are the Lam�ee elastic constants. These constants can be expressed as

k ¼ mE=ðð1þ mÞð1� 2mÞÞ and l ¼ E=2ð1þ mÞ, where E is the modulus of elasticity, and m is Poisson’s ratio. In the above

equation, summation over repeated subscripts is implied and partial derivatives are denoted by ui;j ¼ oui=oxj. In the

linear theory, the strains eij, i; j ¼ 1; 2; 3, are related to the displacement gradients by means of eij ¼ 1
2
ðoui=oxjÞþ
�

ðouj=oxiÞÞ, and the stresses rij, i; j ¼ 1; 2; 3, are given by Hooke’s law rij ¼ kdijuk;k þ 2leij: The tractions tj, j ¼ 1; 2; 3 are

defined in terms of the stresses as ti ¼ rijnj, where n1, n2 and n3 denote the coordinates of the outward normal to the

boundary.

In Cartesian coordinates, the Cauchy–Navier equations for the displacements u1, u2 and u3 become
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These are subject to the boundary conditions

Bi½u1; u2; u3; t1; t2; t3� ¼ fi on X; i ¼ 1; 2; 3; ð4Þ

where oX is the boundary of X, which we shall assume to be piecewise smooth. The operators Bi, i ¼ 1; 2; 3, specify
Dirichlet, Neumann or Robin boundary conditions. For a source located at a point Q acting at a point P, the fun-

damental solutions of the system (1)–(3) are (see, e.g., Refs. [1,5])
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where

rPQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1P � x1QÞ

2 þ ðx2P � x2QÞ
2 þ ðx3P � x3QÞ

2
q

:

366 A. Poullikkas et al. / Computers and Structures 80 (2002) 365–370



The displacements are approximated by linear combinations of fundamental solutions:

u1N ða; b; c;Q; P Þ ¼
XN
j¼1

ajG11ðP ;QjÞ þ
XN
j¼1

bjG12ðP ;QjÞ þ
XN
j¼1

cjG13ðP ;QjÞ; ð11Þ

u2N ða; b; c;Q; P Þ ¼
XN
j¼1

ajG21ðP ;QjÞ þ
XN
j¼1

bjG22ðP ;QjÞ þ
XN
j¼1

cjG23ðP ;QjÞ; ð12Þ

u3N ða; b; c;Q; P Þ ¼
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j¼1

ajG31ðP ;QjÞ þ
XN
j¼1

bjG32ðP ;QjÞ þ
XN
j¼1

cjG33ðP ;QjÞ; ð13Þ

and the tractions are approximated accordingly [7]. In the above equations, N is the specified number of sources,

P 2 X ¼ X [ oX, and a ¼ ða1; a2; . . . ; aN Þ, b ¼ ðb1; b2; . . . ; bN Þ and c ¼ ðc1; c2; . . . ; cN Þ are vectors containing unknown

coefficients. The 3N-vector Q contains the coordinates of the sources Qj, which lie outside X. A set of points fPigMi¼1 is

selected on oX. The coefficients a, b, c and the locations of the sources Q (a total of 6N unknowns) are determined by

minimizing the functional

F ða; b; c;QÞ ¼
XM
i¼1

B1½u1N ; u2N ; u3N ; t1N ; t2N ; t3N �ða; b; c;Q; PiÞf � f1ðPiÞg2

þ
XM
i¼1

B2½u1N ; u2N ; u3N ; t1N ; t2N ; t3N �ða; b; c;Q; PiÞf � f2ðPiÞg2

þ
XM
i¼1

B3½u1N ; u2N ; u3N ; t1N ; t2N ; t3N �ða; b; c;Q; PiÞf � f3ðPiÞg2
: ð14Þ

The minimization of the functional F is achieved using the nonlinear least squares package LMDIF from MIN-

PACK [8]. This routine minimizes the sum of squares of m nonlinear functions in n variables using a modified version

of the Levenberg–Marquard algorithm and terminates when the specified number of function evaluations is reached.

A function evaluation occurs each time there is a call to the subroutine which calculates one of the functions

B1ða; b; c;Q; PiÞ, B2ða; b; c;Q; PiÞ and B3ða; b; c;Q; PiÞ. Explicit formulae for the derivatives required in the evaluation of

the approximations of the tractions are given in Ref. [7].

3. Numerical results

3.1. Example 1

We considered the solution of the Cauchy–Navier equations in the cube shown in Fig. 1 with X ¼ ð�1; 1Þ�
ð�1; 1Þ � ð�1; 1Þ subject to various boundary conditions corresponding to the exact solution u1 ¼ x1, u2 ¼ x2 and

u3 ¼ x3. For the elastic constants, we used values appropriate for steel, namely, l ¼ 1:15 and m ¼ 0:3. Similar examples

were considered in Ref. [12]. We obtained results for different boundary conditions while varying the number of sources,

N, and the number of function evaluations, NFEV. In each case we registered the maximum absolute errors on a

uniform 0:1� 0:1� 0:1 grid in the MFS approximations, e1, e2 and e3 corresponding to the displacements u1, u2 and u3,

respectively. In Table 1, we present results in the case when only Dirichlet boundary conditions are imposed for the

displacements and in Table 2, we present results when tractions are prescribed on the three sides S2, S4 and S6 and the

displacements are prescribed on the remaining sides S1, S3 and S5. Results for other combinations of boundary con-

ditions may be found in Ref. [7]. In all the cases examined, the accuracy of the approximation improves as the number

of degrees of freedom and the number of function evaluations are increased.
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3.2. Example 2

In order to test the method for a problem with a curved boundary, we also examined the solution of the Cauchy–

Navier equations in a cylinder of height equal to 2 and radius equal to 1, shown in Fig. 2. In Table 3, we present the

results obtained in the case when Dirichlet boundary conditions corresponding to the exact solution u1 ¼ x1, u2 ¼ x2
and u3 ¼ x3, are imposed everywhere on the boundary (i.e. on S1, S2 and S3). A similar example was considered in [6].

These results are comparable to the ones obtained in Example 1, that is, the accuracy of the approximation improves as

the number of degrees of freedom and the number of function evaluations are increased.

Fig. 1. Geometry of first example problem (cubic domain).

Table 1

Example 1, maximum absolute errors for Dirichlet problem

N M NFEV e1 e2 e3

6 96 1000 0.272-1 0.272-1 0.314-1

2000 0.762-2 0.762-2 0.809-2

3000 0.480-2 0.480-2 0.463-2

4000 0.379-2 0.379-2 0.319-2

5000 0.312-2 0.312-2 0.319-2

9 150 1000 0.327-1 0.302-1 0.348-1

2000 0.441-2 0.355-2 0.538-2

3000 0.220-2 0.186-2 0.244-2

4000 0.140-2 0.131-2 0.152-2

5000 0.107-2 0.101-2 0.113-2

12 216 1000 0.101-0 0.122-0 0.784-1

2000 0.664-2 0.534-2 0.461-2

3000 0.148-2 0.127-2 0.121-2

4000 0.659-3 0.579-3 0.573-3

5000 0.363-3 0.326-3 0.326-3
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4. Conclusions

In this work, we describe the application of the MFS to three-dimensional problems of steady-state elasticity. The

method is very easy to implement, requires little data preparation, and, unlike boundary element methods [5], it avoids

potentially troublesome and costly integrations on the boundary. The numerical tests indicate that satisfactory accuracy

is obtained with relatively few degrees of freedom.

Table 2

Example 1, maximum absolute errors when the tractions are prescribed on S2, S4 and S6

N M NFEV e1 e2 e3

6 96 1000 0.148-0 0.124-0 0.167-0

2000 0.118-0 0.147-0 0.765-1

3000 0.161-1 0.228-1 0.133-1

4000 0.660-2 0.935-2 0.498-2

5000 0.386-2 0.612-2 0.274-2

9 150 1000 0.807-1 0.807-0 0.807-0

2000 0.124-1 0.124-1 0.124-1

3000 0.537-2 0.537-2 0.537-2

4000 0.303-2 0.303-2 0.301-2

5000 0.208-2 0.208-2 0.207-2

12 216 1000 0.156-0 0.127-0 0.141-0

2000 0.921-2 0.105-1 0.121-1

3000 0.160-2 0.135-2 0.147-2

4000 0.114-2 0.959-3 0.989-3

5000 0.835-3 0.705-3 0.705-3

Fig. 2. Geometry of second example problem (cyclindrical domain).
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5000 0.161-2 0.137-2 0.120-2
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2000 0.523-2 0.672-2 0.627-2

3000 0.198-2 0.247-2 0.228-2

4000 0.873-3 0.134-2 0.124-2

5000 0.463-3 0.703-3 0.638-3
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